Top ▲

M1 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 13

Nomenclature: M1 receptor

Family: Acetylcholine receptors (muscarinic)

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 460 11q12.3 CHRM1 cholinergic receptor muscarinic 1 12,107
Mouse 7 460 19 A Chrm1 cholinergic receptor, muscarinic 1, CNS 91,122
Rat 7 460 1q43 Chrm1 cholinergic receptor, muscarinic 1 71,105,130,140
Previous and Unofficial Names Click here for help
M1 muscarinic acetylcholine receptor | Chrm-1 | M1R | cholinergic receptor, muscarinic 1 | cholinergic receptor | cholinergic receptor, muscarinic 1, CNS
Database Links Click here for help
Specialist databases
GPCRdb acm1_human (Hs), acm1_mouse (Mm), acm1_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human M1 muscarinic acetylcholine receptor bound to antagonist tiotropium.
PDB Id:  5CXV
Ligand:  tiotropium
Resolution:  2.7Å
Species:  Human
References:  139
Natural/Endogenous Ligands Click here for help
acetylcholine

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]iperoxo Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Agonist 8.7 pKd 120
pKd 8.7 [120]
NNC 11-1585 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.9 pKi 26
pKi 9.9 [26]
NNC 11-1607 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.6 pKi 26
pKi 8.6 [26]
pentylthio-TZTP Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.6 pKi 64
pKi 8.6 [64]
NNC 11-1314 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.4 pKi 26
pKi 7.4 [26]
xanomeline Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 6.7 – 7.9 pKi 27,109,149,161
pKi 6.7 – 7.9 [27,109,149,161]
sabcomeline Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.7 pKi 161
pKi 6.7 [161]
arecaidine propargyl ester Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.4 pKi 64
pKi 6.4 [64]
LY593093 Small molecule or natural product Hs Partial agonist 6.2 pKi 151
pKi 6.2 [151]
AC-42 Small molecule or natural product Hs Full agonist 6.2 pKi 75
pKi 6.2 [75]
oxotremorine Small molecule or natural product Click here for species-specific activity table Rn Partial agonist 6.0 pKi 93
pKi 6.0 [93]
arecoline Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.7 pKi 64,103,114
pKi 5.7 [64,103,114]
oxotremorine-M Small molecule or natural product Rn Full agonist 5.6 pKi 93
pKi 5.6 [93]
oxotremorine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.5 pKi 64,114
pKi 5.5 [64,114]
cevimeline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 5.3 pKi 84
pKi 5.3 (Ki 4.85x10-6 M) [84]
Description: Displacement of [3H]QNB from cloned receptor.
arecoline Small molecule or natural product Rn Partial agonist 5.3 pKi 93
pKi 5.3 [93]
McN-A-343 Small molecule or natural product Click here for species-specific activity table Rn Partial agonist 5.1 pKi 93
pKi 5.1 [93]
oxotremorine-M Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.1 pKi 64
pKi 5.1 [64]
pilocarpine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 5.1 pKi 64,114
pKi 5.1 [64,114]
McN-A-343 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 4.8 – 5.2 pKi 114
pKi 4.8 – 5.2 [114]
acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Full agonist 5.0 pKi 25
pKi 5.0 [25]
pilocarpine Small molecule or natural product Approved drug Ligand has a PDB structure Rn Partial agonist 4.9 pKi 93
pKi 4.9 [93]
milameline Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 4.8 pKi 161
pKi 4.8 [161]
acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 4.3 – 4.9 pKi 64,68
pKi 4.3 – 4.9 [64,68]
methylfurmethide Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.6 pKi 64
pKi 4.6 [64]
(-)-YM796 Small molecule or natural product Hs Partial agonist 4.3 – 4.8 pKi 152
pKi 4.3 – 4.8 [152]
(±)YM796 Small molecule or natural product Hs Partial agonist 4.1 – 4.7 pKi 152
pKi 4.1 – 4.7 [152]
carbachol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 3.2 – 5.3 pKi 27,64,161
pKi 3.2 – 5.3 [27,64,161]
furtrethonium Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.1 pKi 64
pKi 4.1 [64]
bethanechol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 4.0 pKi 64,114
pKi 4.0 [64,114]
carbachol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Full agonist 3.9 pKi 25
pKi 3.9 [25]
bethanechol Small molecule or natural product Approved drug Rn Full agonist 3.7 pKi 93
pKi 3.7 [93]
AZD6088 Small molecule or natural product Primary target of this compound Hs Partial agonist 8.3 pEC50 97
pEC50 8.3 (EC50 5x10-9 M) [97]
methacholine Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Rn Agonist 6.4 pEC50 104,114
pEC50 6.4 (EC50 4x10-7 M) [104,114]
(+)-aceclidine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.4 pEC50 35
pEC50 5.4 [35]
(-)-aceclidine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.0 pEC50 35
pEC50 5.0 [35]
[11C]butylthio-TZTP Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist - - 38
[38]
[11C]xanomeline Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist - - 38
[38]
iperoxo Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist - - 120
[120]
[3H]acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Agonist - -
SPP1 Small molecule or natural product N/A Agonist - - 15
[15]
View species-specific agonist tables
Agonist Comments
Please consult references [17,79,114,147,158] for further details of the activity of some of the ligands in this list.

Pilocarpine has been found to be a partial agonist [79,114,158] as well as a full agonist [147] at the M1 receptor; oxotremorine has also been found to be a partial agonist [79,114,147] as well as a full agonist [114] at the M1 receptor.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]QNB Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 10.6 – 10.8 pKd 63,107
pKd 10.6 – 10.8 (Kd 2.51x10-11 – 1.58x10-11 M) [63,107]
Cy3B-telenzepine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Hs Antagonist 10.5 pKd 56
pKd 10.5 [56]
[3H]N-methyl scopolamine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 9.4 – 10.3 pKd 23,27-28,58,64-66,69,77
pKd 9.4 – 10.3 (Kd 4.2x10-10 – 5x10-11 M) [23,27-28,58,64-66,69,77]
[3H]N-methyl scopolamine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Rn Antagonist 9.7 pKd 25,147
pKd 9.7 [25,147]
biperiden Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.3 pKd 11
pKd 9.3 (Kd 4.8x10-10 M) [11]
Alexa-488-telenzepine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Hs Antagonist 9.3 pKd 56
pKd 9.3 [56]
[3H]darifenacin Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.8 pKd 126
pKd 8.8 [126]
[3H]pirenzepine Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 7.9 pKd 24,119,143,150
pKd 7.9 (Kd 1.4x10-8 M) [24,119,143,150]
[3H]pirenzepine Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Antagonist 7.7 – 7.9 pKd 37,51
pKd 7.7 – 7.9 [37,51]
otenzepad Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.2 pKd 36
pKd 6.2 [36]
tiotropium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.6 – 10.7 pKi 33,111,135,137
pKi 9.6 – 10.7 [33,111,135,137]
N-methyl scopolamine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.9 pKi 40
pKi 9.9 [40]
umeclidinium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.8 pKi 73,118
pKi 9.8 (Ki 1.6x10-10 M) [73,118]
propantheline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.7 pKi 60
pKi 9.7 [60]
ipratropium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.3 – 9.8 pKi 58,111
pKi 9.3 – 9.8 [58,111]
[3H](+)telenzepine Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Antagonist 9.4 pKi 37
pKi 9.4 [37]
revefenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.4 pKi 55
pKi 9.4 (Ki 4.17x10-10 M) [55]
Description: Determined from a radioligand binding assay using membranes from CHO‐K1 cells expressing the hM1 receptor, and displacement of [3H]NMS tracer.
atropine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 9.0 – 9.7 pKi 18,25,67
pKi 9.0 – 9.7 [18,25,67]
4-DAMP Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.3 pKi 34
pKi 9.3 [34]
dicyclomine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.1 pKi 5
pKi 9.1 (Ki 8.3x10-10 M) [5]
atropine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.5 – 9.6 pKi 27,40,58,60,107,126
pKi 8.5 – 9.6 [27,40,58,60,107,126]
benzatropine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 9.0 pKi 99
pKi 9.0 (Ki 9.5x10-10 M) [99]
Description: Displacement binding experiment using homogenised rat caudate putamen.
darifenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.9 – 9.1 pKi 45,58,125
pKi 8.9 – 9.1 [45,58,125]
scopolamine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 9.0 pKi 30,60
pKi 9.0 [30,60]
4-DAMP Small molecule or natural product Click here for species-specific activity table Rn Antagonist 8.9 pKi 67
pKi 8.9 [67]
trihexyphenidyl Small molecule or natural product Approved drug Primary target of this compound Hs Antagonist 8.9 pKi 5
pKi 8.9 (Ki 1.35x10-9 M) [5]
tripitramine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.8 pKi 87
pKi 8.8 [87]
silahexocyclium Small molecule or natural product Rn Antagonist 8.7 pKi 18
pKi 8.7 [18]
hexocyclium Small molecule or natural product Rn Antagonist 8.6 pKi 18
pKi 8.6 [18]
oxybutynin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.6 pKi 32,125
pKi 8.6 (Ki 2.4x10-9 M) [32,125]
ethopropazine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 8.5 pKi 19
pKi 8.5 (Ki 3.1x10-9 M) [19]
Description: Displacement of [H]QNB binding in rat forebrain brain homogenate.
tolterodine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.4 – 8.5 pKi 45,125
pKi 8.4 – 8.5 [45,125]
oxybutynin Small molecule or natural product Approved drug Rn Antagonist 8.2 pKi 98
pKi 8.2 [98]
hexahydrodifenidol Small molecule or natural product Rn Antagonist 8.0 pKi 18
pKi 8.0 [18]
solifenacin Small molecule or natural product Approved drug Rn Antagonist 8.0 pKi 98
pKi 8.0 [98]
pirenzepine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.6 – 8.3 pKi 18,34,54,60,66,157
pKi 7.6 – 8.3 [18,34,54,60,66,157]
pirenzepine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 7.8 – 7.9 pKi 18,67
pKi 7.8 – 7.9 [18,67]
amitriptyline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.8 pKi 129
pKi 7.8 (Ki 1.47x10-8 M) [129]
methoctramine Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.8 pKi 18
pKi 7.8 [18]
VU0255035 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.8 pKi 123
pKi 7.8 (Ki 1.487x10-8 M) [123]
dosulepin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.7 pKi 129
pKi 7.7 (Ki 1.8x10-8 M) [129]
hexahydrosiladifenidol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.7 pKi 36
pKi 7.7 [36]
hexahydrosiladifenidol Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.4 – 7.9 pKi 18,67
pKi 7.4 – 7.9 [18,67]
solifenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.6 pKi 61,125
pKi 7.6 [61,125]
AFDX384 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.5 pKi 34
pKi 7.5 [34]
p-F-HHSiD Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 – 7.8 pKi 36,60
pKi 7.1 – 7.8 [36,60]
muscarinic toxin 1 Peptide Click here for species-specific activity table Hs Antagonist 7.3 – 7.6 pKi 40,52
pKi 7.3 – 7.6 [40,52]
guanylpirenzepine Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.3 – 7.6 pKi 3,146
pKi 7.3 – 7.6 [3,146]
AQ-RA 741 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.2 – 7.5 pKi 34,45
pKi 7.2 – 7.5 [34,45]
muscarinic toxin 3 Peptide Click here for species-specific activity table Hs Antagonist 7.1 pKi 66
pKi 7.1 [66]
droxidopa Small molecule or natural product Approved drug Hs Antagonist 7.1 pKi 30
pKi 7.1 [30]
BODIPY-pirenzepine Small molecule or natural product Ligand is labelled Hs Antagonist 7.0 pKi 62
pKi 7.0 [62]
methoctramine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.6 – 7.3 pKi 34,36,54,126
pKi 6.6 – 7.3 [34,36,54,126]
himbacine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.7 – 7.1 pKi 34,66,95
pKi 6.7 – 7.1 [34,66,95]
(S)-dimetindene Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 6.7 pKi 21
pKi 6.7 (Ki 1.906x10-7 M) [21]
Description: Binding to hM1 receptors expressed in CHO cells.
muscarinic toxin 2 Peptide Click here for species-specific activity table Hs Antagonist 6.4 pKi 52
pKi 6.4 [52]
otenzepad Small molecule or natural product Click here for species-specific activity table Rn Antagonist 5.9 – 6.3 pKi 18,67
pKi 5.9 – 6.3 [18,67]
lithocholylcholine Small molecule or natural product Click here for species-specific activity table Rn Antagonist 5.6 pKi 25
pKi 5.6 [25]
ML381 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <5.0 pKi 42
pKi <5.0 (Ki >1x10-5 M) [42]
aclidinium Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 10.1 – 10.2 pIC50 111,137
pIC50 10.1 – 10.2 [111,137]
glycopyrrolate Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.6 – 10.1 pIC50 131,135
pIC50 9.6 – 10.1 [131,135]
Description: Assay uses glycopyrronium bromide
solifenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.2 pIC50 110
pIC50 7.2 (IC50 6.35x10-8 M) [110]
[18F](R,R)-quinuclidinyl-4-fluoromethyl-benzilate Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Antagonist - - 70
[70]
View species-specific antagonist tables
Antagonist Comments
Recombinant MT7 (rMT7) is often used for bioassays due to the limited availability of the M1 muscarinic receptor-selective mamba toxin MT7 or m1-toxin 1 (rMT7 has comparable affinity for M1 [100]).

Biperiden is an approved drug antagonist of muscarinic acetylcholine receptors. We have tagged the M1 subtype as the drug's primary target as affinity is 10-fold higher at this receptor subtype [11]. Ethopropazine appears to have highest affinity for the M1 subtype in rat brain homegenates [19], so the M1 receptor is the likely primary human target of this drug.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
benzoquinazolinone 12 Small molecule or natural product Hs Positive 6.6 pKB 1
pKB 6.6 [1]
BQCA Small molecule or natural product Hs Positive 4.0 – 4.8 pKB 1-2,22,86
pKB 4.0 – 4.8 [1-2,22,86]
KT 5720 Small molecule or natural product Click here for species-specific activity table Hs Positive 6.4 pKd 81
pKd 6.4 (Kd 3.98x10-7 M) [81]
staurosporine Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Positive 5.9 pKd 81
pKd 5.9 [81]
Gö 7874 Small molecule or natural product Click here for species-specific activity table Hs Negative 5.8 pKd 81
pKd 5.8 [81]
WIN 51,708 Small molecule or natural product Click here for species-specific activity table Hs Negative 5.8 pKd 82
pKd 5.8 [82]
KT 5823 Small molecule or natural product Click here for species-specific activity table Hs Positive 5.7 pKd 81
pKd 5.7 [81]
WIN 62,577 Small molecule or natural product Click here for species-specific activity table Hs Negative 5.5 pKd 82
pKd 5.5 [82]
brucine Small molecule or natural product Click here for species-specific activity table Hs Positive 4.5 – 5.8 pKd 10,64,80
pKd 4.5 – 5.8 (Kd 3x10-5 – 1.78x10-6 M) [10,64,80]
K-252a Small molecule or natural product Click here for species-specific activity table Hs Positive 5.1 pKd 81
pKd 5.1 [81]
vinburnine Small molecule or natural product Click here for species-specific activity table Hs Neutral 5.1 pKd 64
pKd 5.1 [64]
alcuronium Small molecule or natural product Click here for species-specific activity table Hs Negative 5.0 pKd 64
pKd 5.0 [64]
strychnine Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Neutral 4.9 – 5.0 pKd 64,77
pKd 4.9 – 5.0 [64,77]
strychnine Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Negative 4.9 pKd 77
pKd 4.9 [77]
vincamine Small molecule or natural product Click here for species-specific activity table Hs Neutral 4.8 pKd 64
pKd 4.8 [64]
brucine Small molecule or natural product Click here for species-specific activity table Hs Neutral 4.5 pKd 80
pKd 4.5 [80]
N-benzyl brucine Small molecule or natural product Click here for species-specific activity table Hs Negative 4.4 pKd 80
pKd 4.4 [80]
N-chloromethyl-brucine Small molecule or natural product Click here for species-specific activity table Hs Negative 4.1 pKd 80
pKd 4.1 [80]
thiochrome Small molecule or natural product Click here for species-specific activity table Hs Neutral 4.1 pKd 78
pKd 4.1 [78]
brucine N-oxide Small molecule or natural product Click here for species-specific activity table Hs Neutral 3.2 pKd 80
pKd 3.2 [80]
brucine N-oxide Small molecule or natural product Click here for species-specific activity table Hs Positive 3.2 pKd 80
pKd 3.2 [80]
muscarinic toxin 7 Peptide Click here for species-specific activity table Hs Negative 11.0 – 11.1 pKi 40,100,102
pKi 11.0 – 11.1 [40,100,102]
AC-42 Small molecule or natural product Hs Negative 6.2 pKi 75
pKi 6.2 [75]
T440 Small molecule or natural product Rn Positive 8.2 pEC50 141
pEC50 8.2 (EC50 5.9x10-9 M) [141]
T440 Small molecule or natural product Hs Positive 8.2 pEC50 141
pEC50 8.2 (EC50 6.3x10-9 M) [141]
Description: Determined in CHO-K1 cells transfected with the human M1 receptor.
T532 Small molecule or natural product Hs Positive 8.0 – 8.1 pEC50 113
pEC50 8.0 – 8.1 (EC50 1x10-8 – 8x10-9 M) [113]
Description: PAM potency determined in M1 receptor-expressing CHO cells
PF-06767832 Small molecule or natural product Primary target of this compound Hs Positive 7.2 pEC50 31
pEC50 7.2 (EC50 6x10-8 M) [31]
Description: FLIPR calcium mobilisation assay
VU0486846 Small molecule or natural product Hs Positive 6.5 pEC50 115
pEC50 6.5 (EC50 3.1x10-7 M) [115]
Description: PAM potency
ML169 Small molecule or natural product Hs Positive 5.9 pEC50 138
pEC50 5.9 (EC50 1.38x10-6 M) [138]
VU0486846 Small molecule or natural product Hs Agonist 5.4 pEC50 115
pEC50 5.4 (EC50 4x10-6 M) [115]
Description: Agonist potency
VU0119498 Small molecule or natural product Click here for species-specific activity table Hs Positive 5.2 pEC50 14
pEC50 5.2 (EC50 6.04x10-6 M) [14]
clozapine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Positive 7.9 pIC50 133
pIC50 7.9 [133]
clozapine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Positive 7.7 pIC50 128
pIC50 7.7 [128]
N-desmethylclozapine Small molecule or natural product Hs Positive 7.3 pIC50 133
pIC50 7.3 [133]
N-desmethylclozapine Small molecule or natural product Rn Positive 6.8 pIC50 128
pIC50 6.8 [128]
AC-260584 Small molecule or natural product Rn Positive 5.9 pIC50 128
pIC50 5.9 [128]
tacrine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Negative 5.7 pIC50 127
pIC50 5.7 (IC50 2x10-6 M) [127]
VU0090157 Small molecule or natural product Hs Positive - - 90
[90]
VU0029767 Small molecule or natural product Hs Positive - - 90
[90]
T‐495 Small molecule or natural product Hs Positive - - 88
[88]
MK-7622 Small molecule or natural product Hs Positive - - 8
[8]
View species-specific allosteric modulator tables
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  9,16,106,117
Tissue Distribution Click here for help
Bladder.
Species:  Human
Technique:  RT-PCR.
References:  142
CNS: cerebral cortex, basal ganglia, limbic areas.
Species:  Human
Technique:  Radioligand binding.
References:  29
Vestibular system.
Species:  Human
Technique:  RT-PCR.
References:  145
Esophageal smooth muscle.
Species:  Human
Technique:  Radioligand binding.
References:  112
CNS: forebrain.
Species:  Mouse
Technique:  immunocytochemistry.
References:  59
CNS: cerbral cortex, corpus striatum, hippocampus, thalamus.
Species:  Mouse
Technique:  Radioligand binding.
References:  101
Heart: intrinsic neurons.
Species:  Rat
Technique:  in situ hybridisation.
References:  53
CNS: hippocampus.
Species:  Rat
Technique:  immunocytochemistry.
References:  83
CNS: caudate putamen, nucleus accumbens, olfactory tubercle.
Species:  Rat
Technique:  in situ hybridisation.
References:  153
CNS: pons.
Species:  Rat
Technique:  Radioligand binding.
References:  6
Vestibular system.
Species:  Rat
Technique:  RT-PCR.
References:  145
CNS: cranial nerve nuclei.
Species:  Rat
Technique:  in situ hybridisation.
References:  144
CNS: cerebral cortex, hippocampus, corpus striatum, olfactory tubercle, midbrain, pons-medulla, cerebellum.
Species:  Rat
Technique:  Immunoprecipitation.
References:  163
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of PI levels in mouse Y1 adrenal cells transfected with the mouse M1 receptor.
Species:  Mouse
Tissue:  Y1 adrenal cells.
Response measured:  Stimulation of PI hydrolysis.
References:  122
Measurement of PI hydrolysis, Ca2+ mobilisation and [3H]arachidonic acid release in A9 L cells transfected with the human M1 receptor.
Species:  Human
Tissue:  A9 L cells.
Response measured:  Stimulation of PI hydrolysis, Ca2+ mobilisation and [3H]arachidonic acid release.
References:  7
Measurement of PI hydrolysis in CHO cells transfected with the human M1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of PI hydrolysis.
References:  26
Measurement of ERK1/2 activity in hippocampal cells endogenously expressing the M1 receptor.
Species:  Rat
Tissue:  Post-ischemic hippocampus.
Response measured:  Increase in ERK1/2 activity.
References:  136
Measurement of activation of ERK1/2 in PC12D cells endogeneously expressing the M1 receptor.
Species:  Rat
Tissue:  Neuronal PC12D cells.
Response measured:  Activation of ERK1/2.
References:  47
Measurement of activation of neuronal nitric oxide synthetase in chinese hamster overy cells transfected with the M1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Activation of nitric oxide synthetase.
References:  148
Measurement of ERK1/2 activity in COS-7 cells transfected with the human M2 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Increase in ERK1/2 activity.
References:  116
Measurement of GIRK channel activity in Xenopus oocytes transfected with the human M1 receptor.
Species:  Human
Tissue:  Xenopus oocytes.
Response measured:  Inhibition of GIRK channels.
References:  57
Measurement of the effects of a ligand on the level, or rate, of binding of GTPγ35S to membranes.
Species:  Human
Tissue:  CHO cell membranes.
Response measured:  The binding of GTPγ35S to G proteins coupled to the receptor.
References:  10,76-79,81-82
Measurement of the effects of a ligand on the rate of hydrolysis of GTP by G proteins in membranes.
Species:  Human
Tissue:  CHO cells.
Response measured:  Generation of 32Pi from [γ-32P]GTP.
References:  79
Physiological Functions Click here for help
Bronchoconstriction.
Species:  Human
Tissue:  In vivo.
References:  74
Vasodilation.
Species:  Rat
Tissue:  Lung.
References:  159
Modulation of NMDA receptor-meditated excitatory synaptic transmission.
Species:  Rat
Tissue:  Hippocampal CA1 pyramidal cells.
References:  89
Regulation of circadian rhythms.
Species:  Rat
Tissue:  Hypothalamic suprachiasmatic nucleus.
References:  46
Automaticity of the heart.
Species:  Mouse
Tissue:  Heart.
References:  160
Autoreceptor: modulation of ACh release.
Species:  Rat
Tissue:  Basal forebrain slices.
References:  134
Autoreceptor: modulation of ACh release.
Species:  Human
Tissue:  Neocortex slices.
References:  39
Stimulation of water consumption.
Species:  Rat
Tissue:  In vivo.
References:  108
Hypothermia.
Species:  Rat
Tissue:  In vivo.
References:  121
Spinal analgesia.
Species:  Rat
Tissue:  In vivo.
References:  44
Memory function.
Species:  Rat
Tissue:  In vivo.
References:  94
Stimulation of urination.
Species:  Rat
Tissue:  In vivo.
References:  72
Physiological Consequences of Altering Gene Expression Click here for help
M1 receptor knockout mice exhibit reduced salivary flow.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  41
Lung slices from M1 receptor knockout mice exhibit increased agonist-induced bronchoconstriction compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  132
M1 receptor knockout mice exhibit an increased tidal volume of the lung at rest.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  13
M1 receptor knockout mice exhibit reduced seizure activity in the pilocarpine model of epilepsy.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  50
M1 receptor knockout mice exhibit loss of regulation of M-current potassium channel activity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  50
M1 receptor knockout mice exhibit a loss of the positive chronotropic and inotropic responses.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  49
M1 receptor knockout mice exhibit increased locomotor activity and hyperactivity under stress.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  96
M1 receptor knockout mice exhibit increased dopamine levels in the striatum and increased locomotor activity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  43
M1 receptor knockout mice showed normal or even enhanced memory for tasks that involve matching-to-sample problems but significant impairments in non-matching-to-sample working memory and consolidation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  4
M1 receptor knockout mice exhibit disrupted tonotopic organisation and frequency tuning in the auditory cortex.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  164-165
M1 receptor knockout mice exhibit reduced gastric pepsinogen secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  162
Hippocampal slices from M1 receptor knockout mice do not exhibit carbachol-induced enhancement of LTP of excitatory synaptic transmission as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  124
M1 receptor knockout mice exhibit reduced carbachol-stimulated ion secretion in the colon compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  48
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Chrm1tm1Nmn Chrm1tm1Nmn/Chrm1tm1Nmn
B6.129X1-Chrm1
MGI:88396  MP:0004631 abnormal auditory cortex morphology PMID: 15721569 
Chrm1tm1Nmn Chrm1tm1Nmn/Chrm1tm1Nmn
B6.129X1-Chrm1
MGI:88396  MP:0004788 abnormal auditory cortex tonotopy PMID: 15721569 
Chrm1tm1Nmn Chrm1tm1Nmn/Chrm1tm1Nmn
B6.129X1-Chrm1
MGI:88396  MP:0004996 abnormal CNS synapse formation PMID: 15721569 
Chrm1tm1Jwe|Chrm4tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MGI:88399  MP:0002206 abnormal CNS synaptic transmission PMID: 15919709 
Chrm1tm2.1Stl|Emx1tm1.1(cre)Ito Chrm1tm2.1Stl/Chrm1tm2.1Stl,Emx1tm1.1(cre)Ito/0
involves: 129P2/OlaHsd
MGI:88396  MGI:95387  MP:0002910 abnormal excitatory postsynaptic currents PMID: 20080609 
Chrm1tm2.1Stl|Tg(Grik4-cre)G32-4Stl Chrm1tm2.1Stl/Chrm1tm2.1Stl,Tg(Grik4-cre)G32-4Stl/0
involves: 129P2/OlaHsd * C57BL/6
MGI:2448783  MGI:88396  MP:0002910 abnormal excitatory postsynaptic currents PMID: 20080609 
Chrm1tm1Stl Chrm1tm1Stl/Chrm1tm1Stl
involves: C57BL/6
MGI:88396  MP:0002912 abnormal excitatory postsynaptic potential PMID: 16290192 
Chrm1tm1Kano Chrm1tm1Kano/Chrm1tm1Kano
involves: 129X1/SvJ * C57BL/6
MGI:88396  MP:0002945 abnormal inhibitory postsynaptic currents PMID: 12859343 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0002945 abnormal inhibitory postsynaptic currents PMID: 12859343 
Chrm1tm2.1Stl|Emx1tm1.1(cre)Ito Chrm1tm2.1Stl/Chrm1tm2.1Stl,Emx1tm1.1(cre)Ito/0
involves: 129P2/OlaHsd
MGI:88396  MGI:95387  MP:0001898 abnormal long term depression PMID: 20080609 
Chrm1tm2.1Stl|Tg(Grik4-cre)G32-4Stl Chrm1tm2.1Stl/Chrm1tm2.1Stl,Tg(Grik4-cre)G32-4Stl/0
involves: 129P2/OlaHsd * C57BL/6
MGI:2448783  MGI:88396  MP:0001898 abnormal long term depression PMID: 20080609 
Chrm1tm2.1Stl|Emx1tm1.1(cre)Ito Chrm1tm2.1Stl/Chrm1tm2.1Stl,Emx1tm1.1(cre)Ito/0
involves: 129P2/OlaHsd
MGI:88396  MGI:95387  MP:0004753 abnormal miniature excitatory postsynaptic currents PMID: 20080609 
Chrm1tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MP:0002272 abnormal nervous system electrophysiology PMID: 11856534 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0005310 abnormal salivary gland physiology PMID: 15146045 
Chrm1tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MP:0001945 bronchoconstriction PMID: 14645675 
Chrm1tm1Kano|Chrm5tm1Minm Chrm1tm1Kano/Chrm1tm1Kano,Chrm5tm1Minm/Chrm5tm1Minm
involves: 129X1/SvJ * C57BL/6
MGI:109248  MGI:88396  MP:0000505 decreased digestive secretion PMID: 15691866 
Chrm1tm1Stl Chrm1tm1Stl/Chrm1tm1Stl
involves: C57BL/6
MGI:88396  MP:0002920 decreased paired-pulse facilitation PMID: 16290192 
Chrm1tm2.1Stl|Emx1tm1.1(cre)Ito Chrm1tm2.1Stl/Chrm1tm2.1Stl,Emx1tm1.1(cre)Ito/0
involves: 129P2/OlaHsd
MGI:88396  MGI:95387  MP:0002920 decreased paired-pulse facilitation PMID: 20080609 
Chrm1tm2.1Stl|Tg(Grik4-cre)G32-4Stl Chrm1tm2.1Stl/Chrm1tm2.1Stl,Tg(Grik4-cre)G32-4Stl/0
involves: 129P2/OlaHsd * C57BL/6
MGI:2448783  MGI:88396  MP:0002920 decreased paired-pulse facilitation PMID: 20080609 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0000623 decreased salivation PMID: 15146045 
Chrm1tm1Jwe|Chrm4tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MGI:88399  MP:0002917 decreased synaptic depression PMID: 15919709 
Chrm1tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MP:0005079 defective cytotoxic T cell cytolysis PMID: 15913791 
Chrm1tm1Stl Chrm1tm1Stl/Chrm1tm1Stl
C57BL/6-Chrm1
MGI:88396  MP:0001399 hyperactivity PMID: 11752469 
Chrm1+|Chrm1tm1Stl Chrm1tm1Stl/Chrm1+
C57BL/6-Chrm1
MGI:88396  MP:0001399 hyperactivity PMID: 11752469 
Chrm1tm1Stl Chrm1tm1Stl/Chrm1tm1Stl
C57BL/6-Chrm1
MGI:88396  MP:0001906 increased dopamine level PMID: 11752469 
Chrm1tm1Stl Chrm1tm1Stl/Chrm1tm1Stl
involves: C57BL/6
MGI:88396  MP:0001475 reduced long term depression PMID: 16290192 
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  Cys417 is a highly conserved residue in TM7 and is essential to receptor function. A rare Cys417 -> Arg mutation has been found in the human genome with possible physiological consequences.
References:  85
General Comments
For reviews on muscarinic receptor knockout mice see [20,92,154-156].

References

Show »

1. Abdul-Ridha A, Lane JR, Mistry SN, López L, Sexton PM, Scammells PJ, Christopoulos A, Canals M. (2014) Mechanistic insights into allosteric structure-function relationships at the M1 muscarinic acetylcholine receptor. J Biol Chem, 289 (48): 33701-11. [PMID:25326383]

2. Abdul-Ridha A, López L, Keov P, Thal DM, Mistry SN, Sexton PM, Lane JR, Canals M, Christopoulos A. (2014) Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor. J Biol Chem, 289 (9): 6067-79. [PMID:24443568]

3. Akbulut H, Gören Z, Iskender E, Eraslan A, Ozdemir O, Oktay S. (1999) Subtypes of muscarinic receptors in rat duodenum: a comparison with rabbit vas deferens, rat atria, guinea-pig ileum and gallbladder by using imperialine. Gen Pharmacol, 32 (4): 505-11. [PMID:10323493]

4. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ. (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci, 6 (1): 51-8. [PMID:12483218]

5. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicology Program: Dept of Health and Human Services. Accessed on 02/05/2014. Modified on 02/05/2014. DrugMatrix, https://ntp.niehs.nih.gov/drugmatrix/index.html

6. Baghdoyan HA. (1997) Location and quantification of muscarinic receptor subtypes in rat pons: implications for REM sleep generation. Am J Physiol, 273 (3 Pt 2): R896-904. [PMID:9321865]

7. Baumgold J, Dyer K, Falcone JF, Bymaster FP. (1995) Comparison of second-messenger responses to muscarinic receptor stimulation in M1-transfected A9 L cells. Cell Signal, 7 (1): 39-43. [PMID:7756109]

8. Beshore DC, N Di Marco C, Chang RK, Greshock TJ, Ma L, Wittmann M, Seager MA, Koeplinger KA, Thompson CD, Fuerst J et al.. (2018) MK-7622: A First-in-Class M1 Positive Allosteric Modulator Development Candidate. ACS Med Chem Lett, 9 (7): 652-656. [PMID:30034595]

9. Biddlecome GH, Berstein G, Ross EM. (1996) Regulation of phospholipase C-beta1 by Gq and m1 muscarinic cholinergic receptor. Steady-state balance of receptor-mediated activation and GTPase-activating protein-promoted deactivation. J Biol Chem, 271 (14): 7999-8007. [PMID:8626481]

10. Birdsall NJ, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M. (1999) Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: functional studies. Mol Pharmacol, 55 (4): 778-86. [PMID:10101037]

11. Bolden C, Cusack B, Richelson E. (1992) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J Pharmacol Exp Ther, 260 (2): 576-80. [PMID:1346637]

12. Bonner TI, Modi WS, Seuanez HN, O'Brien SJ. (1991) Chromosomal mapping of the five human genes encoding muscarinic acetylcholine receptors. Cytogenet Cell Genet, 58: 1850-1851.

13. Boudinot E, Yamada M, Wess J, Champagnat J, Foutz AS. (2004) Ventilatory pattern and chemosensitivity in M1 and M3 muscarinic receptor knockout mice. Respir Physiol Neurobiol, 139 (3): 237-45. [PMID:15122990]

14. Bridges TM, Marlo JE, Niswender CM, Jones CK, Jadhav SB, Gentry PR, Plumley HC, Weaver CD, Conn PJ, Lindsley CW. (2009) Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J Med Chem, 52 (11): 3445-8. [PMID:19438238]

15. Broad LM, Sanger HE, Mogg AJ, Colvin EM, Zwart R, Evans DA, Pasqui F, Sher E, Wishart GN, Barth VN et al.. (2019) Identification and pharmacological profile of SPP1, a potent, functionally selective and brain penetrant agonist at muscarinic M1 receptors. Br J Pharmacol, 176 (1): 110-126. [PMID:30276808]

16. Bräuner-Osborne H, Brann MR. (1996) Pharmacology of muscarinic acetylcholine receptor subtypes (m1-m5): high throughput assays in mammalian cells. Eur J Pharmacol, 295 (1): 93-102. [PMID:8925880]

17. Bräuner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P. (1996) Functional partial agonism at cloned human muscarinic acetylcholine receptors. Eur J Pharmacol, 313 (1-2): 145-50. [PMID:8905341]

18. Buckley NJ, Bonner TI, Buckley CM, Brann MR. (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol, 35 (4): 469-76. [PMID:2704370]

19. Burke RE. (1986) The relative selectivity of anticholinergic drugs for the M1 and M2 muscarinic receptor subtypes. Mov Disord, 1 (2): 135-44. [PMID:2904117]

20. Bymaster FP, McKinzie DL, Felder CC, Wess J. (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res, 28 (3-4): 437-42. [PMID:12675128]

21. Böhme TM, Keim C, Kreutzmann K, Linder M, Dingermann T, Dannhardt G, Mutschler E, Lambrecht G. (2003) Structure-activity relationships of dimethindene derivatives as new M2-selective muscarinic receptor antagonists. J Med Chem, 46 (5): 856-67. [PMID:12593665]

22. Canals M, Lane JR, Wen A, Scammells PJ, Sexton PM, Christopoulos A. (2012) A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation. J Biol Chem, 287 (1): 650-9. [PMID:22086918]

23. Cembala TM, Sherwin JD, Tidmarsh MD, Appadu BL, Lambert DG. (1998) Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 125 (5): 1088-94. [PMID:9846649]

24. Ch'ng SS, Walker AJ, McCarthy M, Le TK, Thomas N, Gibbons A, Udawela M, Kusljic S, Dean B, Gogos A. (2020) The Impact of Removal of Ovarian Hormones on Cholinergic Muscarinic Receptors: Examining Prepulse Inhibition and Receptor Binding. Brain Sci, 10 (2). [PMID:32079174]

25. Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP. (2002) Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther, 303 (1): 29-35. [PMID:12235229]

26. Christopoulos A, Grant MK, Ayoubzadeh N, Kim ON, Sauerberg P, Jeppesen L, El-Fakahany EE. (2001) Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J Pharmacol Exp Ther, 298 (3): 1260-8. [PMID:11504829]

27. Christopoulos A, Pierce TL, Sorman JL, El-Fakahany EE. (1998) On the unique binding and activating properties of xanomeline at the M1 muscarinic acetylcholine receptor. Mol Pharmacol, 53 (6): 1120-30. [PMID:9614217]

28. Christopoulos A, Wilson K. (2001) Interaction of anandamide with the M(1) and M(4) muscarinic acetylcholine receptors. Brain Res, 915 (1): 70-8. [PMID:11578621]

29. Cortés R, Probst A, Tobler HJ, Palacios JM. (1986) Muscarinic cholinergic receptor subtypes in the human brain. II. Quantitative autoradiographic studies. Brain Res, 362 (2): 239-53. [PMID:3753655]

30. Croy CH, Chan WY, Castetter AM, Watt ML, Quets AT, Felder CC. (2016) Characterization of PCS1055, a novel muscarinic M4 receptor antagonist. Eur J Pharmacol, 782: 70-6. [PMID:27085897]

31. Davoren JE, Lee CW, Garnsey M, Brodney MA, Cordes J, Dlugolenski K, Edgerton JR, Harris AR, Helal CJ, Jenkinson S et al.. (2016) Discovery of the Potent and Selective M1 PAM-Agonist N-[(3R,4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-5-methyl-4-[4-(1,3-thiazol-4-yl)benzyl]pyridine-2-carboxamide (PF-06767832): Evaluation of Efficacy and Cholinergic Side Effects. J Med Chem, 59 (13): 6313-28. [PMID:27275946]

32. Del Bello F, Barocelli E, Bertoni S, Bonifazi A, Camalli M, Campi G, Giannella M, Matucci R, Nesi M, Pigini M et al.. (2012) 1,4-dioxane, a suitable scaffold for the development of novel M₃ muscarinic receptor antagonists. J Med Chem, 55 (4): 1783-7. [PMID:22243489]

33. Disse B, Reichl R, Speck G, Traunecker W, Ludwig Rominger KL, Hammer R. (1993) Ba 679 BR, a novel long-acting anticholinergic bronchodilator. Life Sci, 52 (5-6): 537-44. [PMID:8441333]

34. Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther, 256 (2): 727-33. [PMID:1994002]

35. Ehlert FJ, Griffin MT, Glidden PF. (1996) The interaction of the enantiomers of aceclidine with subtypes of the muscarinic receptor. J Pharmacol Exp Ther, 279 (3): 1335-44. [PMID:8968358]

36. Esqueda EE, Gerstin Jr EH, Griffin MT, Ehlert FJ. (1996) Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung. Biochem Pharmacol, 52 (4): 643-58. [PMID:8759038]

37. Eveleigh P, Hulme EC, Schudt C, Birdsall NJ. (1989) The existence of stable enantiomers of telenzepine and their stereoselective interaction with muscarinic receptor subtypes. Mol Pharmacol, 35 (4): 477-83. [PMID:2704371]

38. Farde L, Suhara T, Halldin C, Nybäck H, Nakashima Y, Swahn CG, Karlsson P, Ginovart N, Bymaster FP, Shannon HE et al.. (1996) PET study of the M1-agonists [11C]xanomeline and [11C]butylthio-TZTP in monkey and man. Dementia, 7 (4): 187-95. [PMID:8835881]

39. Feuerstein TJ, Lehmann J, Sauermann W, van Velthoven V, Jackisch R. (1992) The autoinhibitory feedback control of acetylcholine release in human neocortex tissue. Brain Res, 572: 64-71. [PMID:1611539]

40. Fruchart-Gaillard C, Mourier G, Marquer C, Ménez A, Servent D. (2006) Identification of various allosteric interaction sites on M1 muscarinic receptor using 125I-Met35-oxidized muscarinic toxin 7. Mol Pharmacol, 69 (5): 1641-51. [PMID:16439611]

41. Gautam D, Heard TS, Cui Y, Miller G, Bloodworth L, Wess J. (2004) Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol Pharmacol, 66 (2): 260-7. [PMID:15266016]

42. Gentry PR, Kokubo M, Bridges TM, Cho HP, Smith E, Chase P, Hodder PS, Utley TJ, Rajapakse A, Byers F et al.. (2014) Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe. ChemMedChem, 9 (8): 1677-82. [PMID:24692176]

43. Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S. (2001) Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci USA, 98 (26): 15312-7. [PMID:11752469]

44. Gillberg PG, Gordh Jr T, Hartvig P, Jansson I, Pettersson J, Post C. (1989) Characterization of the antinociception induced by intrathecally administered carbachol. Pharmacol Toxicol, 64 (4): 340-3. [PMID:2748539]

45. Gillberg PG, Sundquist S, Nilvebrant L. (1998) Comparison of the in vitro and in vivo profiles of tolterodine with those of subtype-selective muscarinic receptor antagonists. Eur J Pharmacol, 349 (2-3): 285-92. [PMID:9671109]

46. Gillette MU, Buchanan GF, Artinian L, Hamilton SE, Nathanson NM, Liu C. (2001) Role of the M1 receptor in regulating circadian rhythms. Life Sci, 68 (22-23): 2467-72. [PMID:11392614]

47. Guo FF, Kumahara E, Saffen D. (2001) A CalDAG-GEFI/Rap1/B-Raf cassette couples M(1) muscarinic acetylcholine receptors to the activation of ERK1/2. J Biol Chem, 276 (27): 25568-81. [PMID:11292831]

48. Haberberger R, Schultheiss G, Diener M. (2006) Epithelial muscarinic M1 receptors contribute to carbachol-induced ion secretion in mouse colon. Eur J Pharmacol, 530: 229-233. [PMID:16405887]

49. Hamilton SE, Hardouin SN, Anagnostaras SG, Murphy GG, Richmond KN, Silva AJ, Feigl EO, Nathanson NM. (2001) Alteration of cardiovascular and neuronal function in M1 knockout mice. Life Sci, 68 (22-23): 2489-93. [PMID:11392617]

50. Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, McKnight GS, Idzerda RL, Nathanson NM. (1997) Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA, 94 (24): 13311-6. [PMID:9371842]

51. Hammer R, Berrie CP, Birdsall NJ, Burgen AS, Hulme EC. (1980) Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature, 283 (5742): 90-2. [PMID:7350532]

52. Harvey AL, Kornisiuk E, Bradley KN, Cerveñansky C, Durán R, Adrover M, Sánchez G, Jerusalinsky D. (2002) Effects of muscarinic toxins MT1 and MT2 from green mamba on different muscarinic cholinoceptors. Neurochem Res, 27 (11): 1543-54. [PMID:12512959]

53. Hassall CJ, Stanford SC, Burnstock G, Buckley NJ. (1993) Co-expression of four muscarinic receptor genes by the intrinsic neurons of the rat and guinea-pig heart. Neuroscience, 56 (4): 1041-8. [PMID:8284034]

54. Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM. (1997) Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol, 120 (8): 1409-18. [PMID:9113359]

55. Hegde SS, Pulido-Rios MT, Luttmann MA, Foley JJ, Hunsberger GE, Steinfeld T, Lee T, Ji Y, Mammen MM, Jasper JR. (2018) Pharmacological properties of revefenacin (TD-4208), a novel, nebulized long-acting, and lung selective muscarinic antagonist, at human recombinant muscarinic receptors and in rat, guinea pig, and human isolated airway tissues. Pharmacol Res Perspect, 6 (3): e00400. [PMID:29736245]

56. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S, Molloy JE, Birdsall NJ. (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA, 107 (6): 2693-8. [PMID:20133736]

57. Hill JJ, Peralta EG. (2001) Inhibition of a Gi-activated potassium channel (GIRK1/4) by the Gq-coupled m1 muscarinic acetylcholine receptor. J Biol Chem, 276 (8): 5505-10. [PMID:11060307]

58. Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe M, Mitsuya M et al.. (2001) Pharmacological properties of (2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: a novel mucarinic antagonist with M(2)-sparing antagonistic activity. J Pharmacol Exp Ther, 297 (2): 790-7. [PMID:11303071]

59. Hohmann CF, Potter ED, Levey AI. (1995) Development of muscarinic receptor subtypes in the forebrain of the mouse. J Comp Neurol, 358 (1): 88-101. [PMID:7560279]

60. Huang F, Buchwald P, Browne CE, Farag HH, Wu WM, Ji F, Hochhaus G, Bodor N. (2001) Receptor binding studies of soft anticholinergic agents. AAPS PharmSci, 3 (4): E30. [PMID:12049493]

61. Ikeda K, Kobayashi S, Suzuki M, Miyata K, Takeuchi M, Yamada T, Honda K. (2002) M(3) receptor antagonism by the novel antimuscarinic agent solifenacin in the urinary bladder and salivary gland. Naunyn Schmiedebergs Arch Pharmacol, 366 (2): 97-103. [PMID:12122494]

62. Ilien B, Glasser N, Clamme JP, Didier P, Piemont E, Chinnappan R, Daval SB, Galzi JL, Mely Y. (2009) Pirenzepine promotes the dimerization of muscarinic M1 receptors through a three-step binding process. J Biol Chem, 284 (29): 19533-43. [PMID:19451648]

63. Jakubík J, Bacáková L, el-Fakahany EE, Tucek S. (1995) Subtype selectivity of the positive allosteric action of alcuronium at cloned M1-M5 muscarinic acetylcholine receptors. J Pharmacol Exp Ther, 274 (3): 1077-83. [PMID:7562472]

64. Jakubík J, Bacáková L, El-Fakahany EE, Tucek S. (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol, 52 (1): 172-9. [PMID:9224827]

65. Jakubík J, El-Fakahany EE, Dolezal V. (2006) Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors. Mol Pharmacol, 70 (2): 656-66. [PMID:16675658]

66. Jolkkonen M, van Giersbergen PL, Hellman U, Wernstedt C, Karlsson E. (1994) A toxin from the green mamba Dendroaspis angusticeps: amino acid sequence and selectivity for muscarinic m4 receptors. FEBS Lett, 352 (1): 91-4. [PMID:7925952]

67. Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI. (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci, 51 (12): 955-71. [PMID:1325587]

68. Keov P, Valant C, Devine SM, Lane JR, Scammells PJ, Sexton PM, Christopoulos A. (2013) Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M₁ muscarinic acetylcholine receptor. Mol Pharmacol, 84 (3): 425-37. [PMID:23798605]

69. Khattar SK, Bora RS, Priyadarsiny P, Gupta D, Khanna A, Narayanan KL, Babu V, Chugh A, Saini KS. (2006) High level stable expression of pharmacologically active human M1-M5 muscarinic receptor subtypes in mammalian cells. Biotechnol Lett, 28 (2): 121-9. [PMID:16369696]

70. Kiesewetter DO, Carson RE, Jagoda EM, Endres CJ, Der MG, Herscovitch P, Eckelman WC. (1997) In vivo muscarinic binding selectivity of (R,S)- and (R,R)-[18F]-fluoromethyl QNB. Bioorg Med Chem, 5 (8): 1555-67. [PMID:9313861]

71. Klett CP, Zimonjic DB, Keck CL, Bonner TI. (1998) Localization of the rat M1 muscarinic receptor gene to chromosome 1q43-51. Mamm Genome, 9 (6): 476-8. [PMID:9585439]

72. Kono M, Nakamura Y, Ishiura Y, Komatsu K, Kontani H, Namiki M. (2006) Central muscarinic receptor subtypes regulating voiding in rats. J Urol, 175 (1): 353-7. [PMID:16406941]

73. Lainé DI, McCleland B, Thomas S, Neipp C, Underwood B, Dufour J, Widdowson KL, Palovich MR, Blaney FE, Foley JJ et al.. (2009) Discovery of novel 1-azoniabicyclo[2.2.2]octane muscarinic acetylcholine receptor antagonists. J Med Chem, 52 (8): 2493-505. [PMID:19317446]

74. Lammers JW, Minette P, McCusker M, Barnes PJ. (1989) The role of pirenzepine-sensitive (M1) muscarinic receptors in vagally mediated bronchoconstriction in humans. Am Rev Respir Dis, 139 (2): 446-9. [PMID:2521552]

75. Langmead CJ, Fry VA, Forbes IT, Branch CL, Christopoulos A, Wood MD, Herdon HJ. (2006) Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M(1) receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol Pharmacol, 69 (1): 236-46. [PMID:16207821]

76. Lazareno S, Birdsall NJ. (1993) Pharmacological characterization of acetylcholine-stimulated [35S]-GTP gamma S binding mediated by human muscarinic m1-m4 receptors: antagonist studies. Br J Pharmacol, 109 (4): 1120-7. [PMID:8401923]

77. Lazareno S, Birdsall NJ. (1995) Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol, 48 (2): 362-78. [PMID:7651370]

78. Lazareno S, Dolezal V, Popham A, Birdsall NJ. (2004) Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol, 65 (1): 257-66. [PMID:14722259]

79. Lazareno S, Farries T, Birdsall NJ. (1993) Pharmacological characterization of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors m1-m4. Life Sci, 52 (5-6): 449-56. [PMID:8441327]

80. Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJ. (1998) Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies. Mol Pharmacol, 53 (3): 573-89. [PMID:9495826]

81. Lazareno S, Popham A, Birdsall NJ. (2000) Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-(3)H]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol Pharmacol, 58 (1): 194-207. [PMID:10860942]

82. Lazareno S, Popham A, Birdsall NJ. (2002) Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol Pharmacol, 62 (6): 1492-505. [PMID:12435818]

83. Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci, 15 (5 Pt 2): 4077-92. [PMID:7751967]

84. Loudon JM, Bromidge SM, Brown F, Clark MS, Hatcher JP, Hawkins J, Riley GJ, Noy G, Orlek BS. (1997) SB 202026: a novel muscarinic partial agonist with functional selectivity for M1 receptors. J Pharmacol Exp Ther, 283 (3): 1059-68. [PMID:9399977]

85. Lucas JL, DeYoung JA, Sadee W. (2001) Single nucleotide polymorphisms of the human M1 muscarinic acetylcholine receptor gene. AAPS PharmSci, 3 (4): E31. [PMID:12049494]

86. Ma L, Seager MA, Seager M, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, Graufelds VK, Xu G et al.. (2009) Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci USA, 106 (37): 15950-5. [PMID:19717450]

87. Maggio R, Barbier P, Bolognesi ML, Minarini A, Tedeschi D, Melchiorre C. (1994) Binding profile of the selective muscarinic receptor antagonist tripitramine. Eur J Pharmacol, 268: 459-462. [PMID:7805774]

88. Mandai T, Sako Y, Kurimoto E, Shimizu Y, Nakamura M, Fushimi M, Maeda R, Miyamoto M, Kimura H. (2020) T-495, a novel low cooperative M1 receptor positive allosteric modulator, improves memory deficits associated with cholinergic dysfunction and is characterized by low gastrointestinal side effect risk. Pharmacol Res Perspect, 8 (1): e00560. DOI: 10.1002/prp2.560 [PMID:31990455]

89. Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ. (1998) Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci USA, 95 (19): 11465-70. [PMID:9736760]

90. Marlo JE, Niswender CM, Days EL, Bridges TM, Xiang Y, Rodriguez AL, Shirey JK, Brady AE, Nalywajko T, Luo Q et al.. (2009) Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol Pharmacol, 75 (3): 577-88. [PMID:19047481]

91. Matsui M, Araki Y, Karasawa H, Matsubara N, Taketo MM, Seldin MF. (1999) Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet Syst, 74 (1): 15-21. [PMID:10549128]

92. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ. (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci, 75 (25): 2971-81. [PMID:15474550]

93. Mei L, Lai J, Roeske WR, Fraser CM, Venter JC, Yamamura HI. (1989) Pharmacological characterization of the M1 muscarinic receptors expressed in murine fibroblast B82 cells. J Pharmacol Exp Ther, 248 (2): 661-70. [PMID:2537406]

94. Messer Jr WS, Bohnett M, Stibbe J. (1990) Evidence for a preferential involvement of M1 muscarinic receptors in representational memory. Neurosci Lett, 116 (1-2): 184-9. [PMID:2259447]

95. Miller JH, Aagaard PJ, Gibson VA, McKinney M. (1992) Binding and functional selectivity of himbacine for cloned and neuronal muscarinic receptors. J Pharmacol Exp Ther, 263 (2): 663-7. [PMID:1331410]

96. Miyakawa T, Yamada M, Duttaroy A, Wess J. (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci, 21 (14): 5239-50. [PMID:11438599]

97. MRC. M1 muscarinic receptor agonist. Accessed on 28/10/2014. Modified on 28/10/2014. MRC/AstraZeneca: Mechanisms of Disease Call, http://webarchive.nationalarchives.gov.uk/20120104105854/http://www.mrc.ac.uk/consumption/groups/public/documents/content/mrc008370.pdf

98. Naito R, Yonetoku Y, Okamoto Y, Toyoshima A, Ikeda K, Takeuchi M. (2005) Synthesis and antimuscarinic properties of quinuclidin-3-yl 1,2,3,4-tetrahydroisoquinoline-2-carboxylate derivatives as novel muscarinic receptor antagonists. J Med Chem, 48 (21): 6597-606. [PMID:16220976]

99. Newman AH, Kline RH, Allen AC, Izenwasser S, George C, Katz JL. (1995) Novel 4'-substituted and 4',4"-disubstituted 3 alpha-(diphenylmethoxy)tropane analogs as potent and selective dopamine uptake inhibitors. J Med Chem, 38 (20): 3933-40. [PMID:7562926]

100. Näsman J, Jolkkonen M, Ammoun S, Karlsson E, Akerman KE. (2000) Recombinant expression of a selective blocker of M(1) muscarinic receptors. Biochem Biophys Res Commun, 271 (2): 435-9. [PMID:10799315]

101. Oki T, Takagi Y, Inagaki S, Taketo MM, Manabe T, Matsui M, Yamada S. (2005) Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res, 133 (1): 6-11. [PMID:15661360]

102. Olianas MC, Maullu C, Adem A, Mulugeta E, Karlsson E, Onali P. (2000) Inhibition of acetylcholine muscarinic M(1) receptor function by the M(1)-selective ligand muscarinic toxin 7 (MT-7). Br J Pharmacol, 131 (3): 447-52. [PMID:11015294]

103. Ozenil M, Pacher K, Balber T, Vraka C, Roller A, Holzer W, Spreitzer H, Mitterhauser M, Wadsak W, Hacker M et al.. (2020) Enhanced arecoline derivatives as muscarinic acetylcholine receptor M1 ligands for potential application as PET radiotracers. Eur J Med Chem, 204: 112623. [PMID:32717485]

104. Pei XF, Gupta TH, Badio B, Padgett WL, Daly JW. (1998) 6beta-Acetoxynortropane: a potent muscarinic agonist with apparent selectivity toward M2-receptors. J Med Chem, 41 (12): 2047-55. [PMID:9622546]

105. Pepitoni S, Wood IC, Buckley NJ. (1997) Structure of the m1 muscarinic acetylcholine receptor gene and its promoter. J Biol Chem, 272 (27): 17112-7. [PMID:9202029]

106. Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ. (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature, 334 (6181): 434-7. [PMID:2841607]

107. Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ. (1987) Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J, 6 (13): 3923-9. [PMID:3443095]

108. Polidori C, Massi M, Lambrecht G, Mutschler E, Tacke R, Melchiorre C. (1990) Selective antagonists provide evidence that M1 muscarinic receptors may mediate carbachol-induced drinking in the rat. Eur J Pharmacol, 179 (1-2): 159-65. [PMID:2364977]

109. Powers AS, Pham V, Burger WAC, Thompson G, Laloudakis Y, Barnes NW, Sexton PM, Paul SM, Christopoulos A, Thal DM et al.. (2023) Structural basis of efficacy-driven ligand selectivity at GPCRs. Nat Chem Biol, 19 (7): 805-814. [PMID:36782010]

110. Prat M, Buil MA, Fernández MD, Castro J, Monleón JM, Tort L, Casals G, Ferrer M, Huerta JM, Espinosa S et al.. (2011) Discovery of novel quaternary ammonium derivatives of (3R)-quinuclidinyl carbamates as potent and long acting muscarinic antagonists. Bioorg Med Chem Lett, 21 (11): 3457-61. [PMID:21524581]

111. Prat M, Fernández D, Buil MA, Crespo MI, Casals G, Ferrer M, Tort L, Castro J, Monleón JM, Gavaldà A et al.. (2009) Discovery of novel quaternary ammonium derivatives of (3R)-quinuclidinol esters as potent and long-acting muscarinic antagonists with potential for minimal systemic exposure after inhaled administration: identification of (3R)-3-{[hydroxy(di-2-thienyl)acetyl]oxy}-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane bromide (aclidinium bromide). J Med Chem, 52 (16): 5076-92. [PMID:19653626]

112. Preiksaitis HG, Krysiak PS, Chrones T, Rajgopal V, Laurier LG. (2000) Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J Pharmacol Exp Ther, 295 (3): 879-88. [PMID:11082420]

113. Pustovit RV, Itomi Y, Ringuet M, Diwakarla S, Chai XY, McQuade RM, Tsukimi Y, Furness JB. (2019) Muscarinic receptor 1 allosteric modulators stimulate colorectal emptying in dog, mouse and rat and resolve constipation. Neurogastroenterol Motil, 31 (11): e13692. [PMID:31374156]

114. Richards MH, van Giersbergen PL. (1995) Human muscarinic receptors expressed in A9L and CHO cells: activation by full and partial agonists. Br J Pharmacol, 114 (6): 1241-9. [PMID:7620715]

115. Rook JM, Bertron JL, Cho HP, Garcia-Barrantes PM, Moran SP, Maksymetz JT, Nance KD, Dickerson JW, Remke DH, Chang S et al.. (2018) A Novel M1 PAM VU0486846 Exerts Efficacy in Cognition Models without Displaying Agonist Activity or Cholinergic Toxicity. ACS Chem Neurosci, 9 (9): 2274-2285. [PMID:29701957]

116. Rosenblum K, Futter M, Jones M, Hulme EC, Bliss TV. (2000) ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J Neurosci, 20 (3): 977-85. [PMID:10648702]

117. Ross EM, Berstein G. (1993) Regulation of the M1 muscarinic receptor-Gq-phospholipase C-beta pathway by nucleotide exchange and GTP hydrolysis. Life Sci, 52 (5-6): 413-9. [PMID:8441322]

118. Salmon M, Luttmann MA, Foley JJ, Buckley PT, Schmidt DB, Burman M, Webb EF, DeHaas CJ, Kotzer CJ, Barrett VJ et al.. (2013) Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases. J Pharmacol Exp Ther, 345 (2): 260-70. [PMID:23435542]

119. Scarr E, Dean B. (2008) Muscarinic receptors: do they have a role in the pathology and treatment of schizophrenia?. J Neurochem, 107 (5): 1188-95. [PMID:18957051]

120. Schrage R, Holze J, Klöckner J, Balkow A, Klause AS, Schmitz AL, De Amici M, Kostenis E, Tränkle C, Holzgrabe U et al.. (2014) New insight into active muscarinic receptors with the novel radioagonist [³H]iperoxo. Biochem Pharmacol, 90 (3): 307-19. [PMID:24863257]

121. Sen AP, Bhattacharya SK. (1991) Thermic response of selective muscarinic agonists and antagonists in rat. Indian J Exp Biol, 29 (2): 131-5. [PMID:1869296]

122. Shapiro RA, Scherer NM, Habecker BA, Subers EM, Nathanson NM. (1988) Isolation, sequence, and functional expression of the mouse M1 muscarinic acetylcholine receptor gene. J Biol Chem, 263 (34): 18397-403. [PMID:2848036]

123. Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM et al.. (2009) A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol Pharmacol, 76 (2): 356-68. [PMID:19407080]

124. Shinoe T, Matsui M, Taketo MM, Manabe T. (2005) Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J Neurosci, 25 (48): 11194-200. [PMID:16319319]

125. Sinha S, Gupta S, Malhotra S, Krishna NS, Meru AV, Babu V, Bansal V, Garg M, Kumar N, Chugh A et al.. (2010) AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br J Pharmacol, 160 (5): 1119-27. [PMID:20590605]

126. Smith CM, Wallis RM. (1997) Characterisation of [3H]-darifenacin as a novel radioligand for the study of muscarinic M3 receptors. J Recept Signal Transduct Res, 17 (1-3): 177-84. [PMID:9029489]

127. Sowell Sr JW, Tang Y, Valli MJ, Chapman Jr JM, Usher LA, Vaughan CM, Kosh JW. (1992) Synthesis and cholinergic properties of bis[[(dimethylamino)methyl]furanyl] analogues of ranitidine. J Med Chem, 35 (6): 1102-8. [PMID:1552502]

128. Spalding TA, Ma JN, Ott TR, Friberg M, Bajpai A, Bradley SR, Davis RE, Brann MR, Burstein ES. (2006) Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation. Mol Pharmacol, 70 (6): 1974-83. [PMID:16959945]

129. Stanton T, Bolden-Watson C, Cusack B, Richelson E. (1993) Antagonism of the five cloned human muscarinic cholinergic receptors expressed in CHO-K1 cells by antidepressants and antihistaminics. Biochem Pharmacol, 45 (11): 2352-4. [PMID:8100134]

130. Stein R, Pinkas-Kramarski R, Sokolovsky M. (1988) Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover. EMBO J, 7 (10): 3031-5. [PMID:2846274]

131. Stocks MJ, Alcaraz L, Bailey A, Bowers K, Donald D, Edwards H, Hunt F, Kindon N, Pairaudeau G, Theaker J et al.. (2010) The discovery of new spirocyclic muscarinic M3 antagonists. Bioorg Med Chem Lett, 20 (24): 7458-61. [PMID:21036043]

132. Struckmann N, Schwering S, Wiegand S, Gschnell A, Yamada M, Kummer W, Wess J, Haberberger RV. (2003) Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor-deficient mice. Mol Pharmacol, 64 (6): 1444-51. [PMID:14645675]

133. Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn PJ. (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci USA, 100 (23): 13674-9. [PMID:14595031]

134. Suzuki T, Fujimoto K, Oohata H, Kawashima K. (1988) Presynaptic M1 muscarinic receptor modulates spontaneous release of acetylcholine from rat basal forebrain slices. Neurosci Lett, 84 (2): 209-12. [PMID:3340327]

135. Sykes DA, Dowling MR, Leighton-Davies J, Kent TC, Fawcett L, Renard E, Trifilieff A, Charlton SJ. (2012) The Influence of receptor kinetics on the onset and duration of action and the therapeutic index of NVA237 and tiotropium. J Pharmacol Exp Ther, 343 (2): 520-8. [PMID:22854200]

136. Takagi N, Miyake-Takagi K, Takagi K, Tamura H, Takeo S. (2002) Altered extracellular signal-regulated kinase signal transduction by the muscarinic acetylcholine and metabotropic glutamate receptors after cerebral ischemia. J Biol Chem, 277 (8): 6382-90. [PMID:11714707]

137. Tanis SP, Plewe MB, Johnson TW, Butler SL, Dalvie D, DeLisle D, Dress KR, Hu Q, Huang B, Kuehler JE et al.. (2010) Azaindole N-methyl hydroxamic acids as HIV-1 integrase inhibitors-II. The impact of physicochemical properties on ADME and PK. Bioorg Med Chem Lett, 20 (24): 7429-34. [PMID:21036042]

138. Tarr JC, Turlington ML, Reid PR, Utley TJ, Sheffler DJ, Cho HP, Klar R, Pancani T, Klein MT, Bridges TM et al.. (2012) Targeting selective activation of M(1) for the treatment of Alzheimer's disease: further chemical optimization and pharmacological characterization of the M(1) positive allosteric modulator ML169. ACS Chem Neurosci, 3 (11): 884-95. [PMID:23173069]

139. Thal DM, Sun B, Feng D, Nawaratne V, Leach K, Felder CC, Bures MG, Evans DA, Weis WI, Bachhawat P et al.. (2016) Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature, 531 (7594): 335-40. [PMID:26958838]

140. Tseng J, Erbe CB, Kwitek AE, Jacob HJ, Popper P, Wackym PA. (2002) Radiation hybrid mapping of five muscarinic acetylcholine receptor subtype genes in Rattus norvegicus. Hear Res, 174 (1-2): 86-92. [PMID:12433399]

141. Tsukimi Y, Pustovit RV, Harrington AM, Garcia-Caraballo S, Brierley SM, Di Natale M, Molero JC, Furness JB. (2020) Effects and sites of action of a M1 receptor positive allosteric modulator on colonic motility in rats and dogs compared with 5-HT4 agonism and cholinesterase inhibition. Neurogastroenterol Motil, 32 (8): e13866. [PMID:32337809]

142. Tyagi S, Tyagi P, Van-le S, Yoshimura N, Chancellor MB, de Miguel F. (2006) Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol, 176 (4 Pt 1): 1673-8. [PMID:16952712]

143. Valuskova P, Farar V, Forczek S, Krizova I, Myslivecek J. (2018) Autoradiography of 3H-pirenzepine and 3H-AFDX-384 in Mouse Brain Regions: Possible Insights into M1, M2, and M4 Muscarinic Receptors Distribution. Front Pharmacol, 9: 124. [PMID:29515448]

144. Vilaró MT, Palacios JM, Mengod G. (1994) Multiplicity of muscarinic autoreceptor subtypes? Comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the rat brain. Brain Res Mol Brain Res, 21 (1-2): 30-46. [PMID:8164520]

145. Wackym PA, Chen CT, Ishiyama A, Pettis RM, López IA, Hoffman L. (1996) Muscarinic acetylcholine receptor subtype mRNAs in the human and rat vestibular periphery. Cell Biol Int, 20 (3): 187-92. [PMID:8673067]

146. Waelbroeck M, De Neef P, Domenach V, Vandermeers-Piret MC, Vandermeers A. (1996) Binding of the labelled muscarinic toxin 125I-MT1 to rat brain muscarinic M1 receptors. Eur J Pharmacol, 305 (1-3): 187-92. [PMID:8813552]

147. Wang SZ, el-Fakahany EE. (1993) Application of transfected cell lines in studies of functional receptor subtype selectivity of muscarinic agonists. J Pharmacol Exp Ther, 266 (1): 237-43. [PMID:7687290]

148. Wang SZ, Lee SY, Zhu SZ, el-Fakahany EE. (1996) Differential coupling of m1, m3, and m5 muscarinic receptors to activation of neuronal nitric oxide synthase. Pharmacology, 53 (5): 271-80. [PMID:8990485]

149. Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, Jerman J, Middlemiss DN, Riley GJ, Brown AM. (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol, 125 (7): 1413-20. [PMID:9884068]

150. Watson M, Roeske WR, Johnson PC, Yamamura HI. (1984) [3H]Pirenzepine identifies putative M1 muscarinic receptors in human stellate ganglia. Brain Res, 290 (1): 179-82. [PMID:6546354]

151. Watt ML, Schober DA, Hitchcock S, Liu B, Chesterfield AK, McKinzie D, Felder CC. (2011) Pharmacological characterization of LY593093, an M1 muscarinic acetylcholine receptor-selective partial orthosteric agonist. J Pharmacol Exp Ther, 338 (2): 622-32. [PMID:21558436]

152. Wei HB, Roeske WR, Lai J, Wanibuchi F, Hidaka K, Usuda S, Yamamura HI. (1992) Pharmacological characterization of a novel muscarinic partial agonist, YM796, in transfected cells expressing the m1 or m2 muscarinic receptor gene. Life Sci, 50 (5): 355-63. [PMID:1310135]

153. Weiner DM, Levey AI, Brann MR. (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA, 87 (18): 7050-4. [PMID:2402490]

154. Wess J. (2003) Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci, 24 (8): 414-20. [PMID:12915051]

155. Wess J. (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol, 44: 423-50. [PMID:14744253]

156. Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie L, Felder CC, Lamping KG et al.. (2003) M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Recept Channels, 9 (4): 279-90. [PMID:12893539]

157. Wess J, Lambrecht G, Mutschler E, Brann MR, Dörje F. (1991) Selectivity profile of the novel muscarinic antagonist UH-AH 37 determined by the use of cloned receptors and isolated tissue preparations. Br J Pharmacol, 102 (1): 246-50. [PMID:2043926]

158. Widzowski DV, Bialobok P, Kucera KE, Mihut R, Sitar S, Knowles M, Stagnitto M, Howell A, McCreedy S, Machulskis A, Gordon J, Marler M, Wu ESC, Mullen G, Triggle DJ, Blosser J. (1997) Development of a pharmacological target profile for muscarinic agonists. Drug Development Research, 40: 117-132.

159. Wilson PS, Khimenko PL, Barnard JW, Moore TM, Taylor AE. (1995) Muscarinic agonists and antagonists cause vasodilation in isolated rat lung. J Appl Physiol, 78 (4): 1404-11. [PMID:7615448]

160. Woo SH, Lee BH, Kwon KI, Lee CO. (2005) Excitatory effect of M1 muscarinic acetylcholine receptor on automaticity of mouse heart. Arch Pharm Res, 28 (8): 930-5. [PMID:16178419]

161. Wood MD, Murkitt KL, Ho M, Watson JM, Brown F, Hunter AJ, Middlemiss DN. (1999) Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry. Br J Pharmacol, 126 (7): 1620-4. [PMID:10323594]

162. Xie G, Drachenberg C, Yamada M, Wess J, Raufman JP. (2005) Cholinergic agonist-induced pepsinogen secretion from murine gastric chief cells is mediated by M1 and M3 muscarinic receptors. Am J Physiol Gastrointest Liver Physiol, 289 (3): G521-9. [PMID:15933222]

163. Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB. (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol, 43 (2): 149-57. [PMID:8429821]

164. Zhang Y, Dyck RH, Hamilton SE, Nathanson NM, Yan J. (2005) Disrupted tonotopy of the auditory cortex in mice lacking M1 muscarinic acetylcholine receptor. Hear Res, 201 (1-2): 145-55. [PMID:15721569]

165. Zhang Y, Hamilton SE, Nathanson NM, Yan J. (2006) Decreased input-specific plasticity of the auditory cortex in mice lacking M1 muscarinic acetylcholine receptors. Cereb Cortex, 16 (9): 1258-65. [PMID:16292003]

Contributors

Show »

How to cite this page