Top ▲

D2 receptor

Click here for help

Immunopharmacology Ligand target has curated data in GtoImmuPdb

Target id: 215

Nomenclature: D2 receptor

Family: Dopamine receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 443 11q23.2 DRD2 dopamine receptor D2 9,45
Mouse 7 444 9 26.72 cM Drd2 dopamine receptor D2 88
Rat 7 444 8q23 Drd2 dopamine receptor D2 9,24
Gene and Protein Information Comments
The human D2 receptor exists as two alternatively spliced isoforms [44]. The 443 amino acid receptor is the long form (D2L). The short form (D2S) is 414 amino acids long.
Previous and Unofficial Names Click here for help
D2A and D2B | dopamine D2 receptor | dopamine receptor 2 | D2 receptor | D2R | D2(415) and D2(444)
Database Links Click here for help
Specialist databases
GPCRdb drd2_human (Hs), drd2_mouse (Mm), drd2_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone
PDB Id:  6CM4
Ligand:  risperidone
Resolution:  2.9Å
Species:  Human
References:  132
Natural/Endogenous Ligands Click here for help
dopamine

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
rotigotine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 10.2 pKi 37
pKi 10.2 (Ki 6x10-11 M) [37]
aripiprazole Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Partial agonist 9.7 pKi 104
pKi 9.7 [104]
brexpiprazole Small molecule or natural product Approved drug Hs Partial agonist 9.5 pKi 76
pKi 9.5 (Ki 3x10-10 M) [76]
lisuride Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 9.2 – 9.5 pKi 86
pKi 9.2 – 9.5 [86]
aripiprazole Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 9.1 pKi 138
pKi 9.1 (Ki 8x10-10 M) [138]
cabergoline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 9.0 – 9.2 pKi 86
pKi 9.0 – 9.2 [86]
terguride Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 9.1 pKi 86
pKi 9.1 [86]
roxindole Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 8.6 pKi 86
pKi 8.6 [86]
UNC9975 Small molecule or natural product Hs Biased agonist 8.6 pKi 3
pKi 8.6 (Ki 2.6x10-9 M) [3]
Description: β-arrestin 2 biased agonist.
UNC0006 Small molecule or natural product Hs Biased agonist 8.3 pKi 3
pKi 8.3 (Ki 5x10-9 M) [3]
Description: β-arrestin 2 biased agonist.
cariprazine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 8.2 pKi 1
pKi 8.2 (Ki 5.7x10-9 M) [1]
Description: Binding affinity to human dopamine D2L receptor
MLS1547 Small molecule or natural product Hs Biased agonist 8.2 pKi 40
pKi 8.2 (Ki 5.9x10-9 M) [40]
Description: Biased agonist for G-protein coupling to Gi.
(-)-N-porphynorapomorphine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.5 – 8.9 pKi 41,102
pKi 7.5 – 8.9 [41,102]
ropinirole Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 8.1 pKi 49
pKi 8.1 (Ki 7.2x10-9 M) [49]
LP-44 Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.1 pKi 71
pKi 8.1 (Ki 7.3x10-9 M) [71]
sumanirole Small molecule or natural product Hs Full agonist 8.1 pKi 83
pKi 8.1 (Ki 9x10-9 M) [83]
bromocriptine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.3 – 8.3 pKi 41,86,102
pKi 7.3 – 8.3 [41,86,102]
apomorphine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Partial agonist 7.6 pKi 120
pKi 7.6 [120]
pergolide Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 7.5 – 7.6 pKi 86
pKi 7.5 – 7.6 [86]
bromocriptine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Partial agonist 7.3 pKi 120
pKi 7.3 [120]
UNC9994 Small molecule or natural product Hs Biased agonist 7.1 pKi 3
pKi 7.1 (Ki 7.9x10-8 M) [3]
Description: β-arrestin 2 biased agonist.
compound 3 [PMID: 23134120] Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.9 pKi 121
pKi 6.9 (Ki 1.18x10-7 M) [121]
piribedil Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.8 – 6.9 pKi 86
pKi 6.8 – 6.9 [86]
LP-211 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.8 pKi 72
pKi 6.8 (Ki 1.42x10-7 M) [72]
LP-12 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.7 pKi 71
pKi 6.7 (Ki 2.24x10-7 M) [71]
apomorphine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 5.7 – 7.5 pKi 25,41,86,102,118
pKi 5.7 – 7.5 [25,41,86,102,118]
7-OH-DPAT Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.6 – 7.6 pKi 25,41,75
pKi 5.6 – 7.6 [25,41,75]
HS665 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.3 pKi 121
pKi 6.3 (Ki 4.5x10-7 M) [121]
quinpirole Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.9 – 7.7 pKi 25,85,92,118,120,129
pKi 4.9 – 7.7 [25,85,92,118,120,129]
pramipexole Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.1 – 7.4 pKi 85,102
pKi 5.1 – 7.4 [85,102]
7-OH-DPAT Small molecule or natural product Rn Full agonist 6.2 pKi 33
pKi 6.2 [33]
dopamine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 4.7 – 7.2 pKi 25,41,102
pKi 4.7 – 7.2 [25,41,102]
PD 128907 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.4 – 6.4 pKi 94,102
pKi 5.4 – 6.4 [94,102]
dopamine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Rn Full agonist 5.3 – 6.4 pKi 104,120
pKi 5.3 – 6.4 [104,120]
7-trans-OH-PIPAT Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.6 pKi 33
pKi 5.6 [33]
quinelorane Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.5 – 5.7 pKi 87,118
pKi 5.5 – 5.7 [87,118]
benzquinamide Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 5.4 pKi 46
pKi 5.4 (Ki 3.964x10-6 M) [46]
quinpirole Small molecule or natural product Click here for species-specific activity table Rn Full agonist 5.2 pKi 120
pKi 5.2 [120]
UNC9975 Small molecule or natural product Hs Biased agonist 9.0 pEC50 3
pEC50 9.0 (EC50 1.1x10-9 M) [3]
Description: This compound shows biased agonism towards D2-mediated β-arrestin-2 translocation measured using the Tango assay.
UNC0006 Small molecule or natural product Hs Biased agonist 8.9 pEC50 3
pEC50 8.9 (EC50 1.2x10-9 M) [3]
Description: Biased agonist of D2-mediated β-arrestin-2 translocation measured using the Tango assay.
UNC9994 Small molecule or natural product Hs Biased agonist 8.2 pEC50 3
pEC50 8.2 (EC50 6.1x10-9 M) [3]
Description: This compound shows biased agonism towards D2-mediated β-arrestin-2 translocation measured using the Tango assay.
aripiprazole Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 7.4 pEC50 3
pEC50 7.4 (EC50 3.8x10-8 M) [3]
Description: Measuring cAMP production via the Gi-coupled signaling pathway
vilazodone Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 6.2 pIC50 51
pIC50 6.2 (IC50 6.66x10-7 M) [51]
View species-specific agonist tables
Agonist Comments
Terguride and roxindole have been reported to be partial agonists at the D2S receptor and antagonists at the D2L receptor.
Although benzquinamide has higher affinity for α-adrenoceptors, it is suggested in [46] that it is more likely that drug-induced modulation of D2 receptor activity is responsible for the drug's antiemetic action.
Allosteric modulation of the D2 receptor by SB269652 only occurs when D2 receptor dimers form, with the ligand assuming a 'bitopic' pose and interacting with different sites on each of the two protomers in the dimer [70].
UNC0006, UNC9994 and UNC9975 are partial biased agonists of β-arrestin 2 recruitment at the D2 receptor as measured using three different assays (β-arrestin-2 translocation Tango assay, DiscoveRx assay and BRET-based β-arrestin-2 recruitment assay) [3]. Tango assay pEC50 values and binding Kis are provided in the table above.
G protein-biased, cariprazine-based partial agonists are reported in [115].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]nemonapride Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Antagonist 10.9 pKd 77
pKd 10.9 [77]
[3H]spiperone Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Rn Antagonist 10.2 pKd 24,52,141
pKd 10.2 (Kd 5.7x10-11 M) [24,52,141]
[3H]raclopride Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Antagonist 8.9 pKd 67
pKd 8.9 (Kd 1.2x10-9 M) [67]
[3H]N-methylspiperone Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Rn Antagonist 10.7 pKi 104
pKi 10.7 [104]
benperidol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 10.6 pKi 111
pKi 10.6 (Ki 2.7x10-11 M) [111]
blonanserin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.9 pKi 90
pKi 9.9 (Ki 1.4x10-10 M) [90]
pipotiazine Small molecule or natural product Approved drug Primary target of this compound Hs Antagonist 9.7 pKi 119
pKi 9.7 (Ki 2x10-10 M) [119]
risperidone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 9.4 pKi 11
pKi 9.4 (Ki 4.4x10-10 M) [11]
perphenazine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.9 – 9.6 pKi 64,108
pKi 8.9 – 9.6 (Ki 1.4x10-9 – 2.6x10-10 M) [64,108]
perospirone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.2 pKi 109
pKi 9.2 (Ki 6x10-10 M) [109]
eticlopride Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 9.2 pKi 75,125
pKi 9.2 [75,125]
trifluoperazine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.9 – 9.0 pKi 64,110
pKi 8.9 – 9.0 (Ki 1.3x10-9 – 9.6x10-10 M) [64,110]
asenapine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.9 pKi 114
pKi 8.9 (Ki 1.2x10-9 M) [114]
terguride Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.9 pKi 86
pKi 8.9 [86]
spiperone Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 8.4 – 9.4 pKi 75,87,120,125
pKi 8.4 – 9.4 [75,87,120,125]
fluphenazine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.8 pKi 101
pKi 8.8 (Ki 1.44x10-9 M) [101]
flupentixol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.8 pKi 41
pKi 8.8 (Ki 1.5x10-9 M) [41]
nafadotride Small molecule or natural product Click here for species-specific activity table Rn Antagonist 8.8 pKi 104
pKi 8.8 [104]
lurasidone Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 8.8 pKi 55
pKi 8.8 (Ki 1.68x10-9 M) [55]
olanzapine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.7 pKi 11
pKi 8.7 (Ki 2.1x10-9 M) [11]
mesoridazine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.7 pKi 32
pKi 8.7 (Ki 2.2x10-9 M) [32]
roxindole Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.6 pKi 86
pKi 8.6 [86]
ziprasidone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.6 pKi 11
pKi 8.6 (Ki 2.8x10-9 M) [11]
chlorprothixene Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.5 pKi 130
pKi 8.5 (Ki 2.96x10-9 M) [130]
nafadotride Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.5 pKi 103
pKi 8.5 [103]
raclopride Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.7 – 9.3 pKi 104,120
pKi 7.7 – 9.3 [104,120]
domperidone Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 8.5 pKi 120
pKi 8.5 [120]
sertindole Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.0 – 8.9 pKi 63-64,108
pKi 8.0 – 8.9 (Ki 9.1x10-9 – 1.2x10-9 M) [63-64,108]
prochlorperazine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.4 pKi 13
pKi 8.4 (Ki 3.61x10-9 M) [13]
haloperidol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 8.3 pKi 120
pKi 8.3 [120]
(+)-sulpiride Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.2 pKi 41
pKi 8.2 (Ki 6x10-9 M) [41]
L-741,626 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.9 – 8.5 pKi 47,66
pKi 7.9 – 8.5 [47,66]
domperidone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.9 – 8.4 pKi 41,118
pKi 7.9 – 8.4 (Ki 1.26x10-8 – 3.98x10-9 M) [41,118]
loxapine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.9 – 8.3 pKi 64,110
pKi 7.9 – 8.3 (Ki 1.2x10-8 – 5x10-9 M) [64,110]
(+)-butaclamol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.5 – 8.7 pKi 25,41,75,125
pKi 7.5 – 8.7 [25,41,75,125]
haloperidol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.4 – 8.8 pKi 41,75,85,118,126
pKi 7.4 – 8.8 [41,75,85,118,126]
raclopride Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.0 pKi 87
pKi 8.0 (Ki 1x10-8 M) [87]
zotepine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.0 pKi 107
pKi 8.0 (Ki 1.1x10-8 M) [107]
(-)-stepholidine Small molecule or natural product Hs Antagonist 7.9 pKi 84
pKi 7.9 (Ki 1.16x10-8 M) [84]
pimozide Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.0 – 8.8 pKi 41,118
pKi 7.0 – 8.8 [41,118]
amisulpride Small molecule or natural product Approved drug Primary target of this compound Hs Antagonist 7.8 – 8.0 pKi 79,118,120
pKi 7.9 – 8.0 [79,118]
pKi 7.8 [120]
cinnarizine Small molecule or natural product Approved drug Ligand has a PDB structure Rn Antagonist 7.9 pKi 58
pKi 7.9 (Ki 1.32x10-8 M) [58]
flunarizine Small molecule or natural product Approved drug Rn Antagonist 6.9 – 8.4 pKi 4,58
pKi 6.9 – 8.4 (Ki 1.12x10-7 – 3.96x10-9 M) [4,58]
pimozide Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 7.6 pKi 120
pKi 7.6 [120]
sulpiride Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.2 – 7.9 pKi 25
pKi 7.2 – 7.9 (Ki 6x10-8 – 1.2x10-8 M) [25]
metoclopramide Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Mm Antagonist 7.5 pKi 81
pKi 7.5 (Ki 2.88x10-8 M) [81]
chlorpromazine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 7.5 pKi 120
pKi 7.5 [120]
lumateperone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.5 pKi 73,117
pKi 7.5 (Ki 3.2x10-8 M) [73,117]
chlorpromazine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.0 – 7.6 pKi 41,118
pKi 7.0 – 7.6 [41,118]
quetiapine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.2 pKi 11
pKi 7.2 (Ki 6.9x10-8 M) [11]
(-)-sulpiride Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 6.3 – 8.0 pKi 41,118,125
pKi 6.3 – 8.0 (Ki 5.2x10-7 – 1x10-8 M) [41,118,125]
R-VK4-40 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 pKi 57
pKi 7.1 (Ki 7.58x10-8 M) [57]
(+)-sulpiride Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.0 pKi 120
pKi 7.0 [120]
ML321 Small molecule or natural product Primary target of this compound Hs Antagonist 7.0 pKi 135-136
pKi 7.0 (Ki 1x10-7 M) [135-136]
trans-flupenthixol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.9 pKi 41
pKi 6.9 (Ki 1.2x10-7 M) [41]
EGIS-11150 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.9 pKi 42
pKi 6.9 (Ki 1.2x10-7 M) [42]
(+)-UH232 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.4 – 7.1 pKi 41,120
pKi 6.4 – 7.1 [41,120]
promazine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.5 pKi 26
pKi 6.5 (Ki 3x10-7 M) [26]
(+)-UH232 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.4 pKi 120
pKi 6.4 [120]
clozapine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 5.8 – 6.9 pKi 41,75,114,118,125
pKi 5.8 – 6.9 [41,75,114,118,125]
clozapine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 6.2 pKi 120
pKi 6.2 [120]
(+)-S-14297 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.5 pKi 87
pKi 5.5 [87]
(+)-SCH-23390 Small molecule or natural product Hs Antagonist 5.3 pKi 41
pKi 5.3 [41]
iloperidone Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 7.0 pIC50 123
pIC50 7.0 (IC50 1.1x10-7 M) [123]
Description: Measuring displacement of [3H]spiperone from rat striatum.
metopimazine Small molecule or natural product Approved drug N/A Antagonist - -
alizapride Small molecule or natural product Approved drug N/A Antagonist - -
View species-specific antagonist tables
Antagonist Comments
Terguride/roxindole have been reported to act as partial agonists at the D2S receptor and as antagonists at the D2L receptor.
Perphenazine is an antagonist at both the D2S and D2L receptors [124].
The approved drug mesoridazine, although consisting of 4 stereoisomers, appears to be selective for the D2 receptor [32], especially when examining the data for the two highest affinity isomers, compounds 2 and 5. Across the 3 dopamine receptors, compounds 2 and 5 have the same order of potency (D2>D3>D1). The data shown in the table above is for compound 2. Mesoridazine is also a selective antagonist of the serotonin 5-HT2A receptor.
Zotepine has a Ki of 5.4nM for the D2S receptor isoform [107].
The β-arrestin biased ligands UNC9975, UNC0006 and UNC9994, do not activate D2 receptor-mediated Gi-regulated inhibition of cAMP production, but rather are functionally-selective antagonists of the interaction between D2 receptor and β-arrestin-2 [3].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
SB269652 Small molecule or natural product Click here for species-specific activity table Hs Negative 6.4 pKB 70
pKB 6.4 (KB 4.16x10-7 M) [70]
Description: Allosteric reduction of dopamine binding in a radioligand binding assay
Immunopharmacology Comments
D2 receptor-mediated anti-inflammatory effects in the kidney have a protective effect. In contrast, impaired D2 receptor function results in renal inflammation and organ damage [139]. Taken together with evidence that Drd2 knockout mice have a phenotype that includes a profound brain inflammation, these findings suggest that the dopaminergic system acts as an endogenous, evolutionarily conserved, anti-inflammatory mechanism. Evidence from Han et al. (2017) [48] indicates that D2 receptor-induced anti-inflammatory effects in acute pancreatitis models are mediated via a protein phosphatase 2 (PP2A)-dependent Akt/NF-κB pathway.
Immuno Process Associations
Immuno Process:  Cytokine production & signalling
Immuno Process:  Inflammation
Immuno Process:  Antigen presentation
Immuno Process:  Immune regulation
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family
G protein independent mechanism
Adenylyl cyclase inhibition
Other - See Comments
Comments:  Dopamine D2 receptors can inhibit the Akt (protein kinase B) pathway through a β-arrestin 2/Akt/protein phosphatase 2A complex [15-16].
D2L-induced inhibition of Akt is reported in pituitary lactotrophs, with D2S-induced ERK stimulation also reported in these cells [54,95].
References:  56,89,91
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Potassium channel
Other - See Comments
Comments:  β-arrestin recruitment [40,84,135-136].
References:  31
Tissue Distribution Click here for help
Pituitary, substantia nigra (SN) and ventral tegmental area (VTA).
Species:  Human
Technique:  In situ histochemistry.
References:  43,53
Adrenal cortex.
Species:  Human
Technique:  Autoradiography.
References:  5
Clusters of D2 expressing neurons in limbic and sensory regions of the adult mouse brain cortex.
Species:  Mouse
Technique:  Brain
References:  61
Prelimbic cortex.
Species:  Mouse
Technique:  Confocal analysis in the Bac-GFP reporter mouse.
References:  140
Hippocampus.
Species:  Mouse
Technique:  Bac-GFP reporter mouse.
References:  97
Pityitary (autoradiography), substantia nigra (SN) and ventral tegmental area (VTA) (immunohistochemistry in BAC transgenics).
Species:  Mouse
Technique:  Autoradiography, immunohistochemistry.
References:  50,100
Striatonigral neurons.
Species:  Rat
Technique:  Immunofluorescence.
References:  10
Striatum.
Species:  Rat
Technique:  In situ hybridization.
References:  27
Pituitary, substantia nigra (SN) and ventral tegmental area (VTA).
Species:  Rat
Technique:  In situ histochemistry.
References:  24
Cerebral, mesenteric and renal arteries.
Species:  Rat
Technique:  Autoradiography.
References:  6
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of cAMP levels in GH4C1 cells transfected with the D2 receptor.
Species:  Rat
Tissue:  GH4C1 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  2
Measurement of prolactin secretion in GH4C1 cells transfected with the D2 receptor.
Species:  Rat
Tissue:  GH4C1 cells.
Response measured:  Inhibition of prolactin secretion.
References:  2
Measurement of voltage-dependent potassium current in NG108-15 cells transfected witht the D2 receptor.
Species:  Rat
Tissue:  NG108-15 cells.
Response measured:  Inhibition of voltage-dependent potassium current.
References:  30
Measurement of activation of potassium channel in rat lactotrophs endogenously expressing the D2 receptor.
Species:  Rat
Tissue:  Lactotrophs.
Response measured:  Activation of potassium channel.
References:  31
Measurement of Ca2+ and cAMP levels in Ltk- cells transfected with both the long and short forms of the human D2 receptor.
Species:  Human
Tissue:  LTK- cells.
Response measured:  Stimulation of calcium mobilisation and cAMP accumulation.
References:  74
Measurement of [3H]thymidine incorporation in CHO cells transfected with the human D2 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  [3H]thymidine incorporation.
References:  69
Measurement of cAMP levels in CHO cells transfected with the human D2 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  69
Measurement of [3H]arachidonic acid release from rat striatal neurons endogenously expressing the D2 receptors.
Species:  Rat
Tissue:  Striatal neurons.
Response measured:  Enhanced [3H]arachidonic acid release.
References:  105
Measurement of cAMP levels in HEK 293 cells transfected with the human D2 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  82,134
Measurement of Cl- currents in Xenopus oocytes transfected with murine D2L and D2S receptors.
Species:  Mouse
Tissue:  Xenopus oocytes.
Response measured:  Stimulation of Cl- influx.
References:  116
Measurement of inwardly rectifying K+ currents in Xenopus oocytes transfected with the human D2 receptor.
Species:  Human
Tissue:  Xenopus oocytes.
Response measured:  Activation of GIRK1 channels.
References:  93
Measurement of inhibition of cAMP dependent transcription using murine D2L and D2S receptors.
Species:  Mouse
Tissue:  HEK293, COS and JEG3 cells.
Response measured: 
References:  89
Physiological Functions Click here for help
Reward effects of morphine.
Species:  Rat
Tissue:  In vivo.
References:  80
Blockade enhances learning/memory.
Species:  Rat
Tissue:  In vivo.
References:  113
Stimulation of accumulation of cAMP in membrane particles of the rat kidney medulla.
Species:  Human
Tissue:  Membrane particles of the rat kidney medulla.
References:  7
Inhibits Na+-K+-adenosinetriphosphatase (ATPase) activity when a D1 agonist is co-administered with a D2 agonist.
Species:  Rat
Tissue:  Proximal tubule.
References:  18
Inhibition of (Na+)+K+)ATPase activity via synergism with the D1 receptor.
Species:  Rat
Tissue:  Isolated striatal neurons.
References:  19
Control of renal blood flow.
Species:  Human
Tissue:  In vivo.
References:  23
Modulation of striatal dopamine.
Species:  Rat
Tissue:  In vivo.
References:  62
Modulation of locomotor activity. (NB rat and mouse)
Species:  Rat
Tissue:  In vivo.
References:  22,122
Physiological Consequences of Altering Gene Expression Click here for help
D2 receptor knockout mice exhibit a decrease in dopamine transporter (DAT) activity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  36
D2 receptor knockout mice display Parkinsonian-like locomotor impairment when compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  14,39
D2 receptor knockout mice exhibit abnormal synaptic plasticity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  29
D2 receptor knockout mice do not exhibit autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  68
D2 receptor knockout mice exhibit d-amphetamine-induced disruption of prepulse inhibition, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  96
D2 receptor knockout mice are insensitive to the hypolocomotor and hypothermic effects of D2/D3 agonists.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  21
D2 receptor knockout mice are insensitive to the cataleptic effects of haloperidol.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  20
D2 receptor knockout mice exhibit reduced ethanol-conditioned place preference.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  35
D2L receptor knockout mice exhibit reduced aggression.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  131
D2 receptor knockout mice do not exhibit autoinhibition of dopamine release.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  17,98
D2 receptor knockout mice exhibit increased rates of high-dose cocaine self-administration.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  28
D2 receptor knockout mice exhibit reduced locomotor activity and slower acquisition of a place-learning task.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  127
D2 receptor knockout mice exhibit altered dopamine release and uptake.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  106
D2 receptor knockout mice exhibit altered GABAergic neurotransmission.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  8
D2L receptor knockout mice (which still express the short form of the receptor, D2S) exhibit reduced haloperidol-induced catalepsy.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  128,133
D2 receptor knockout mice exhibit hyperprolactinemia.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  12,21,59-60,99-100,137
D2 receptor knockout mice do not show place preference for morphine nor do they self administer the drug.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  38,78
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
either: B6.129S2-Drd2 or (involves: 129S2/SvPas * C57BL/6)
MGI:94924  MP:0004163 abnormal adenohypophysis morphology PMID: 9247267 
Drd2tm1Yyw Drd2tm1Yyw/Drd2tm1Yyw
B6.129S4-Drd2
MGI:94924  MP:0009745 abnormal behavioral response to xenobiotic PMID: 11069937  12650980 
Drd2+|Drd2tm1Yyw Drd2tm1Yyw/Drd2+
B6.129S4-Drd2
MGI:94924  MP:0009745 abnormal behavioral response to xenobiotic PMID: 12650980 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0005535 abnormal body temperature PMID: 18486343 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0000913 abnormal brain development PMID: 11158626 
Drd2tm1Mok Drd2tm1Mok/Drd2tm1Mok
involves: 129S/SvEv * C57BL/6J * DBA/2J
MGI:94924  MP:0005418 abnormal circulating hormone level PMID: 9140068 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0002206 abnormal CNS synaptic transmission PMID: 11158626 
Drd1atm1Jcd|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0003119 abnormal digestive system development PMID: 15272078 
Drd1atm1Jcd|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0001663 abnormal digestive system physiology PMID: 15272078 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MP:0001905 abnormal dopamine level PMID: 10391470 
Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MGI:94925  MP:0001905 abnormal dopamine level PMID: 10391470 
Drd2tm1Schm|Drd3+|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3+
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MGI:94925  MP:0001905 abnormal dopamine level PMID: 10391470 
Drd1atm1Jcd|Drd2+|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2+
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0003271 abnormal duodenum morphology PMID: 15272078 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001927 abnormal estrous cycle PMID: 9247268 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0009016 abnormal estrus PMID: 9247268 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0002910 abnormal excitatory postsynaptic currents PMID: 11158626 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0003245 abnormal GABAergic neuron morphology PMID: 17409246 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001406 abnormal gait PMID: 7566118 
Drd1atm1Jcd|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0005645 abnormal hypothalamus physiology PMID: 15272078 
Drd1atm1Jcd|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0008802 abnormal intestinal smooth muscle morphology PMID: 15272078 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
B6.Cg-Drd2
MGI:94924  MP:0006001 abnormal intestinal transit time PMID: 16525059 
Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3tm1Schm
B6.Cg-Drd2 Drd3
MGI:94924  MGI:94925  MP:0006001 abnormal intestinal transit time PMID: 16525059 
Drd1atm1Jcd|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0000477 abnormal intestine morphology PMID: 15272078 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
B6.Cg-Drd2
MGI:94924  MP:0006003 abnormal large intestinal transit time PMID: 16525059 
Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3tm1Schm
B6.Cg-Drd2 Drd3
MGI:94924  MGI:94925  MP:0006003 abnormal large intestinal transit time PMID: 16525059 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0006299 abnormal latent inhibition of conditioning behavior PMID: 15061865 
Adora2atm1Jfc|Drd2tm1Low Adora2atm1Jfc/Adora2atm1Jfc,Drd2tm1Low/Drd2tm1Low
involves: 129 * C57BL/6
MGI:94924  MGI:99402  MP:0003313 abnormal locomotor activation PMID: 16280580 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
involves: 129 * C57BL/6
MGI:94924  MP:0003313 abnormal locomotor activation PMID: 16280580 
Drd2+|Drd2tm1(IL2RA)Koba Drd2tm1(IL2RA)Koba/Drd2+
B6.129P2-Drd2
MGI:94924  MP:0003313 abnormal locomotor activation PMID: 14534241 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
involves: 129S2/SvPas * C57BL/6J
MGI:94924  MP:0003313 abnormal locomotor activation PMID: 9547254 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0003313 abnormal locomotor activation PMID: 11566895  9547254 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
129S/Sv-Drd2
MGI:94924  MP:0003313 abnormal locomotor activation PMID: 9547254 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MP:0001392 abnormal locomotor activity PMID: 10391470 
Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MGI:94925  MP:0001392 abnormal locomotor activity PMID: 10391470 
Drd2tm1Schm|Drd3+|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3+
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MGI:94925  MP:0001392 abnormal locomotor activity PMID: 10391470 
Drd2+|Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2+,Drd3tm1Schm/Drd3tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MGI:94925  MP:0001392 abnormal locomotor activity PMID: 10391470 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
involves: 129S2/SvPas * C57BL/6J
MGI:94924  MP:0001392 abnormal locomotor activity PMID: 9547254 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
involves: 129S2/SvPas * C57BL/6J
MGI:94924  MP:0001392 abnormal locomotor activity PMID: 9547254 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0001392 abnormal locomotor activity PMID: 10196569  9547254 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
B6.129S2-Drd2
MGI:94924  MP:0001392 abnormal locomotor activity PMID: 9547254 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
129S/Sv-Drd2
MGI:94924  MP:0001392 abnormal locomotor activity PMID: 9547254 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
129S/Sv-Drd2
MGI:94924  MP:0001392 abnormal locomotor activity PMID: 9547254 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0008324 abnormal melanotroph morphology PMID: 9717839 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0006009 abnormal neuronal migration PMID: 17409246 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0004811 abnormal neuron physiology PMID: 11069974 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
B6.Cg-Drd2
MGI:94924  MP:0001666 abnormal nutrient absorption PMID: 16525059 
Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3tm1Schm
B6.Cg-Drd2 Drd3
MGI:94924  MGI:94925  MP:0001666 abnormal nutrient absorption PMID: 16525059 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0002803 abnormal operant conditional behavior PMID: 15061865 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
either: B6.129S2-Drd2 or (involves: 129S2/SvPas * C57BL/6)
MGI:94924  MP:0000633 abnormal pituitary gland morphology PMID: 9247267 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0005646 abnormal pituitary gland physiology PMID: 9717839 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0003088 abnormal prepulse inhibition PMID: 10341260 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0003462 abnormal response to novel odor PMID: 16765459 
Drd2tm1Mok Drd2tm1Mok/Drd2tm1Mok
involves: 129S/SvEv * C57BL/6J * DBA/2J
MGI:94924  MP:0003463 abnormal single cell response PMID: 9140068 
Drd2tm1Mok Drd2tm1Mok/Drd2tm1Mok
involves: 129S/SvEv
MGI:94924  MP:0003463 abnormal single cell response PMID: 14684868 
Drd1atm1Jcd|Drd2+|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2+
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0000470 abnormal stomach morphology PMID: 15272078 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0000230 abnormal systemic arterial blood pressure PMID: 11566895 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
B6.129S2-Drd2
MGI:94924  MP:0000230 abnormal systemic arterial blood pressure PMID: 11566895 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0001529 abnormal vocalization PMID: 18382674 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0008294 abnormal zona fasciculata morphology PMID: 9717839 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0008295 abnormal zona reticularis morphology PMID: 9717839 
Drd1atm1Jcd|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0009546 absent gastric milk in neonates PMID: 15272078 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0001899 absent long term depression PMID: 11158626 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0008299 adrenal cortical hyperplasia PMID: 9717839 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0002690 akinesia PMID: 7566118 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0002570 alcohol aversion PMID: 10196569 
Drd1atm1Jcd|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0001438 aphagia PMID: 15272078 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0001393 ataxia PMID: 10196569 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
B6.129S2-Drd2
MGI:94924  MP:0001393 ataxia PMID: 10196569 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0005156 bradykinesia PMID: 7566118 
Drd2tm1Yyw Drd2tm1Yyw/Drd2tm1Yyw
involves: 129S4/SvJae * C57BL/6
MGI:94924  MP:0005156 bradykinesia PMID: 11069937 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MP:0005156 bradykinesia PMID: 10391470 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0002822 catalepsy PMID: 7566118 
Drd2+|Drd2tm1Ebo Drd2tm1Ebo/Drd2+
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0002822 catalepsy PMID: 7566118 
Drd2tm1Mok Drd2tm1Mok/Drd2tm1Mok
involves: 129S/SvEv * C57BL/6J * DBA/2J
MGI:94924  MP:0005409 darkened coat color PMID: 9140068 
Drd2tm1Yyw Drd2tm1Yyw/Drd2tm1Yyw
involves: 129S4/SvJae * C57BL/6J
MGI:94924  MP:0003862 decreased aggression towards males PMID: 11303741 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0003546 decreased alcohol consumption PMID: 10196569 
Drd2tm1Yyw Drd2tm1Yyw/Drd2tm1Yyw
involves: 129S4/SvJae * C57BL/6
MGI:94924  MP:0001364 decreased anxiety-related response PMID: 11069937 
Drd2tm1Yyw Drd2tm1Yyw/Drd2tm1Yyw
B6.129S4-Drd2
MGI:94924  MP:0001364 decreased anxiety-related response PMID: 11069937 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0001258 decreased body length PMID: 11897683 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MP:0001265 decreased body size PMID: 10391470 
Drd1atm1Jcd|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0001265 decreased body size PMID: 15272078 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0005534 decreased body temperature PMID: 7566118 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001262 decreased body weight PMID: 7566118 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MP:0001262 decreased body weight PMID: 10391470 
Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MGI:94925  MP:0001262 decreased body weight PMID: 10391470 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
B6.Cg-Drd2
MGI:94924  MP:0001262 decreased body weight PMID: 16525059 
Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3tm1Schm
B6.Cg-Drd2 Drd3
MGI:94924  MGI:94925  MP:0001262 decreased body weight PMID: 16525059 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0001262 decreased body weight PMID: 10956362 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0001262 decreased body weight PMID: 11897683 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0003371 decreased circulating estrogen level PMID: 9247268 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0005120 decreased circulating growth hormone level PMID: 9247268 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0005120 decreased circulating growth hormone level PMID: 11897683 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0004701 decreased circulating insulin-like growth factor I level PMID: 11897683 
+|Cm|Drd2tm1Low Cm/+,Drd2tm1Low/Drd2tm1Low
involves: 101/H * 129S2/SvPas * C3H/HeH * C3H/HeSn * C57BL/6J
MGI:88424  MGI:94924  MP:0005643 decreased dopamine level PMID: 19840852 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0003912 decreased drinking behavior PMID: 7566118 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0003910 decreased eating behavior PMID: 7566118 
Drd1atm1Jcd|Drd2+|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2+
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0003910 decreased eating behavior PMID: 15272078 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
either: B6.129S2-Drd2 or (involves: 129S2/SvPas * C57BL/6)
MGI:94924  MP:0008335 decreased gonadotroph cell number PMID: 9247267 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0009293 decreased inguinal fat pad weight PMID: 11897683 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0008423 decreased lactotroph cell size PMID: 9247268 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0003402 decreased liver weight PMID: 11897683 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
either: B6.129S2-Drd2 or (involves: 129S2/SvPas * C57BL/6)
MGI:94924  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 9247267 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
involves: 129S2/SvPas * C57BL/6J
MGI:94924  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 9547254 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 18486343 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0005576 decreased pulmonary ventilation PMID: 10956362 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 18486343 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0008329 decreased somatotroph cell number PMID: 9247268 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0004953 decreased spleen weight PMID: 11897683 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0002757 decreased vertical activity PMID: 7566118 
Drd2tm1Yyw Drd2tm1Yyw/Drd2tm1Yyw
involves: 129S4/SvJae * C57BL/6
MGI:94924  MP:0002757 decreased vertical activity PMID: 11069937 
Drd2tm1Yyw Drd2tm1Yyw/Drd2tm1Yyw
B6.129S4-Drd2
MGI:94924  MP:0002757 decreased vertical activity PMID: 11069937 
Drd2+|Drd2tm1Ebo Drd2tm1Ebo/Drd2+
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0002757 decreased vertical activity PMID: 7566118 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
involves: 129S2/SvPas * C57BL/6J
MGI:94924  MP:0002757 decreased vertical activity PMID: 9547254 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0002757 decreased vertical activity PMID: 9547254 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
B6.129S2-Drd2
MGI:94924  MP:0002757 decreased vertical activity PMID: 9547254 
Drd2tm2Ebo Drd2tm2Ebo/Drd2tm2Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0009746 enhanced behavioral response to xenobiotic PMID: 11089973 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0008366 enlarged adenohypophysis PMID: 9247268 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
either: B6.129S2-Drd2 or (involves: 129S2/SvPas * C57BL/6)
MGI:94924  MP:0008366 enlarged adenohypophysis PMID: 9247267 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0000646 enlarged adrenocortical cells PMID: 9717839 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0000636 enlarged pituitary gland PMID: 9247268 
Drd2tm1Mok Drd2tm1Mok/Drd2tm1Mok
involves: 129S/SvEv * C57BL/6J * DBA/2J
MGI:94924  MP:0008370 enlarged pituitary intermediate lobe PMID: 9140068 
Drd1atm1Jcd|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0000465 gastrointestinal hemorrhage PMID: 15272078 
Drd1atm1Jcd|Drd2+|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2+
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0000465 gastrointestinal hemorrhage PMID: 15272078 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MP:0001505 hunched posture PMID: 10391470 
Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MGI:94925  MP:0001505 hunched posture PMID: 10391470 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001188 hyperpigmentation PMID: 9717839 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001744 hypersecretion of corticosterone PMID: 9717839 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001402 hypoactivity PMID: 7566118 
Drd2tm1Yyw Drd2tm1Yyw/Drd2tm1Yyw
involves: 129S4/SvJae * C57BL/6
MGI:94924  MP:0001402 hypoactivity PMID: 11069937 
Drd2tm1Yyw Drd2tm1Yyw/Drd2tm1Yyw
B6.129S4-Drd2
MGI:94924  MP:0001402 hypoactivity PMID: 11069937 
Drd2+|Drd2tm1Ebo Drd2tm1Ebo/Drd2+
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001402 hypoactivity PMID: 7566118 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0001402 hypoactivity PMID: 10196569 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
B6.129S2-Drd2
MGI:94924  MP:0001402 hypoactivity PMID: 10196569 
+|Cm|Drd2tm1Low Cm/+,Drd2tm1Low/Drd2tm1Low
involves: 101/H * 129S2/SvPas * C3H/HeH * C3H/HeSn * C57BL/6J
MGI:88424  MGI:94924  MP:0001402 hypoactivity PMID: 19840852 
Drd1atm1Jcd|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0001402 hypoactivity PMID: 15272078 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0009750 impaired behavioral response to addictive substance PMID: 10341260 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0009755 impaired behavioral response to alcohol PMID: 10196569 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
B6.129S2-Drd2
MGI:94924  MP:0009755 impaired behavioral response to alcohol PMID: 10196569 
Drd2tm1Yyw Drd2tm1Yyw/Drd2tm1Yyw
involves: 129S4/SvJae * C57BL/6
MGI:94924  MP:0009747 impaired behavioral response to xenobiotic PMID: 11069937 
Drd2tm2Ebo Drd2tm2Ebo/Drd2tm2Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0009747 impaired behavioral response to xenobiotic PMID: 11089973 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0009712 impaired conditioned place preference behavior PMID: 9252189 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001405 impaired coordination PMID: 7566118 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0001405 impaired coordination PMID: 9547254 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
B6.129S2-Drd2
MGI:94924  MP:0001260 increased body weight PMID: 11566895 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0005573 increased breathing frequency PMID: 10956362 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001748 increased circulating adrenocorticotropin level PMID: 9717839 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001745 increased circulating corticosterone level PMID: 9717839 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0005117 increased circulating pituitary hormone level PMID: 9717839 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0005124 increased circulating prolactin level PMID: 9247268 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
either: B6.129S2-Drd2 or (involves: 129S2/SvPas * C57BL/6)
MGI:94924  MP:0005124 increased circulating prolactin level PMID: 9247267 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0005124 increased circulating prolactin level PMID: 11897683 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
B6.Cg-Drd2
MGI:94924  MP:0003867 increased defecation PMID: 16525059 
Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3tm1Schm
B6.Cg-Drd2 Drd3
MGI:94924  MGI:94925  MP:0003867 increased defecation PMID: 16525059 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
B6.Cg-Drd2
MGI:94924  MP:0003911 increased drinking behavior PMID: 16525059 
Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3tm1Schm
B6.Cg-Drd2 Drd3
MGI:94924  MGI:94925  MP:0003911 increased drinking behavior PMID: 16525059 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
B6.Cg-Drd2
MGI:94924  MP:0003909 increased eating behavior PMID: 16525059 
Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3tm1Schm
B6.Cg-Drd2 Drd3
MGI:94924  MGI:94925  MP:0003909 increased eating behavior PMID: 16525059 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0003909 increased eating behavior PMID: 11897683 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0005137 increased growth hormone level PMID: 11897683 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0002626 increased heart rate PMID: 11566895 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0008331 increased lactotroph cell number PMID: 9247268 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
either: B6.129S2-Drd2 or (involves: 129S2/SvPas * C57BL/6)
MGI:94924  MP:0008331 increased lactotroph cell number PMID: 9247267 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0004875 increased mean systemic arterial blood pressure PMID: 11566895 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
B6.129S2-Drd2
MGI:94924  MP:0004875 increased mean systemic arterial blood pressure PMID: 11566895 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
involves: 129S2/SvPas * C57BL/6J
MGI:94924  MP:0008873 increased physiological sensitivity to xenobiotic PMID: 9547254 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0008873 increased physiological sensitivity to xenobiotic PMID: 11566895 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0002041 increased pituitary adenoma incidence PMID: 9247268 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
either: B6.129S2-Drd2 or (involves: 129S2/SvPas * C57BL/6)
MGI:94924  MP:0008939 increased pituitary gland weight PMID: 9247267 
Drd2tm1Mok Drd2tm1Mok/Drd2tm1Mok
involves: 129S/SvEv * C57BL/6J * DBA/2J
MGI:94924  MP:0003973 increased pituitary hormone level PMID: 9140068 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0005575 increased pulmonary ventilation PMID: 10956362 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0008235 increased susceptibility to neuronal excitotoxicity PMID: 11069974 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
B6.129S2-Drd2
MGI:94924  MP:0008235 increased susceptibility to neuronal excitotoxicity PMID: 11069974 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 11069974 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0006143 increased systemic arterial diastolic blood pressure PMID: 11566895 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
B6.129S2-Drd2
MGI:94924  MP:0006143 increased systemic arterial diastolic blood pressure PMID: 11566895 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0006144 increased systemic arterial systolic blood pressure PMID: 11566895 
Drd2+|Drd2tm1Low Drd2tm1Low/Drd2+
B6.129S2-Drd2
MGI:94924  MP:0006144 increased systemic arterial systolic blood pressure PMID: 11566895 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0008337 increased thyrotroph cell number PMID: 9247268 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0005585 increased tidal volume PMID: 10956362 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0006316 increased urine sodium level PMID: 11566895 
Drd1atm1Jcd|Drd2+|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2+
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0000512 intestinal ulcer PMID: 15272078 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001506 limp posture PMID: 7566118 
Drd2+|Drd2tm1(IL2RA)Koba Drd2tm1(IL2RA)Koba/Drd2+
B6.129P2-Drd2
MGI:94924  MP:0003244 loss of dopaminergic neurons PMID: 14534241 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0000635 pituitary gland hyperplasia PMID: 9247268 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0008371 pituitary intermediate lobe hyperplasia PMID: 9247268  9717839 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2
MGI:94924  MP:0001762 polyuria PMID: 11566895 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0001732 postnatal growth retardation PMID: 11897683 
Drd1atm1Jcd|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0001732 postnatal growth retardation PMID: 15272078 
Drd1atm1Jcd|Drd2+|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2+
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0001732 postnatal growth retardation PMID: 15272078 
Drd2tm1Schm|Drd3tm1Schm Drd2tm1Schm/Drd2tm1Schm,Drd3tm1Schm/Drd3tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MGI:94925  MP:0002082 postnatal lethality PMID: 10391470 
Drd1atm1Jcd|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0002082 postnatal lethality PMID: 15272078 
Drd2tm1Schm Drd2tm1Schm/Drd2tm1Schm
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:94924  MP:0002083 premature death PMID: 10391470 
Drd1atm1Jcd|Drd2+|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2+
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0002083 premature death PMID: 15272078 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0009011 prolonged diestrus PMID: 9247268 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001923 reduced female fertility PMID: 9247268 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001921 reduced fertility PMID: 7566118 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
B6.129S2-Drd2/J
MGI:94924  MP:0003109 short femur PMID: 11897683 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
either: B6.129S2-Drd2 or (involves: 129S2/SvPas * C57BL/6)
MGI:94924  MP:0009089 short uterine horn PMID: 9247267 
Drd1atm1Jcd|Drd2+|Drd2tm1Ebo Drd1atm1Jcd/Drd1atm1Jcd,Drd2tm1Ebo/Drd2+
involves: 129S2/SvPas * 129S4/SvJae * C57BL/6
MGI:94924  MGI:99578  MP:0003306 small intestinal inflammation PMID: 15272078 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001127 small ovary PMID: 7566118 
Drd2tm1Ebo Drd2tm1Ebo/Drd2tm1Ebo
involves: 129S2/SvPas * C57BL/6
MGI:94924  MP:0001147 small testis PMID: 7566118 
Drd2+|Drd2tm1(IL2RA)Koba Drd2tm1(IL2RA)Koba/Drd2+
B6.129P2-Drd2
MGI:94924  MP:0001396 unidirectional circling PMID: 14534241 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
either: B6.129S2-Drd2 or (involves: 129S2/SvPas * C57BL/6)
MGI:94924  MP:0009221 uterus adenomyosis PMID: 9247267 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
either: B6.129S2-Drd2 or (involves: 129S2/SvPas * C57BL/6)
MGI:94924  MP:0009082 uterus cysts PMID: 9247267 
Drd2tm1Low Drd2tm1Low/Drd2tm1Low
either: B6.129S2-Drd2 or (involves: 129S2/SvPas * C57BL/6)
MGI:94924  MP:0002676 uterus hyperplasia PMID: 9247267 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Alcohol dependence
Disease Ontology: DOID:0050741
OMIM: 103780
Disease:  Myoclonic dystonia
OMIM: 159900
Orphanet: ORPHA36899
Biologically Significant Variants Click here for help
Type:  Restriction Fragment Length Polymorphism
Species:  Human
Description:  The TaqI Restriction Fragment Length Polymorphism (RFLP) has been associated with alcoholism.
References:  34
Type:  Restriction Fragment Length Polymorphism
Species:  Human
Description:  TaqI A polymorphism may be associated with ADHD.
References:  112
Type:  Single nucleotide polymorphism
Species:  Human
Description:  Synonymous His313 polymorphism may be associated with schizophrenia.
References:  65
General Comments
The D2 receptor exists as two alternatively spliced isoforms [44], D2L and D2S.

References

Show »

1. Agai-Csongor E, Domány G, Nógrádi K, Galambos J, Vágó I, Keserű GM, Greiner I, Laszlovszky I, Gere A, Schmidt E et al.. (2012) Discovery of cariprazine (RGH-188): a novel antipsychotic acting on dopamine D3/D2 receptors. Bioorg Med Chem Lett, 22 (10): 3437-40. [PMID:22537450]

2. Albert PR, Neve KA, Bunzow JR, Civelli O. (1990) Coupling of a cloned rat dopamine-D2 receptor to inhibition of adenylyl cyclase and prolactin secretion. J Biol Chem, 265 (4): 2098-104. [PMID:1688845]

3. Allen JA, Yost JM, Setola V, Chen X, Sassano MF, Chen M, Peterson S, Yadav PN, Huang XP, Feng B et al.. (2011) Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc Natl Acad Sci USA, 108 (45): 18488-93. [PMID:22025698]

4. Ambrosio C, Stefanini E. (1991) Interaction of flunarizine with dopamine D2 and D1 receptors. Eur J Pharmacol, 197 (2-3): 221-3. [PMID:1833208]

5. Amenta F, Chiandussi L, Mancini M, Ricci A, Schena M, Veglio F. (1994) Pharmacological characterization and autoradiographic localization of dopamine receptors in the human adrenal cortex. Eur J Endocrinol, 131 (1): 91-6. [PMID:8038912]

6. Amenta F, Collier WL, Ricci A. (1990) Autoradiographic localization of vascular dopamine receptors. Am J Hypertens, 3 (6 Pt 2): 34S-36S. [PMID:2200435]

7. Amenta F, Ricci A, Vega JA. (1990) Pharmacological characterization of rat renal medulla dopamine-sensitive cyclic adenosine monophosphate generating system. J Pharmacol Exp Ther, 253 (1): 246-9. [PMID:2158544]

8. An JJ, Bae MH, Cho SR, Lee SH, Choi SH, Lee BH, Shin HS, Kim YN, Park KW, Borrelli E et al.. (2004) Altered GABAergic neurotransmission in mice lacking dopamine D2 receptors. Mol Cell Neurosci, 25 (4): 732-41. [PMID:15080900]

9. Araki K, Kuwano R, Morii K, Hayashi S, Minoshima S, Shimizu N, Katagiri T, Usui H, Kumanishi T, Takahashi Y. (1992) Structure and expression of human and rat D2 dopamine receptor genes. Neurochem Int, 21 (1): 91-8. [PMID:1363862]

10. Ariano MA, Stromski CJ, Smyk-Randall EM, Sibley DR. (1992) D2 dopamine receptor localization on striatonigral neurons. Neurosci Lett, 144 (1-2): 215-20. [PMID:1436705]

11. Arnt J, Skarsfeldt T. (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology, 18 (2): 63-101. [PMID:9430133]

12. Asa SL, Kelly MA, Grandy DK, Low MJ. (1999) Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice. Endocrinology, 140 (11): 5348-55. [PMID:10537166]

13. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicology Program: Dept of Health and Human Services. Accessed on 02/05/2014. Modified on 02/05/2014. DrugMatrix, https://ntp.niehs.nih.gov/drugmatrix/index.html

14. Baik JH, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E. (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature, 377 (6548): 424-8. [PMID:7566118]

15. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell, 122 (2): 261-73. [PMID:16051150]

16. Beaulieu JM, Tirotta E, Sotnikova TD, Masri B, Salahpour A, Gainetdinov RR, Borrelli E, Caron MG. (2007) Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci, 27 (4): 881-5. [PMID:17251429]

17. Benoit-Marand M, Borrelli E, Gonon F. (2001) Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo. J Neurosci, 21 (23): 9134-41. [PMID:11717346]

18. Bertorello A, Aperia A. (1990) Inhibition of proximal tubule Na(+)-K(+)-ATPase activity requires simultaneous activation of DA1 and DA2 receptors. Am J Physiol, 259 (6 Pt 2): F924-8. [PMID:1979719]

19. Bertorello AM, Hopfield JF, Aperia A, Greengard P. (1990) Inhibition by dopamine of (Na(+)+K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature, 347: 386-388. [PMID:1977083]

20. Boulay D, Depoortere R, Oblin A, Sanger DJ, Schoemaker H, Perrault G. (2000) Haloperidol-induced catalepsy is absent in dopamine D(2), but maintained in dopamine D(3) receptor knock-out mice. Eur J Pharmacol, 391 (1-2): 63-73. [PMID:10720636]

21. Boulay D, Depoortere R, Perrault G, Borrelli E, Sanger DJ. (1999) Dopamine D2 receptor knock-out mice are insensitive to the hypolocomotor and hypothermic effects of dopamine D2/D3 receptor agonists. Neuropharmacology, 38: 1389-1396. [PMID:10471093]

22. Breese GR, Duncan GE, Napier TC, Bondy SC, Iorio LC, Mueller RA. (1987) 6-hydroxydopamine treatments enhance behavioral responses to intracerebral microinjection of D1- and D2-dopamine agonists into nucleus accumbens and striatum without changing dopamine antagonist binding. J Pharmacol Exp Ther, 240 (1): 167-76. [PMID:3100767]

23. Bughi S, Jost-Vu E, Antonipillai I, Nadler J, Horton R. (1994) Effect of dopamine2 blockade on renal function under varied sodium intake. J Clin Endocrinol Metab, 78 (5): 1079-84. [PMID:8175964]

24. Bunzow JR, Van Tol HH, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O. (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature, 336 (6201): 783-7. [PMID:2974511]

25. Burris KD, Pacheco MA, Filtz TM, Kung MP, Kung HF, Molinoff PB. (1995) Lack of discrimination by agonists for D2 and D3 dopamine receptors. Neuropsychopharmacology, 12 (4): 335-45. [PMID:7576010]

26. Burstein ES, Ma J, Wong S, Gao Y, Pham E, Knapp AE, Nash NR, Olsson R, Davis RE, Hacksell U et al.. (2005) Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist. J Pharmacol Exp Ther, 315 (3): 1278-87. [PMID:16135699]

27. Cadet JL, Zhu SM, Angulo JA. (1992) Quantitative in situ hybridization evidence for differential regulation of proenkephalin and dopamine D2 receptor mRNA levels in the rat striatum: effects of unilateral intrastriatal injections of 6-hydroxydopamine. Brain Res Mol Brain Res, 12 (1-3): 59-67. [PMID:1312206]

28. Caine SB, Negus SS, Mello NK, Patel S, Bristow L, Kulagowski J, Vallone D, Saiardi A, Borrelli E. (2002) Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci, 22 (7): 2977-88. [PMID:11923462]

29. Calabresi P, Saiardi A, Pisani A, Baik JH, Centonze D, Mercuri NB, Bernardi G, Borrelli E. (1997) Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J Neurosci, 17 (12): 4536-44. [PMID:9169514]

30. Castellano MA, Liu LX, Monsma Jr FJ, Sibley DR, Kapatos G, Chiodo LA. (1993) Transfected D2 short dopamine receptors inhibit voltage-dependent potassium current in neuroblastoma x glioma hybrid (NG108-15) cells. Mol Pharmacol, 44 (3): 649-56. [PMID:8371717]

31. Castelletti L, Memo M, Missale C, Spano PF, Valerio A. (1989) Potassium channels involved in the transduction mechanism of dopamine D2 receptors in rat lactotrophs. J Physiol (Lond.), 410: 251-65. [PMID:2552081]

32. Choi S, Haggart D, Toll L, Cuny GD. (2004) Synthesis, receptor binding and functional studies of mesoridazine stereoisomers. Bioorg Med Chem Lett, 14 (17): 4379-82. [PMID:15357957]

33. Chumpradit S, Kung MP, Vessotskie J, Foulon C, Mu M, Kung HF. (1994) Iodinated 2-aminotetralins and 3-amino-1-benzopyrans: ligands for dopamine D2 and D3 receptors. J Med Chem, 37 (24): 4245-50. [PMID:7990123]

34. Cook CC, Gurling HM. (1994) The D2 dopamine receptor gene and alcoholism: a genetic effect in the liability for alcoholism. J R Soc Med, 87 (7): 400-2. [PMID:8046727]

35. Cunningham CL, Howard MA, Gill SJ, Rubinstein M, Low MJ, Grandy DK. (2000) Ethanol-conditioned place preference is reduced in dopamine D2 receptor-deficient mice. Pharmacol Biochem Behav, 67 (4): 693-9. [PMID:11166059]

36. Dickinson SD, Sabeti J, Larson GA, Giardina K, Rubinstein M, Kelly MA, Grandy DK, Low MJ, Gerhardt GA, Zahniser NR. (1999) Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum. J Neurochem, 72 (1): 148-56. [PMID:9886065]

37. Dijkstra D, Rodenhuis N, Vermeulen ES, Pugsley TA, Wise LD, Wikström HV. (2002) Further characterization of structural requirements for ligands at the dopamine D(2) and D(3) receptor: exploring the thiophene moiety. J Med Chem, 45 (14): 3022-31. [PMID:12086487]

38. Elmer GI, Pieper JO, Levy J, Rubinstein M, Low MJ, Grandy DK, Wise RA. (2005) Brain stimulation and morphine reward deficits in dopamine D2 receptor-deficient mice. Psychopharmacology (Berl.), 182 (1): 33-44. [PMID:16136297]

39. Fowler SC, Zarcone TJ, Vorontsova E, Chen R. (2002) Motor and associative deficits in D2 dopamine receptor knockout mice. Int J Dev Neurosci, 20 (3-5): 309-21. [PMID:12175868]

40. Free RB, Chun LS, Moritz AE, Miller BN, Doyle TB, Conroy JL, Padron A, Meade JA, Xiao J, Hu X et al.. (2014) Discovery and characterization of a G protein-biased agonist that inhibits β-arrestin recruitment to the D2 dopamine receptor. Mol Pharmacol, 86 (1): 96-105. [PMID:24755247]

41. Freedman SB, Patel S, Marwood R, Emms F, Seabrook GR, Knowles MR, McAllister G. (1994) Expression and pharmacological characterization of the human D3 dopamine receptor. J Pharmacol Exp Ther, 268 (1): 417-26. [PMID:8301582]

42. Gacsályi I, Nagy K, Pallagi K, Lévay G, Hársing Jr LG, Móricz K, Kertész S, Varga P, Haller J, Gigler G et al.. (2013) Egis-11150: a candidate antipsychotic compound with procognitive efficacy in rodents. Neuropharmacology, 64: 254-63. [PMID:22824189]

43. Gandelman KY, Harmon S, Todd RD, O'Malley KL. (1991) Analysis of the structure and expression of the human dopamine D2A receptor gene. J Neurochem, 56 (3): 1024-9. [PMID:1825222]

44. Giros B, Sokoloff P, Martres MP, Riou JF, Emorine LJ, Schwartz JC. (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature, 342 (6252): 923-6. [PMID:2531847]

45. Grandy DK, Marchionni MA, Makam H, Stofko RE, Alfano M, Frothingham L, Fischer JB, Burke-Howie KJ, Bunzow JR, Server AC et al.. (1989) Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc Natl Acad Sci USA, 86 (24): 9762-6. [PMID:2532362]

46. Gregori-Puigjané E, Setola V, Hert J, Crews BA, Irwin JJ, Lounkine E, Marnett L, Roth BL, Shoichet BK. (2012) Identifying mechanism-of-action targets for drugs and probes. Proc Natl Acad Sci USA, 109 (28): 11178-83. [PMID:22711801]

47. Grundt P, Husband SL, Luedtke RR, Taylor M, Newman AH. (2007) Analogues of the dopamine D2 receptor antagonist L741,626: Binding, function, and SAR. Bioorg Med Chem Lett, 17 (3): 745-9. [PMID:17095222]

48. Han X, Li B, Ye X, Mulatibieke T, Wu J, Dai J, Wu D, Ni J, Zhang R, Xue J et al.. (2017) Dopamine D2 receptor signalling controls inflammation in acute pancreatitis via a PP2A-dependent Akt/NF-κB signalling pathway. Br J Pharmacol, 174 (24): 4751-4770. [PMID:28963856]

49. Heier RF, Dolak LA, Duncan JN, Hyslop DK, Lipton MF, Martin IJ, Mauragis MA, Piercey MF, Nichols NF, Schreur PJ et al.. (1997) Synthesis and biological activities of (R)-5,6-dihydro-N,N-dimethyl-4H-imidazo[4,5,1-ij]quinolin-5-amine and its metabolites. J Med Chem, 40 (5): 639-46. [PMID:9057850]

50. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz C, Stephan DA, Surmeier DJ et al.. (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell, 135 (4): 738-48. [PMID:19013281]

51. Heinrich T, Böttcher H, Gericke R, Bartoszyk GD, Anzali S, Seyfried CA, Greiner HE, Van Amsterdam C. (2004) Synthesis and structure--activity relationship in a class of indolebutylpiperazines as dual 5-HT(1A) receptor agonists and serotonin reuptake inhibitors. J Med Chem, 47 (19): 4684-92. [PMID:15341484]

52. Hoare SR, Coldwell MC, Armstrong D, Strange PG. (2000) Regulation of human D(1), d(2(long)), d(2(short)), D(3) and D(4) dopamine receptors by amiloride and amiloride analogues. Br J Pharmacol, 130 (5): 1045-59. [PMID:10882389]

53. Hurd YL, Suzuki M, Sedvall GC. (2001) D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat, 22 (1-2): 127-37. [PMID:11470560]

54. Iaccarino C, Samad TA, Mathis C, Kercret H, Picetti R, Borrelli E. (2002) Control of lactotrop proliferation by dopamine: essential role of signaling through D2 receptors and ERKs. Proc Natl Acad Sci USA, 99 (22): 14530-5. [PMID:12391292]

55. Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R, Matsumoto K, Nishikawa H, Ueda Y, Toma S et al.. (2010) Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther, 334 (1): 171-81. [PMID:20404009]

56. Jiang M, Spicher K, Boulay G, Wang Y, Birnbaumer L. (2001) Most central nervous system D2 dopamine receptors are coupled to their effectors by Go. Proc Natl Acad Sci USA, 98 (6): 3577-82. [PMID:11248120]

57. Jordan CJ, Humburg B, Rice M, Bi GH, You ZB, Shaik AB, Cao J, Bonifazi A, Gadiano A, Rais R et al.. (2019) The highly selective dopamine D3R antagonist, R-VK4-40 attenuates oxycodone reward and augments analgesia in rodents. Neuropharmacology, 158: 107597. [PMID:30974107]

58. Kariya S, Isozaki S, Masubuchi Y, Suzuki T, Narimatsu S. (1995) Possible pharmacokinetic and pharmacodynamic factors affecting parkinsonism inducement by cinnarizine and flunarizine. Biochem Pharmacol, 50 (10): 1645-50. [PMID:7503767]

59. Kelly MA, Rubinstein M, Asa SL, Zhang G, Saez C, Bunzow JR, Allen RG, Hnasko R, Ben-Jonathan N, Grandy DK, Low MJ. (1997) Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron, 19: 103-113. [PMID:9247267]

60. Kelly MA, Rubinstein M, Phillips TJ, Lessov CN, Burkhart-Kasch S, Zhang G, Bunzow J R, Fang Y, Gerhardt GA, Grandy DK, Low MJ. (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci, 18: 3470-3479. [PMID:9547254]

61. Khlghatyan J, Quintana C, Parent M, Beaulieu JM. (2019) High Sensitivity Mapping of Cortical Dopamine D2 Receptor Expressing Neurons. Cereb Cortex, 29 (9): 3813-3827. [PMID:30295716]

62. Kita JM, Parker LE, Phillips PE, Garris PA, Wightman RM. (2007) Paradoxical modulation of short-term facilitation of dopamine release by dopamine autoreceptors. J Neurochem, 102 (4): 1115-24. [PMID:17663751]

63. Kongsamut S, Kang J, Chen XL, Roehr J, Rampe D. (2002) A comparison of the receptor binding and HERG channel affinities for a series of antipsychotic drugs. Eur J Pharmacol, 450 (1): 37-41. [PMID:12176106]

64. Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, Jayathilake K, Meltzer HY, Roth BL. (2003) H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology, 28 (3): 519-26. [PMID:12629531]

65. Kukreti R, Tripathi S, Bhatnagar P, Gupta S, Chauhan C, Kubendran S, Janardhan Reddy YC, Jain S, Brahmachari SK. (2006) Association of DRD2 gene variant with schizophrenia. Neurosci Lett, 392 (1-2): 68-71. [PMID:16183199]

66. Kulagowski JJ, Broughton HB, Curtis NR, Mawer IM, Ridgill MP, Baker R, Emms F, Freedman SB, Marwood R, Patel S et al.. (1996) 3-((4-(4-Chlorophenyl)piperazin-1-yl)-methyl)-1H-pyrrolo-2,3-b-pyridine: an antagonist with high affinity and selectivity for the human dopamine D4 receptor. J Med Chem, 39 (10): 1941-2. [PMID:8642550]

67. Köhler C, Hall H, Ogren SO, Gawell L. (1985) Specific in vitro and in vivo binding of 3H-raclopride. A potent substituted benzamide drug with high affinity for dopamine D-2 receptors in the rat brain. Biochem Pharmacol, 34 (13): 2251-9. [PMID:4015674]

68. L'hirondel M, Chéramy A, Godeheu G, Artaud F, Saiardi A, Borrelli E, Glowinski J. (1998) Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice. Brain Res, 792 (2): 253-62. [PMID:9593923]

69. Lajiness ME, Chio CL, Huff RM. (1993) D2 dopamine receptor stimulation of mitogenesis in transfected Chinese hamster ovary cells: relationship to dopamine stimulation of tyrosine phosphorylations. J Pharmacol Exp Ther, 267 (3): 1573-81. [PMID:7903393]

70. Lane JR, Donthamsetti P, Shonberg J, Draper-Joyce CJ, Dentry S, Michino M, Shi L, López L, Scammells PJ, Capuano B et al.. (2014) A new mechanism of allostery in a G protein-coupled receptor dimer. Nat Chem Biol, 10 (9): 745-52. [PMID:25108820]

71. Leopoldo M, Lacivita E, Contino M, Colabufo NA, Berardi F, Perrone R. (2007) Structure-activity relationship study on N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides, a class of 5-HT7 receptor agents. 2. J Med Chem, 50 (17): 4214-21. [PMID:17649988]

72. Leopoldo M, Lacivita E, De Giorgio P, Fracasso C, Guzzetti S, Caccia S, Contino M, Colabufo NA, Berardi F, Perrone R. (2008) Structural modifications of N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides: influence on lipophilicity and 5-HT7 receptor activity. Part III. J Med Chem, 51 (18): 5813-22. [PMID:18800769]

73. Li P, Zhang Q, Robichaud AJ, Lee T, Tomesch J, Yao W, Beard JD, Snyder GL, Zhu H, Peng Y et al.. (2014) Discovery of a tetracyclic quinoxaline derivative as a potent and orally active multifunctional drug candidate for the treatment of neuropsychiatric and neurological disorders. J Med Chem, 57 (6): 2670-82. [PMID:24559051]

74. Liu YF, Civelli O, Grandy DK, Albert PR. (1992) Differential sensitivity of the short and long human dopamine D2 receptor subtypes to protein kinase C. J Neurochem, 59 (6): 2311-7. [PMID:1331329]

75. MacKenzie RG, VanLeeuwen D, Pugsley TA, Shih YH, Demattos S, Tang L, Todd RD, O'Malley KL. (1994) Characterization of the human dopamine D3 receptor expressed in transfected cell lines. Eur J Pharmacol, 266 (1): 79-85. [PMID:7907989]

76. Maeda K, Sugino H, Akazawa H, Amada N, Shimada J, Futamura T, Yamashita H, Ito N, McQuade RD, Mørk A et al.. (2014) Brexpiprazole I: in vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J Pharmacol Exp Ther, 350 (3): 589-604. [PMID:24947465]

77. Maggio R, Scarselli M, Novi F, Millan MJ, Corsini GU. (2003) Potent activation of dopamine D3/D2 heterodimers by the antiparkinsonian agents, S32504, pramipexole and ropinirole. J Neurochem, 87 (3): 631-41. [PMID:14535946]

78. Maldonado R, Saiardi A, Valverde O, Samad TA, Roques BP, Borrelli E. (1997) Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature, 388 (6642): 586-9. [PMID:9252189]

79. Malmberg A, Jackson DM, Eriksson A, Mohell N. (1993) Unique binding characteristics of antipsychotic agents interacting with human dopamine D2A, D2B, and D3 receptors. Mol Pharmacol, 43 (5): 749-54. [PMID:8099194]

80. Manzanedo C, Aguilar MA, Rodríguez-Arias M, Miñarro J. (2005) Sensitization to the rewarding effects of morphine depends on dopamine. Neuroreport, 16 (2): 201-5. [PMID:15671878]

81. Matsui A, Matsuo H, Takanaga H, Sasaki S, Maeda M, Sawada Y. (1998) Prediction of catalepsies induced by amiodarone, aprindine and procaine: similarity in conformation of diethylaminoethyl side chain. J Pharmacol Exp Ther, 287 (2): 725-32. [PMID:9808703]

82. McAllister G, Knowles MR, Ward-Booth SM, Sinclair HA, Patel S, Marwood R, Emms F, Patel S, Smith A, Seabrook GR et al.. (1995) Functional coupling of human D2, D3, and D4 dopamine receptors in HEK293 cells. J Recept Signal Transduct Res, 15 (1-4): 267-81. [PMID:8903944]

83. McCall RB, Lookingland KJ, Bédard PJ, Huff RM. (2005) Sumanirole, a highly dopamine D2-selective receptor agonist: in vitro and in vivo pharmacological characterization and efficacy in animal models of Parkinson's disease. J Pharmacol Exp Ther, 314 (3): 1248-56. [PMID:15980060]

84. Meade JA, Free RB, Miller NR, Chun LS, Doyle TB, Moritz AE, Conroy JL, Watts VJ, Sibley DR. (2015) (-)-Stepholidine is a potent pan-dopamine receptor antagonist of both G protein- and β-arrestin-mediated signaling. Psychopharmacology (Berl.), 232 (5): 917-30. [PMID:25231919]

85. Mierau J, Schneider FJ, Ensinger HA, Chio CL, Lajiness ME, Huff RM. (1995) Pramipexole binding and activation of cloned and expressed dopamine D2, D3 and D4 receptors. Eur J Pharmacol, 290 (1): 29-36. [PMID:7664822]

86. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A. (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther, 303 (2): 791-804. [PMID:12388666]

87. Millan MJ, Peglion JL, Vian J, Rivet JM, Brocco M, Gobert A, Newman-Tancredi A, Dacquet C, Bervoets K, Girardon S. (1995) Functional correlates of dopamine D3 receptor activation in the rat in vivo and their modulation by the selective antagonist, (+)-S 14297: 1. Activation of postsynaptic D3 receptors mediates hypothermia, whereas blockade of D2 receptors elicits prolactin secretion and catalepsy. J Pharmacol Exp Ther, 275: 885-898. [PMID:7473180]

88. Montmayeur JP, Bausero P, Amlaiky N, Maroteaux L, Hen R, Borrelli E. (1991) Differential expression of the mouse D2 dopamine receptor isoforms. FEBS Lett, 278 (2): 239-43. [PMID:1991517]

89. Montmayeur JP, Borrelli E. (1991) Transcription mediated by a cAMP-responsive promoter element is reduced upon activation of dopamine D2 receptors. Proc Natl Acad Sci USA, 88 (8): 3135-9. [PMID:1849644]

90. Ochi T, Sakamoto M, Minamida A, Suzuki K, Ueda T, Une T, Toda H, Matsumoto K, Terauchi Y. (2005) Syntheses and properties of the major hydroxy metabolites in humans of blonanserin AD-5423, a novel antipsychotic agent. Bioorg Med Chem Lett, 15 (4): 1055-9. [PMID:15686911]

91. Onali P, Schwartz JP. (1983) Inhibition of VIP-sensitive adenylate cyclase by dopamine in rat anterior pituitary. Adv Biochem Psychopharmacol, 36: 199-207. [PMID:6344565]

92. Patel S, Patel S, Marwood R, Emms F, Marston D, Leeson PD, Curtis NR, Kulagowski JJ, Freedman SB. (1996) Identification and pharmacological characterization of [125I]L-750,667, a novel radioligand for the dopamine D4 receptor. Mol Pharmacol, 50 (6): 1658-64. [PMID:8967990]

93. Pillai G, Brown NA, McAllister G, Milligan G, Seabrook GR. (1998) Human D2 and D4 dopamine receptors couple through betagamma G-protein subunits to inwardly rectifying K+ channels (GIRK1) in a Xenopus oocyte expression system: selective antagonism by L-741,626 and L-745,870 respectively. Neuropharmacology, 37: 983-987. [PMID:9833627]

94. Pugsley TA, Davis MD, Akunne HC, MacKenzie RG, Shih YH, Damsma G, Wikstrom H, Whetzel SZ, Georgic LM, Cooke LW et al.. (1995) Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907. J Pharmacol Exp Ther, 275 (3): 1355-66. [PMID:8531103]

95. Radl D, De Mei C, Chen E, Lee H, Borrelli E. (2013) Each individual isoform of the dopamine D2 receptor protects from lactotroph hyperplasia. Mol Endocrinol, 27 (6): 953-65. [PMID:23608643]

96. Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, Grandy DK, Low MJ, Geyer MA. (1999) The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci, 19 (11): 4627-33. [PMID:10341260]

97. Rocchetti J, Isingrini E, Dal Bo G, Sagheby S, Menegaux A, Tronche F, Levesque D, Moquin L, Gratton A, Wong TP et al.. (2015) Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus. Biol Psychiatry, 77 (6): 513-25. [PMID:24742619]

98. Rouge-Pont F, Usiello A, Benoit-Marand M, Gonon F, Piazza PV, Borrelli E. (2002) Changes in extracellular dopamine induced by morphine and cocaine: crucial control by D2 receptors. J Neurosci, 22 (8): 3293-301. [PMID:11943831]

99. Saiardi A, Borrelli E. (1998) Absence of dopaminergic control on melanotrophs leads to Cushing's-like syndrome in mice. Mol Endocrinol, 12 (8): 1133-9. [PMID:9717839]

100. Saiardi A, Bozzi Y, Baik JH, Borrelli E. (1997) Antiproliferative role of dopamine: loss of D2 receptors causes hormonal dysfunction and pituitary hyperplasia. Neuron, 19 (1): 115-26. [PMID:9247268]

101. Sasse BC, Mach UR, Leppaenen J, Calmels T, Stark H. (2007) Hybrid approach for the design of highly affine and selective dopamine D(3) receptor ligands using privileged scaffolds of biogenic amine GPCR ligands. Bioorg Med Chem, 15 (23): 7258-73. [PMID:17826096]

102. Sautel F, Griffon N, Lévesque D, Pilon C, Schwartz JC, Sokoloff P. (1995) A functional test identifies dopamine agonists selective for D3versus D2receptors. Neuroreport, 6: 329-332. [PMID:7756621]

103. Sautel F, Griffon N, Sokoloff P, Schwartz JC, Launay C, Simon P, Costentin J, Schoenfelder A, Garrido F, Mann A et al.. (1995) Nafadotride, a potent preferential dopamine D3 receptor antagonist, activates locomotion in rodents. J Pharmacol Exp Ther, 275 (3): 1239-46. [PMID:8531087]

104. Schetz JA, Benjamin PS, Sibley DR. (2000) Nonconserved residues in the second transmembrane-spanning domain of the D(4) dopamine receptor are molecular determinants of D(4)-selective pharmacology. Mol Pharmacol, 57 (1): 144-52. [PMID:10617689]

105. Schinelli S, Paolillo M, Corona GL. (1994) Opposing actions of D1- and D2-dopamine receptors on arachidonic acid release and cyclic AMP production in striatal neurons. J Neurochem, 62 (3): 944-9. [PMID:8113815]

106. Schmitz Y, Schmauss C, Sulzer D. (2002) Altered dopamine release and uptake kinetics in mice lacking D2 receptors. J Neurosci, 22 (18): 8002-9. [PMID:12223553]

107. Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, De Loore K, Leysen JE. (1996) Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl.), 124 (1-2): 57-73. [PMID:8935801]

108. Seeman P. (2001) Antipsychotic drugs, dopamine receptors, and schizophrenia. Clinical Neuroscience Research, 1 (1-2): 53-60. DOI: 10.1016/S1566-2772(00)00007-4

109. Seeman P, Chau-Wong M, Tedesco J, Wong K. (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA, 72 (11): 4376-80. [PMID:1060115]

110. Seeman P, Corbett R, Van Tol HH. (1997) Atypical neuroleptics have low affinity for dopamine D2 receptors or are selective for D4 receptors. Neuropsychopharmacology, 16 (2): 93-110; discussion 111-35. [PMID:9015795]

111. Seeman P, Tallerico T. (1998) Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors. Mol Psychiatry, 3 (2): 123-34. [PMID:9577836]

112. Serý O, Drtílková I, Theiner P, Pitelová R, Staif R, Znojil V, Lochman J, Didden W. (2006) Polymorphism of DRD2 gene and ADHD. Neuro Endocrinol Lett, 27 (1-2): 236-40. [PMID:16648784]

113. Setlow B, McGaugh JL. (2000) D2 dopamine receptor blockade immediately post-training enhances retention in hidden and visible platform versions of the water maze. Learn Mem, 7 (3): 187-91. [PMID:10837508]

114. Shahid M, Walker GB, Zorn SH, Wong EH. (2009) Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol (Oxford), 23 (1): 65-73. [PMID:18308814]

115. Shen Y, McCorvy JD, Martini ML, Rodriguiz RM, Pogorelov VM, Ward KM, Wetsel WC, Liu J, Roth BL, Jin J. (2019) D2 Dopamine Receptor G Protein-Biased Partial Agonists Based on Cariprazine. J Med Chem, 62 (9): 4755-4771. [PMID:30964661]

116. Skaaning Jensen B, Levavi-Sivan B, Fishburn CS, Fuchs S. (1997) Functional expression of the murine D2, D3, and D4 dopamine receptors in Xenopus laevis oocytes. FEBS Lett, 420: 191-195. [PMID:9459308]

117. Snyder GL, Vanover KE, Zhu H, Miller DB, O'Callaghan JP, Tomesch J, Li P, Zhang Q, Krishnan V, Hendrick JP et al.. (2015) Functional profile of a novel modulator of serotonin, dopamine, and glutamate neurotransmission. Psychopharmacology (Berl.), 232 (3): 605-21. [PMID:25120104]

118. Sokoloff P, Andrieux M, Besançon R, Pilon C, Martres MP, Giros B, Schwartz JC. (1992) Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol, 225 (4): 331-7. [PMID:1354163]

119. Sokoloff P, Giros B, Martres MP, Andrieux M, Besancon R, Pilon C, Bouthenet ML, Souil E, Schwartz JC. (1992) Localization and function of the D3 dopamine receptor. Arzneimittelforschung, 42 (2A): 224-30. [PMID:1586393]

120. Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC. (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature, 347 (6289): 146-51. [PMID:1975644]

121. Spetea M, Berzetei-Gurske IP, Guerrieri E, Schmidhammer H. (2012) Discovery and pharmacological evaluation of a diphenethylamine derivative (HS665), a highly potent and selective κ opioid receptor agonist. J Med Chem, 55 (22): 10302-6. [PMID:23134120]

122. Starr BS, Starr MS. (1986) Differential effects of dopamine D1 and D2 agonists and antagonists on velocity of movement, rearing and grooming in the mouse. Implications for the roles of D1 and D2 receptors. Neuropharmacology, 25 (5): 455-63. [PMID:3488514]

123. Strupczewski JT, Bordeau KJ, Chiang Y, Glamkowski EJ, Conway PG, Corbett R, Hartman HB, Szewczak MR, Wilmot CA, Helsley GC. (1995) 3-[[(Aryloxy)alkyl]piperidinyl]-1,2-benzisoxazoles as D2/5-HT2 antagonists with potential atypical antipsychotic activity: antipsychotic profile of iloperidone (HP 873). J Med Chem, 38 (7): 1119-31. [PMID:7707315]

124. Tadori Y, Forbes RA, McQuade RD, Kikuchi T. (2011) Functional potencies of dopamine agonists and antagonists at human dopamine D₂ and D₃ receptors. Eur J Pharmacol, 666 (1-3): 43-52. [PMID:21658377]

125. Tang L, Todd RD, Heller A, O'Malley KL. (1994) Pharmacological and functional characterization of D2, D3 and D4 dopamine receptors in fibroblast and dopaminergic cell lines. J Pharmacol Exp Ther, 268 (1): 495-502. [PMID:8301592]

126. Tice MA, Hashemi T, Taylor LA, Duffy RA, McQuade RD. (1994) Characterization of the binding of SCH 39166 to the five cloned dopamine receptor subtypes. Pharmacol Biochem Behav, 49 (3): 567-71. [PMID:7862709]

127. Tran AH, Tamura R, Uwano T, Kobayashi T, Katsuki M, Matsumoto G, Ono T. (2002) Altered accumbens neural response to prediction of reward associated with place in dopamine D2 receptor knockout mice. Proc Natl Acad Sci USA, 99 (13): 8986-91. [PMID:12084937]

128. Usiello A, Baik JH, Rougé-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borrelli E. (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature, 408 (6809): 199-203. [PMID:11089973]

129. Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O. (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature, 350 (6319): 610-4. [PMID:1840645]

130. von Coburg Y, Kottke T, Weizel L, Ligneau X, Stark H. (2009) Potential utility of histamine H3 receptor antagonist pharmacophore in antipsychotics. Bioorg Med Chem Lett, 19 (2): 538-42. [PMID:19091563]

131. Vukhac KL, Sankoorikal EB, Wang Y. (2001) Dopamine D2L receptor- and age-related reduction in offensive aggression. Neuroreport, 12: 1035-1038. [PMID:11303741]

132. Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL. (2018) Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 555 (7695): 269-273. [PMID:29466326]

133. Wang Y, Xu R, Sasaoka T, Tonegawa S, Kung MP, Sankoorikal EB. (2000) Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. J Neurosci, 20 (22): 8305-14. [PMID:11069937]

134. Watts VJ, Neve KA. (1996) Sensitization of endogenous and recombinant adenylate cyclase by activation of D2 dopamine receptors. Mol Pharmacol, 50 (4): 966-76. [PMID:8863843]

135. Xiao J, Free RB, Barnaeva E, Conroy J, Doyle T, Bryant-Genevier M, Taylor MK, Southall N, Hu X, Ferrer M et al.. (2010) Discovery, optimization, and characterization of a novel series of dopamine D2 versus D3 receptor selective antagonists. Probe Reports from the NIH Molecular Libraries Program,. [PMID:24260782]

136. Xiao J, Free RB, Barnaeva E, Conroy JL, Doyle T, Miller B, Bryant-Genevier M, Taylor MK, Hu X, Dulcey AE et al.. (2014) Discovery, optimization, and characterization of novel D2 dopamine receptor selective antagonists. J Med Chem, 57 (8): 3450-63. [PMID:24666157]

137. Yamaguchi H, Aiba A, Nakamura K, Nakao K, Sakagami H, Goto K, Kondo H, Katsuki M. (1996) Dopamine D2 receptor plays a critical role in cell proliferation and proopiomelanocortin expression in the pituitary. Genes Cells, 1 (2): 253-68. [PMID:9140068]

138. Zajdel P, Marciniec K, Maślankiewicz A, Grychowska K, Satała G, Duszyńska B, Lenda T, Siwek A, Nowak G, Partyka A et al.. (2013) Antidepressant and antipsychotic activity of new quinoline- and isoquinoline-sulfonamide analogs of aripiprazole targeting serotonin 5-HT₁A/5-HT₂A/5-HT₇ and dopamine D₂/D₃ receptors. Eur J Med Chem, 60: 42-50. [PMID:23279866]

139. Zhang Y, Jiang X, Qin C, Cuevas S, Jose PA, Armando I. (2016) Dopamine D2 receptors' effects on renal inflammation are mediated by regulation of PP2A function. Am J Physiol Renal Physiol, 310 (2): F128-34. [PMID:26290374]

140. Zhang ZW, Burke MW, Calakos N, Beaulieu JM, Vaucher E. (2010) Confocal Analysis of Cholinergic and Dopaminergic Inputs onto Pyramidal Cells in the Prefrontal Cortex of Rodents. Front Neuroanat, 4: 21. [PMID:20589096]

141. Zhen J, Antonio T, Dutta AK, Reith ME. (2010) Concentration of receptor and ligand revisited in a modified receptor binding protocol for high-affinity radioligands: [3H]Spiperone binding to D2 and D3 dopamine receptors. J Neurosci Methods, 188 (1): 32-8. [PMID:20122961]

Contributors

Show »

How to cite this page