phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma

Target id: 2156

Nomenclature: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma

Abbreviated Name: PI3Kγ

Family: Phosphatidylinositol-4,5-bisphosphate 3-kinase family, Phosphatidylinositol kinases

Annotation status:  image of an orange circle Annotated and awaiting review. Please contact us if you can help with reviewing.  » Email us

   GtoImmuPdb view: OFF :     phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma has curated GtoImmuPdb data

Gene and Protein Information
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human - 1102 7q22 PIK3CG phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma
Mouse - 1102 12 B Pik3cg phosphatidylinositol-4
Rat - 1102 6 q16 Pik3cg phosphatidylinositol-4
Previous and Unofficial Names
p120-PI3K | PI3Kgamma | p110γ/PIK3CG | phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma | phosphatidylinositol-4
Database Links
BRENDA
CATH/Gene3D
Ensembl Gene
Entrez Gene
GenitoUrinary Development Molecular Anatomy Project
Human Protein Atlas
KEGG Enzyme
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  STRUCTURE DETERMINANTS OF PHOSPHOINOSITIDE 3-KINASE INHIBITION BY WORTMANNIN, LY294002, QUERCETIN, MYRICETIN AND STAUROSPORINE
PDB Id:  1E8Y
Resolution:  2.0Å
Species:  Human
References:  39
Image of receptor 3D structure from RCSB PDB
Description:  X-ray structure of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma (PI3Kγ) in complex with the dual PI3K/mTOR inhibitor PF-04691502.
PDB Id:  3ML9
Ligand:  PF-04691502
Resolution:  2.55Å
Species:  Human
References:  9
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of human PI3K-gamma in complex with (S)-N-(1-(7-fluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine AMG319 inhibitor.
PDB Id:  4WWN
Ligand:  AMG319
Resolution:  2.7Å
Species:  Human
References:  11
Enzyme Reaction
EC Number: 2.7.1.153

Download all structure-activity data for this target as a CSV file

Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
IPI549 Hs Inhibition 9.5 pKd 15
pKd 9.5 (Kd 2.9x10-10 M) [15]
CZC 24832 Hs Inhibition 7.7 pKd 5
pKd 7.7 [5]
bimiralisib Hs Inhibition 7.6 pKd
pKd 7.6 (Kd 2.5x10-8 M)
taselisib Hs Inhibition 8.8 – 9.0 pKi 6,31
pKi 9.0 (Ki 9.7x10-10 M) [31]
pKi 8.8 (Ki 1.43x10-9 M) [6]
GDC-0077 Hs Inhibition 7.7 pKi 6
pKi 7.7 (Ki 1.82x10-8 M) [6]
omipalisib Hs Inhibition 7.6 pKi 25
pKi 7.6 (Ki 2.4x10-8 M) [25]
pictilisib Hs Inhibition 7.4 pKi 6
pKi 7.4 (Ki 4.18x10-8 M) [6]
berzosertib Hs Inhibition 6.7 pKi 16
pKi 6.7 (Ki 2.2x10-7 M) [16]
compound 82 [PMID: 21332118] Hs Inhibition 8.3 pIC50 12
pIC50 8.3 (IC50 4.7x10-9 M) [12]
dactolisib Hs Inhibition 8.3 pIC50 29
pIC50 8.3 (IC50 5x10-9 M) [29]
PI 3-Kg inhibitor Hs Inhibition 8.1 pIC50 7
pIC50 8.1 (IC50 8x10-9 M) [7]
apitolisib Hs Inhibition 7.8 pIC50 38
pIC50 7.8 (IC50 1.4x10-8 M) [38]
PI-103 Hs Inhibition 7.8 pIC50 36
pIC50 7.8 (IC50 1.5x10-8 M) [36]
pilaralisib Hs Inhibition 7.6 pIC50 42
pIC50 7.6 (IC50 2.3x10-8 M) [42]
LY3023414 Hs Inhibition 7.6 pIC50 3
pIC50 7.6 (IC50 2.38x10-8 M) [3]
VS-5584 Hs Inhibition 7.6 pIC50 22
pIC50 7.6 (IC50 2.5x10-8 M) [22]
CZC 24832 Hs Inhibition 7.6 pIC50 5
pIC50 7.6 (IC50 2.7x10-8 M) [5]
duvelisib Hs Inhibition 7.6 pIC50 40
pIC50 7.6 (IC50 2.7x10-8 M) [40]
CH5132799 Hs Inhibition 7.4 pIC50 33
pIC50 7.4 (IC50 3.6x10-8 M) [33]
BGT-226 Hs Inhibition 7.4 pIC50 30
pIC50 7.4 (IC50 3.8x10-8 M) [30]
ZSTK474 Hs Inhibition 7.3 – 7.3 pIC50 42-43
pIC50 7.3 – 7.3 (IC50 5.3x10-8 – 4.9x10-8 M) [42-43]
PIK-75 Hs Inhibition 7.1 – 7.4 pIC50 23,26
pIC50 7.4 (IC50 4x10-8 M) [23]
pIC50 7.1 (IC50 7.6x10-8 M) [26]
compound 11j [PMID: 23021994] Hs Inhibition 7.2 pIC50 20
pIC50 7.2 (IC50 6x10-8 M) [20]
pictilisib Hs Inhibition 7.1 pIC50 17
pIC50 7.1 (IC50 7.5x10-8 M) [17]
TG-100-115 Hs Inhibition 7.1 pIC50 34
pIC50 7.1 (IC50 8.3x10-8 M) [34]
idelalisib Hs Inhibition 7.1 pIC50 27
pIC50 7.1 (IC50 8.9x10-8 M) [27]
AZD8835 Hs Inhibition 7.1 pIC50 4
pIC50 7.1 (IC50 9x10-8 M) [4]
INK-128 Hs Inhibition 6.7 pIC50 24
pIC50 6.7 (IC50 2.21x10-7 M) [24]
PI 3-Kg inhibitor II Hs Inhibition 6.6 pIC50 7
pIC50 6.6 (IC50 2.5x10-7 M) [7]
alpelisib Hs Inhibition 6.6 pIC50 19
pIC50 6.6 (IC50 2.5x10-7 M) [19]
CUDC-907 Hs Inhibition 6.5 pIC50 35
pIC50 6.5 (IC50 3.11x10-7 M) [35]
KU-0060648 Hs Inhibition 6.2 pIC50 8
pIC50 6.2 (IC50 5.9x10-7 M) [8]
AZD8186 Hs Inhibition 6.2 pIC50 21
pIC50 6.2 (IC50 6.75x10-7 M) [21]
AMG319 Hs Inhibition 6.1 pIC50 11
pIC50 6.1 (IC50 8.5x10-7 M) [11]
STK16-IN-1 Hs Inhibition 6.1 pIC50 28
pIC50 6.1 (IC50 8.67x10-7 M) [28]
Description: In an in vitro enzymatic assay.
PP121 Hs Inhibition 6.0 pIC50 2
pIC50 6.0 (IC50 1.1x10-6 M) [2]
AZD6482 Hs Inhibition 6.0 pIC50 32
pIC50 6.0 (IC50 1.09x10-6 M) [32]
eCF309 Hs Inhibition 5.9 pIC50 18
pIC50 5.9 (IC50 1.34x10-6 M) [18]
Description: In a biochemical assay.
LY 294002 Hs Inhibition 5.5 – 5.9 pIC50 8,10
pIC50 5.5 – 5.9 (IC50 3.002x10-6 – 1.2x10-6 M) [8,10]
nemiralisib Hs Inhibition 5.2 pIC50 14
pIC50 5.2 (IC50 6.31x10-6 M) [14]
Description: In a homogeneous time-resolved fluorescence (HTRF) assay
serabelisib Hs Inhibition >5.0 pIC50 37
pIC50 >5.0 (IC50 <1x10-5 M) [37]
quinostatin Hs Inhibition 4.5 pIC50 44
pIC50 4.5 (IC50 3x10-5 M) [44]
Description: Inhibition of lipid-kinase activity in vitro.
DiscoveRx KINOMEscan® screen
A screen of 72 inhibitors against 456 human kinases. Quantitative data were derived using DiscoveRx KINOMEscan® platform.
http://www.discoverx.com/services/drug-discovery-development-services/kinase-profiling/kinomescan
Reference: 13,41

Key to terms and symbols Click column headers to sort
Target used in screen: PIK3CG
Ligand Sp. Type Action Affinity Units
TG-100-115 Hs Inhibitor Inhibition 8.3 pKd
PI-103 Hs Inhibitor Inhibition 7.8 pKd
PP-242 Hs Inhibitor Inhibition 7.4 pKd
pictilisib Hs Inhibitor Inhibition 7.3 pKd
lestaurtinib Hs Inhibitor Inhibition 6.5 pKd
staurosporine Hs Inhibitor Inhibition 5.7 pKd
GSK-461364A Hs Inhibitor Inhibition 5.7 pKd
SB203580 Hs Inhibitor Inhibition <5.5 pKd
ruboxistaurin Hs Inhibitor Inhibition <5.5 pKd
erlotinib Hs Inhibitor Inhibition <5.5 pKd
Displaying the top 10 most potent ligands  View all ligands in screen »
Immunopharmacology Comments
The role of PIK3CG in immuno-oncology is reviewed in [1].
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process ID:  2
Comment: 
GO Annotation:  Associated to GO processes
GO Processes:  dendritic cell chemotaxis (GO:0002407) TAS
positive regulation of acute inflammatory response (GO:0002675) IEA
inflammatory response (GO:0006954) TAS
T cell chemotaxis (GO:0010818) TAS
neutrophil chemotaxis (GO:0030593) TAS
natural killer cell chemotaxis (GO:0035747) TAS
mast cell degranulation (GO:0043303) TAS
innate immune response (GO:0045087) TAS
neutrophil extravasation (GO:0072672) TAS
References: 
Immuno Process:  T cell (activation)
Immuno Process ID:  4
Comment: 
GO Annotation:  Associated to GO processes
GO Processes:  adaptive immune response (GO:0002250) TAS
T cell proliferation (GO:0042098) TAS
T cell activation (GO:0042110) TAS
References: 
Immuno Process:  B cell (activation)
Immuno Process ID:  5
Comment: 
GO Annotation:  Associated to GO processes
GO Processes:  adaptive immune response (GO:0002250) TAS
References: 
Immuno Process:  Cytokine production & signalling
Immuno Process ID:  9
Comment: 
GO Annotation:  Associated to GO processes
GO Processes:  cytokine production (GO:0001816) TAS
References: 
Immuno Process:  Chemotaxis & migration
Immuno Process ID:  10
Comment: 
GO Annotation:  Associated to GO processes
GO Processes:  dendritic cell chemotaxis (GO:0002407) TAS
T cell chemotaxis (GO:0010818) TAS
neutrophil chemotaxis (GO:0030593) TAS
natural killer cell chemotaxis (GO:0035747) TAS
neutrophil extravasation (GO:0072672) TAS
References: 
Immuno Process:  Cellular signalling
Immuno Process ID:  11
Comment: 
GO Annotation:  Associated to GO processes
GO Processes:  T cell proliferation (GO:0042098) TAS
T cell activation (GO:0042110) TAS
mast cell degranulation (GO:0043303) TAS
References: 
Immuno Process:  Antigen presentation
Immuno Process ID:  3
Comment: 
GO Annotation:  Associated to GO processes, IEA only
GO Processes:  endocytosis (GO:0006897) IEA
References: 
Immuno Process:  Immune regulation
Immuno Process ID:  6
Comment: 
GO Annotation:  Associated to GO processes, IEA only
GO Processes:  positive regulation of acute inflammatory response (GO:0002675) IEA
References: 

References

Show »

1. Adams JL, Smothers J, Srinivasan R, Hoos A. (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov14 (9): 603-22. [PMID:26228631]

2. Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA. (2008) Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol.4 (11): 691-9. [PMID:18849971]

3. Barda DA, Mader MM. (2013) PI3 kinase/mTOR dual inhibitor. Patent number: US8440829 B2. Assignee: Eli Lilly And Company. Priority date: 14/01/2011. Publication date: 14/05/2013.

4. Barlaam B, Cosulich S, Delouvrié B, Ellston R, Fitzek M, Germain H, Green S, Hancox U, Harris CS, Hudson K et al.. (2015) Discovery of 1-(4-(5-(5-amino-6-(5-tert-butyl-1,3,4-oxadiazol-2-yl)pyrazin-2-yl)-1-ethyl-1,2,4-triazol-3-yl)piperidin-1-yl)-3-hydroxypropan-1-one (AZD8835): A potent and selective inhibitor of PI3Kα and PI3Kδ for the treatment of cancers. Bioorg. Med. Chem. Lett.25 (22): 5155-62. [PMID:26475521]

5. Bergamini G, Bell K, Shimamura S, Werner T, Cansfield A, Müller K, Perrin J, Rau C, Ellard K, Hopf C et al.. (2012) A selective inhibitor reveals PI3Kγ dependence of T(H)17 cell differentiation. Nat. Chem. Biol.8 (6): 576-82. [PMID:22544264]

6. Braun M-G, Hanan E, Staben ST, Heald RA, Macleod C, Elliott R. (2017) Benzoxazepin oxazolidinone compounds and methods of use. Patent number: US20170015678. Assignee: Genentech, Inc.. Priority date: 02/07/2015. Publication date: 19/01/2017.

7. Camps M, Rückle T, Ji H, Ardissone V, Rintelen F, Shaw J, Ferrandi C, Chabert C, Gillieron C, Françon B et al.. (2005) Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med.11 (9): 936-43. [PMID:16127437]

8. Cano C, Saravanan K, Bailey C, Bardos J, Curtin NJ, Frigerio M, Golding BT, Hardcastle IR, Hummersone MG, Menear KA et al.. (2013) 1-substituted (Dibenzo[b,d]thiophen-4-yl)-2-morpholino-4H-chromen-4-ones endowed with dual DNA-PK/PI3-K inhibitory activity. J. Med. Chem.56 (16): 6386-401. [PMID:23855836]

9. Cheng H, Li C, Bailey S, Baxi SM, Goulet L, Guo L, Hoffman J, Jiang Y, Johnson TO, Johnson TW et al.. (2013) Discovery of the Highly Potent PI3K/mTOR Dual Inhibitor PF-04979064 through Structure-Based Drug Design. ACS Med Chem Lett4 (1): 91-7. [PMID:24900568]

10. Cherian PT, Koikov LN, Wortman MD, Knittel JJ. (2009) Exploring the PI3K alpha and gamma binding sites with 2,6-disubstituted isonicotinic derivatives. Bioorg. Med. Chem. Lett.19 (8): 2215-9. [PMID:19297156]

11. Cushing TD, Hao X, Shin Y, Andrews K, Brown M, Cardozo M, Chen Y, Duquette J, Fisher B, Gonzalez-Lopez de Turiso F et al.. (2015) Discovery and in vivo evaluation of (S)-N-(1-(7-fluoro-2-(pyridin-2-yl)quinolin-3-yl)ethyl)-9H-purin-6-amine (AMG319) and related PI3Kδ inhibitors for inflammation and autoimmune disease. J. Med. Chem.58 (1): 480-511. [PMID:25469863]

12. D'Angelo ND, Kim TS, Andrews K, Booker SK, Caenepeel S, Chen K, D'Amico D, Freeman D, Jiang J, Liu L et al.. (2011) Discovery and optimization of a series of benzothiazole phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors. J. Med. Chem.54 (6): 1789-811. [PMID:21332118]

13. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP. (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol.29 (11): 1046-51. [PMID:22037378]

14. Down K, Amour A, Baldwin IR, Cooper AW, Deakin AM, Felton LM, Guntrip SB, Hardy C, Harrison ZA, Jones KL et al.. (2015) Optimization of Novel Indazoles as Highly Potent and Selective Inhibitors of Phosphoinositide 3-Kinase δ for the Treatment of Respiratory Disease. J. Med. Chem.58 (18): 7381-99. [PMID:26301626]

15. Evans CA, Liu T, Lescarbeau A, Nair SJ, Grenier L, Pradeilles JA, Glenadel Q, Tibbitts T, Rowley AM, DiNitto JP et al.. (2016) Discovery of a Selective Phosphoinositide-3-Kinase (PI3K)-γ Inhibitor (IPI-549) as an Immuno-Oncology Clinical Candidate. ACS Med Chem Lett7 (9): 862-7. [PMID:27660692]

16. Fokas E, Prevo R, Pollard JR, Reaper PM, Charlton PA, Cornelissen B, Vallis KA, Hammond EM, Olcina MM, Gillies McKenna W et al.. (2012) Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis3: e441. [PMID:23222511]

17. Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, Chuckowree IS, Clarke PA, Depledge P, Eccles SA et al.. (2008) The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer . J. Med. Chem.51 (18): 5522-32. [PMID:18754654]

18. Fraser C, Carragher NO, Unciti-Broceta A. (2016) eCF309: a potent, selective and cell-permeable mTOR inhibitor. Med. Chem. Commun.7 (3): 471-477.

19. Furet P, Guagnano V, Fairhurst RA, Imbach-Weese P, Bruce I, Knapp M, Fritsch C, Blasco F, Blanz J, Aichholz R et al.. (2013) Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg Med Chem Lett.23 (13): 3741-8. [PMID:23726034]

20. Gopalsamy A, Bennett EM, Shi M, Zhang WG, Bard J, Yu K. (2012) Identification of pyrimidine derivatives as hSMG-1 inhibitors. Bioorg. Med. Chem. Lett.22 (21): 6636-41. [PMID:23021994]

21. Hancox U, Cosulich S, Hanson L, Trigwell C, Lenaghan C, Ellston R, Dry H, Crafter C, Barlaam B, Fitzek M et al.. (2015) Inhibition of PI3Kβ signaling with AZD8186 inhibits growth of PTEN-deficient breast and prostate tumors alone and in combination with docetaxel. Mol. Cancer Ther.14 (1): 48-58. [PMID:25398829]

22. Hart S, Novotny-Diermayr V, Goh KC, Williams M, Tan YC, Ong LC, Cheong A, Ng BK, Amalini C, Madan B et al.. (2013) VS-5584, a novel and highly selective PI3K/mTOR kinase inhibitor for the treatment of cancer. Mol. Cancer Ther.12 (2): 151-61. [PMID:23270925]

23. Hayakawa M, Kawaguchi K, Kaizawa H, Koizumi T, Ohishi T, Yamano M, Okada M, Ohta M, Tsukamoto S, Raynaud FI et al.. (2007) Synthesis and biological evaluation of sulfonylhydrazone-substituted imidazo[1,2-a]pyridines as novel PI3 kinase p110alpha inhibitors. Bioorg. Med. Chem.15 (17): 5837-44. [PMID:17601739]

24. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ et al.. (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature485 (7396): 55-61. [PMID:22367541]

25. Knight SD, Adams ND, Burgess JL, Chaudhari AM, Darcy MG, Donatelli CA, Luengo JI, Newlander KA, Parrish CA, Ridgers LH et al.. (2010) Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin. ACS Med Chem Lett1 (1): 39-43. [PMID:24900173]

26. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B et al.. (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell125 (4): 733-47. [PMID:16647110]

27. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, Byrd JC, Tyner JW, Loriaux MM, Deininger M et al.. (2011) CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood117 (2): 591-4. [PMID:20959606]

28. Liu F, Wang J, Yang X, Li B, Wu H, Qi S, Chen C, Liu X, Yu K, Wang W et al.. (2016) Discovery of a Highly Selective STK16 Kinase Inhibitor. ACS Chem. Biol.11 (6): 1537-43. [PMID:27082499]

29. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chène P, De Pover A, Schoemaker K et al.. (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther.7 (7): 1851-63. [PMID:18606717]

30. Markman B, Tabernero J, Krop I, Shapiro GI, Siu L, Chen LC, Mita M, Melendez Cuero M, Stutvoet S, Birle D et al.. (2012) Phase I safety, pharmacokinetic, and pharmacodynamic study of the oral phosphatidylinositol-3-kinase and mTOR inhibitor BGT226 in patients with advanced solid tumors. Ann. Oncol.23 (9): 2399-408. [PMID:22357447]

31. Ndubaku CO, Heffron TP, Staben ST, Baumgardner M, Blaquiere N, Bradley E, Bull R, Do S, Dotson J, Dudley D et al.. (2013) Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1H-1,2-4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): a β-sparing phosphoinositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity. J. Med. Chem.56 (11): 4597-610. [PMID:23662903]

32. Nylander S, Kull B, Björkman JA, Ulvinge JC, Oakes N, Emanuelsson BM, Andersson M, Skärby T, Inghardt T, Fjellström O et al.. (2012) Human target validation of phosphoinositide 3-kinase (PI3K)β: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kβ inhibitor. J. Thromb. Haemost.10 (10): 2127-36. [PMID:22906130]

33. Ohwada J, Ebiike H, Kawada H, Tsukazaki M, Nakamura M, Miyazaki T, Morikami K, Yoshinari K, Yoshida M, Kondoh O et al.. (2011) Discovery and biological activity of a novel class I PI3K inhibitor, CH5132799. Bioorg. Med. Chem. Lett.21 (6): 1767-72. [PMID:21316229]

34. Palanki MS, Dneprovskaia E, Doukas J, Fine RM, Hood J, Kang X, Lohse D, Martin M, Noronha G, Soll RM et al.. (2007) Discovery of 3,3'-(2,4-diaminopteridine-6,7-diyl)diphenol as an isozyme-selective inhibitor of PI3K for the treatment of ischemia reperfusion injury associated with myocardial infarction. J. Med. Chem.50 (18): 4279-94. [PMID:17685602]

35. Qian C, Lai CJ, Bao R, Wang DG, Wang J, Xu GX, Atoyan R, Qu H, Yin L, Samson M et al.. (2012) Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin. Cancer Res.18 (15): 4104-13. [PMID:22693356]

36. Raynaud FI, Eccles SA, Patel S, Alix S, Box G, Chuckowree I, Folkes A, Gowan S, De Haven Brandon A, Di Stefano F et al.. (2009) Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol. Cancer Ther.8 (7): 1725-38. [PMID:19584227]

37. Ren P, Liu Y, Li L, Chan K, Wilson TE, Campbell SF. (2013) Heterocyclic compounds and uses thereof. Patent number: US20130035324 A1. Assignee: Ren P, Liu Y, Li L, Chan K, Wilson TE, Campbell SF.. Priority date: 17/08/2009. Publication date: 07/02/2013.

38. Sutherlin DP, Bao L, Berry M, Castanedo G, Chuckowree I, Dotson J, Folks A, Friedman L, Goldsmith R, Gunzner J et al.. (2011) Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. J. Med. Chem.54 (21): 7579-87. [PMID:21981714]

39. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL. (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell6 (4): 909-19. [PMID:11090628]

40. Winkler DG, Faia KL, DiNitto JP, Ali JA, White KF, Brophy EE, Pink MM, Proctor JL, Lussier J, Martin CM et al.. (2013) PI3K-δ and PI3K-γ inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem. Biol.20 (11): 1364-74. [PMID:24211136]

41. Wodicka LM, Ciceri P, Davis MI, Hunt JP, Floyd M, Salerno S, Hua XH, Ford JM, Armstrong RC, Zarrinkar PP et al.. (2010) Activation state-dependent binding of small molecule kinase inhibitors: structural insights from biochemistry. Chem. Biol.17 (11): 1241-9. [PMID:21095574]

42. Wu P, Hu Y. (2012) Small molecules targeting phosphoinositide 3-kinases. Med. Chem. Commun.3 (11): 1337-1355.

43. Yaguchi S, Fukui Y, Koshimizu I, Yoshimi H, Matsuno T, Gouda H, Hirono S, Yamazaki K, Yamori T. (2006) Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J. Natl. Cancer Inst.98 (8): 545-56. [PMID:16622124]

44. Yang J, Shamji A, Matchacheep S, Schreiber SL. (2007) Identification of a small-molecule inhibitor of class Ia PI3Ks with cell-based screening. Chem. Biol.14 (4): 371-7. [PMID:17462572]

How to cite this page

Phosphatidylinositol kinases: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma. Last modified on 27/10/2017. Accessed on 17/12/2017. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2156.