Top ▲

GAL1 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 243

Nomenclature: GAL1 receptor

Family: Galanin receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 349 18q23 GALR1 galanin receptor 1 67
Mouse 7 348 18 55.78 cM Galr1 galanin receptor 1 38,98
Rat 7 346 18q12.3 Galr1 galanin receptor 1 15
Previous and Unofficial Names Click here for help
GALNR | GALNR1
Database Links Click here for help
Specialist databases
GPCRdb galr1_human (Hs), galr1_mouse (Mm), galr1_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
galanin {Sp: Human} , galanin {Sp: Mouse, Rat}
galanin-like peptide {Sp: Human} , galanin-like peptide {Sp: Mouse} , galanin-like peptide {Sp: Rat}
Comments: Galanin is more potent than galanin-like peptide
Potency order of endogenous ligands (Human)
galanin (GAL, P22466) > galanin-like peptide (GALP, Q9UBC7)  [68]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I][Tyr26]galanin (pig) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Rn Agonist 9.5 – 10.7 pKd 15,20,22,71,85-86
pKd 9.5 – 10.7 (Kd 3x10-10 – 1.9x10-11 M) Two populations of binding sites have been identified in transfected cells with Kds of 0.3 and 0.019nM. [15,20,22,71,85-86]
[125I][Tyr26]galanin (rat/mouse) Peptide Ligand is labelled Ligand is radioactive Mm Agonist 9.9 pKd 98
pKd 9.9 (Kd 1.34x10-10 M) [98]
[125I][Tyr26]galanin (pig) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Agonist 9.8 pKd 11
pKd 9.8 (Kd 1.5x10-10 M) [11]
[19Lys,26Leu]-galparan Peptide Rn Agonist 9.1 pKd 46
pKd 9.1 (Kd 7.1x10-10 M) [46]
galanin {Sp: Pig} Peptide Click here for species-specific activity table Rn Full agonist 9.1 pKd 46
pKd 9.1 (Kd 7.4x10-10 M) [46]
galanin {Sp: Pig} Peptide Click here for species-specific activity table Hs Full agonist 9.1 pKd 29
pKd 9.1 (Kd 8x10-10 M) [29]
[125I][Tyr26]galanin (human) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Agonist 7.8 – 10.3 pKd 24
pKd 10.3 (Kd 4.89x10-11 M) High affinity receptors [24]
pKd 7.8 (Kd 1.47x10-8 M) Low affinity receptors [24]
galparan Peptide Rn Agonist 8.2 pKd 46
pKd 8.2 (Kd 6.4x10-9 M) [46]
galanin(1-13)amide Peptide Rn Agonist 6.9 pKd 46
pKd 6.9 (Kd 1.25x10-7 M) [46]
[2Ala]-galparan Peptide Rn Agonist 5.8 pKd 46
pKd 5.8 (Kd 1.585x10-6 M) [46]
galanin {Sp: Pig} Peptide Click here for species-specific activity table Hs Full agonist 9.6 – 10.6 pKi 11,24,29
pKi 9.6 – 10.6 (Ki 2.3x10-10 – 2.5x10-11 M) [11,24,29]
galanin {Sp: Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Mm Full agonist 9.3 – 10.3 pKi 70,98
pKi 9.3 – 10.3 (Ki 4.6x10-10 – 4.7x10-11 M) [70,98]
galanin {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 9.1 – 10.5 pKi 11,24,29,82
pKi 9.1 – 10.5 (Ki 8x10-10 – 3.1x10-11 M) [11,24,29,82]
M617 Peptide Click here for species-specific activity table Hs Agonist 9.6 pKi 55
pKi 9.6 (Ki 2.3x10-10 M) [55]
M242 Peptide Click here for species-specific activity table Hs Agonist 9.6 pKi 82
pKi 9.6 (Ki 2.5x10-10 M) [82]
galanin {Sp: Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Rn Full agonist 9.0 – 10.1 pKi 15,86,94,96-97
pKi 9.0 – 10.1 (Ki 1x10-9 – 8x10-11 M) [15,86,94,96-97]
galanin {Sp: Pig} Peptide Click here for species-specific activity table Rn Full agonist 9.1 – 10.0 pKi 15,71,85-86
pKi 9.1 – 10.0 (Ki 8.2x10-10 – 1x10-10 M) [15,71,85-86]
galanin {Sp: Human} Peptide Click here for species-specific activity table Rn Full agonist 9.2 – 9.9 pKi 15,86
pKi 9.2 – 9.9 (Ki 6x10-10 – 1.4x10-10 M) [15,86]
galanin {Sp: Mouse, Rat} Peptide Click here for species-specific activity table Hs Full agonist 8.8 – 10.1 pKi 11,29,53,55,78,81,88
pKi 8.8 – 10.1 (Ki 1.75x10-9 – 8x10-11 M) [11,29,53,55,78,81,88]
Gal-(K)4 Peptide Click here for species-specific activity table Hs Agonist 9.4 pKi 106
pKi 9.4 (Ki 4x10-10 M) [106]
Gal-B2-MPEG4 Peptide Click here for species-specific activity table Hs Agonist 9.3 pKi 106
pKi 9.3 (Ki 5x10-10 M) [106]
Gal-B2-C8 Peptide Click here for species-specific activity table Hs Agonist 9.1 pKi 106
pKi 9.1 (Ki 7x10-10 M) [106]
Gal-B2-dPEG24 Peptide Click here for species-specific activity table Hs Agonist 8.9 pKi 105
pKi 8.9 (Ki 1.3x10-9 M) [105]
Gal-B2-C10 Peptide Click here for species-specific activity table Hs Agonist 8.9 pKi 106
pKi 8.9 (Ki 1.3x10-9 M) [106]
Gal-B2-C12 Peptide Click here for species-specific activity table Hs Agonist 8.9 pKi 106
pKi 8.9 (Ki 1.4x10-9 M) [106]
galanin(1-16) (rat/mouse/pig) Peptide Click here for species-specific activity table Mm Agonist 8.7 – 9.0 pKi 70,98
pKi 8.7 – 9.0 (Ki 2.2x10-9 – 1.02x10-9 M) [70,98]
galanin(1-16) (rat/mouse/pig) Peptide Click here for species-specific activity table Hs Agonist 8.3 – 9.3 pKi 11,14,24,29
pKi 8.3 – 9.3 (Ki 5x10-9 – 5x10-10 M) [11,14,24,29]
Gal-B2-C14 Peptide Click here for species-specific activity table Hs Agonist 8.6 pKi 106
pKi 8.6 (Ki 2.6x10-9 M) [106]
galanin(1-16) (rat/mouse/pig) Peptide Click here for species-specific activity table Rn Agonist 8.1 – 9.0 pKi 15,71,85-86,94,96-97
pKi 8.1 – 9.0 (Ki 9x10-9 – 9.5x10-10 M) [15,71,85-86,94,96-97]
Gal-B2 Peptide Click here for species-specific activity table Hs Agonist 8.5 pKi 14
pKi 8.5 (Ki 3.5x10-9 M) [14]
Gal-B2-C18 Peptide Click here for species-specific activity table Hs Agonist 8.4 pKi 106
pKi 8.4 (Ki 4x10-9 M) [106]
galanin(1-15) Peptide Click here for species-specific activity table Rn Agonist 7.9 – 8.5 pKi 71,85
pKi 7.9 – 8.5 (Ki 1.15x10-8 – 3x10-9 M) [71,85]
galanin(7-29) (pig) Peptide Click here for species-specific activity table Hs Agonist 8.2 pKi 11
pKi 8.2 (Ki 6.76x10-9 M) [11]
galanin(2-29) (pig) Peptide Rn Full agonist 7.1 – 8.1 pKi 15,71
pKi 7.1 – 8.1 (Ki 8.25x10-8 – 7.14x10-9 M) [15,71]
galanin(7-29) (pig) Peptide Click here for species-specific activity table Rn Agonist 7.6 pKi 86
pKi 7.6 (Ki 2.455x10-8 M) [86]
J20 (galanin analogue) Peptide Click here for species-specific activity table Hs Agonist 7.6 pKi 79
pKi 7.6 (Ki 2.5x10-8 M) [79]
galanin(2-29) (pig) Peptide Click here for species-specific activity table Hs Full agonist 7.6 pKi 11
pKi 7.6 (Ki 2.63x10-8 M) [11]
galanin(2-29) (rat/mouse) Peptide Click here for species-specific activity table Mm Full agonist 7.1 – 8.0 pKi 70,98
pKi 7.1 – 8.0 (Ki 8.46x10-8 – 1.08x10-8 M) [70,98]
galanin(2-30) (human) Peptide Click here for species-specific activity table Hs Agonist 7.3 pKi 17
pKi 7.3 (Ki 5.2x10-8 M) [17]
M1151 Peptide Click here for species-specific activity table Hs Agonist 7.0 pKi 81
pKi 7.0 (Ki 9.86x10-8 M) [81]
J18 (galanin analogue) Peptide Click here for species-specific activity table Hs Agonist 6.9 pKi 79
pKi 6.9 (Ki 1.38x10-7 M) [79]
galanin(2-29) (rat/mouse) Peptide Click here for species-specific activity table Rn Full agonist 6.0 – 7.1 pKi 94,96-97
pKi 6.0 – 7.1 (Ki 1.1x10-6 – 8.5x10-8 M) [94,96-97]
[N-Me,des-Sar]Gal-B2 Peptide Click here for species-specific activity table Hs Agonist 6.4 pKi 77
pKi 6.4 (Ki 3.645x10-7 M) [77]
Gal-B5 Peptide Click here for species-specific activity table Hs Agonist 6.4 pKi 14
pKi 6.4 (Ki 3.87x10-7 M) [14]
M1145 Peptide Click here for species-specific activity table Hs Agonist 6.2 pKi 78
pKi 6.2 (Ki 5.87x10-7 M) [78]
galanin(D-Trp2) (pig) Peptide Click here for species-specific activity table Hs Agonist 6.2 pKi 11
pKi 6.2 (Ki 6.31x10-7 M) [11]
galanin(D-Trp2) (pig) Peptide Click here for species-specific activity table Rn Agonist 6.0 – 6.4 pKi 85-86
pKi 6.0 – 6.4 (Ki 1x10-6 – 4.074x10-7 M) [85-86]
galanin(3-29) (pig) Peptide Click here for species-specific activity table Rn Agonist <6.0 pKi 15,71,85-86
pKi <6.0 (Ki >1x10-6 M) [15,71,85-86]
galanin(3-29) (rat/mouse) Peptide Click here for species-specific activity table Rn Agonist <6.0 pKi 94,97
pKi <6.0 (Ki >1x10-6 M) [94,97]
galanin(10-29) (pig) Peptide Click here for species-specific activity table Rn Agonist <6.0 pKi 71
pKi <6.0 (Ki >1x10-6 M) [71]
galanin(3-29) (rat/mouse) Peptide Click here for species-specific activity table Mm Agonist <5.8 pKi 70
pKi <5.8 (Ki >1.65x10-6 M) [70]
galanin(10-29) (rat/mouse) Peptide Click here for species-specific activity table Mm Agonist <5.8 pKi 70
pKi <5.8 (Ki >1.67x10-6 M) [70]
M1153 Peptide Click here for species-specific activity table Hs Agonist 5.7 pKi 81
pKi 5.7 (Ki 1.89x10-6 M) [81]
M1152 Peptide Click here for species-specific activity table Hs Agonist 5.6 pKi 81
pKi 5.6 (Ki 2.37x10-6 M) [81]
galanin(3-29) (pig) Peptide Click here for species-specific activity table Hs Agonist <5.0 – 6.0 pKi 11,29
pKi <5.0 – 6.0 (Ki >1x10-5 – 1x10-6 M) [11,29]
galanin(2-11) Peptide Click here for species-specific activity table Hs Agonist <5.3 pKi 53
pKi <5.3 (Ki >5x10-6 M) [53]
galnon Small molecule or natural product Hs Agonist 4.9 pKi 5,87
pKi 4.9 (Ki 1.17x10-5 M) [5,87]
M1160 Peptide Click here for species-specific activity table Hs Agonist 4.8 pKi 80
pKi 4.8 (Ki 1.55x10-5 M) [80]
galmic Small molecule or natural product Hs Agonist 4.5 pKi 5,87
pKi 4.5 (Ki 3.42x10-5 M) [5,87]
galanin {Sp: Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Rn Full agonist 9.8 pEC50 68
pEC50 9.8 (EC50 1.6x10-10 M) [68]
galanin-like peptide {Sp: Pig} Peptide Click here for species-specific activity table Rn Agonist 7.5 pEC50 68
pEC50 7.5 (EC50 3x10-8 M) [68]
galanin {Sp: Human} Peptide Click here for species-specific activity table Rn Full agonist 10.1 – 10.2 pIC50 33,91
pIC50 10.1 – 10.2 (IC50 7x10-11 – 6x10-11 M) [33,91]
galanin {Sp: Pig} Peptide Click here for species-specific activity table Rn Full agonist 10.1 – 10.2 pIC50 33,91
pIC50 10.1 – 10.2 (IC50 7x10-11 – 6x10-11 M) [33,91]
galanin {Sp: Mouse, Rat} Peptide Click here for species-specific activity table Hs Full agonist 9.9 pIC50 22
pIC50 9.9 (IC50 1.3x10-10 M) [22]
galanin {Sp: Pig} Peptide Click here for species-specific activity table Hs Full agonist 9.8 – 9.9 pIC50 22,91
pIC50 9.8 – 9.9 (IC50 1.6x10-10 – 1.4x10-10 M) [22,91]
galanin(1-19) (human) Peptide Rn Agonist 9.8 pIC50 91
pIC50 9.8 (IC50 1.5x10-10 M) [91]
galanin {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 9.6 – 9.9 pIC50 22,49,91
pIC50 9.6 – 9.9 (IC50 2.7x10-10 – 1.3x10-10 M) [22,49,91]
galanin(1-16) (rat/mouse/pig) Peptide Click here for species-specific activity table Rn Agonist 9.6 pIC50 33,91
pIC50 9.6 (IC50 2.7x10-10 M) [33,91]
galanin(1-19) (human) Peptide Hs Agonist 9.5 pIC50 91
pIC50 9.5 (IC50 3.4x10-10 M) [91]
galanin {Sp: Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Rn Full agonist 8.9 – 10.0 pIC50 13,68
pIC50 8.9 – 10.0 (IC50 1.4x10-9 – 9.7x10-11 M) [13,68]
[Sar1, D-Ala12]galanin(1-16) Peptide Hs Agonist 9.4 pIC50 47
pIC50 9.4 (IC50 4x10-10 M) [47]
galanin(1-16) (rat/mouse/pig) Peptide Click here for species-specific activity table Hs Agonist 9.0 – 9.2 pIC50 22,91
pIC50 9.0 – 9.2 (IC50 1.01x10-9 – 6x10-10 M) [22,91]
galanin(1-11) Peptide Hs Agonist 9.0 pIC50 49
pIC50 9.0 (IC50 1.1x10-9 M) [49]
galanin(1-15) Peptide Click here for species-specific activity table Hs Agonist 8.8 pIC50 22
pIC50 8.8 (IC50 1.68x10-9 M) [22]
galanin-like peptide {Sp: Pig} Peptide Click here for species-specific activity table Rn Agonist 8.4 pIC50 68
pIC50 8.4 (IC50 4.3x10-9 M) [68]
galanin(2-29) (rat/mouse) Peptide Click here for species-specific activity table Rn Full agonist 8.1 pIC50 33,91
pIC50 8.1 (IC50 7.2x10-9 M) [33,91]
galanin(2-29) (rat/mouse) Peptide Click here for species-specific activity table Hs Full agonist 8.0 pIC50 91
pIC50 8.0 (IC50 1x10-8 M) [91]
galanin(2-29) (pig) Peptide Click here for species-specific activity table Hs Full agonist 7.5 pIC50 22
pIC50 7.5 (IC50 3.04x10-8 M) [22]
GALP(3-32) (human) Peptide Click here for species-specific activity table Hs Agonist 7.5 pIC50 44
pIC50 7.5 (IC50 3.3x10-8 M) [44]
galanin-like peptide {Sp: Rat} Peptide Click here for species-specific activity table Rn Agonist 7.3 pIC50 13
pIC50 7.3 (IC50 4.5x10-8 M) [13]
galanin-like peptide {Sp: Human} Peptide Click here for species-specific activity table Hs Agonist 7.1 pIC50 44
pIC50 7.1 (IC50 7.7x10-8 M) [44]
GALP(1-32) (human) Peptide Click here for species-specific activity table Hs Agonist 6.9 pIC50 44
pIC50 6.9 (IC50 1.29x10-7 M) [44]
galanin(2-11) Peptide Click here for species-specific activity table Hs Agonist 6.1 pIC50 49
pIC50 6.1 (IC50 8.79x10-7 M) [49]
galanin(3-29) (pig) Peptide Click here for species-specific activity table Hs Agonist <6.0 pIC50 22
pIC50 <6.0 (IC50 >1x10-6 M) [22]
galanin(3-29) (rat/mouse) Peptide Click here for species-specific activity table Hs Agonist <6.0 pIC50 91
pIC50 <6.0 (IC50 >1x10-6 M) [91]
galanin(3-29) (rat/mouse) Peptide Click here for species-specific activity table Rn Agonist <6.0 pIC50 33,91
pIC50 <6.0 (IC50 >1x10-6 M) [33,91]
alarin {Sp: Rat} Peptide Click here for species-specific activity table Rn Agonist <6.0 pIC50 13
pIC50 <6.0 (IC50 >1x10-6 M) [13]
View species-specific agonist tables
Agonist Comments
Rat and mouse galanin sequences are identical [54]. Binding affinity is lost with removal of amino acids 1 and 2 of galanin [11].
Galanin(D-Trp2) and galanin(2-29) both have higher binding affinity for GAL2 than GAL1 receptors [11].
Many different galanin analogues were trialled in [14] and [77]. The most active compounds are reported in the table above. The Ki values of other analogues are listed in these publications.

[94] and [24] have data for two types of radioligand binding assays; membrane binding and whole-cell binding assays.

NOTE that compounds with -ve log10 affinities <6 have no appreciable agonist function.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
M15 Peptide Click here for species-specific activity table Hs Antagonist 9.4 – 10.6 pKi 11,24,53
pKi 9.4 – 10.6 (Ki 4x10-10 – 2.7x10-11 M) [11,24,53]
M40 Peptide Click here for species-specific activity table Mm Antagonist 9.4 – 10.4 pKi 70,98
pKi 9.4 – 10.4 (Ki 4.3x10-10 – 4x10-11 M) [70,98]
M32 Peptide Click here for species-specific activity table Hs Antagonist 9.6 – 9.7 pKi 11,82
pKi 9.6 – 9.7 (Ki 2.6x10-10 – 1.8x10-10 M) [11,82]
C7 Peptide Click here for species-specific activity table Hs Antagonist 9.2 – 10.1 pKi 11,24
pKi 9.2 – 10.1 (Ki 6.9x10-10 – 8.2x10-11 M) [11,24]
M35 Peptide Click here for species-specific activity table Hs Antagonist 8.3 – 10.9 pKi 11,24,53
pKi 8.3 – 10.9 (Ki 4.8x10-9 – 1.2x10-11 M) [11,24,53]
M35 Peptide Click here for species-specific activity table Rn Antagonist 9.3 – 9.5 pKi 71,85-86
pKi 9.3 – 9.5 (Ki 4.6x10-10 – 3x10-10 M) [71,85-86]
M40 Peptide Click here for species-specific activity table Hs Antagonist 8.6 – 10.0 pKi 11,24,53
pKi 8.6 – 10.0 (Ki 2.4x10-9 – 1.1x10-10 M) [11,24,53]
M32 Peptide Click here for species-specific activity table Rn Antagonist 9.2 – 9.2 pKi 85-86
pKi 9.2 – 9.2 (Ki 6.8x10-10 – 6x10-10 M) [85-86]
C7 Peptide Click here for species-specific activity table Mm Antagonist 8.7 – 9.0 pKi 70,98
pKi 8.7 – 9.0 (Ki 2x10-9 – 9.6x10-10 M) [70,98]
C7 Peptide Click here for species-specific activity table Rn Antagonist 7.8 – 9.6 pKi 71,85-86
pKi 7.8 – 9.6 (Ki 1.6x10-8 – 2.8x10-10 M) [71,85-86]
M15 Peptide Click here for species-specific activity table Rn Antagonist 8.0 – 9.2 pKi 71,85-86,96
pKi 8.0 – 9.2 (Ki 1x10-8 – 6.5x10-10 M) [71,85-86,96]
M15 Peptide Click here for species-specific activity table Mm Antagonist 8.2 – 8.6 pKi 70,98
pKi 8.2 – 8.6 (Ki 6.3x10-9 – 2.24x10-9 M) [70,98]
M40 Peptide Click here for species-specific activity table Rn Antagonist 7.9 – 8.4 pKi 71,85-86
pKi 7.9 – 8.4 (Ki 1.13x10-8 – 4x10-9 M) [71,85-86]
M871 Peptide Click here for species-specific activity table Hs Antagonist 6.4 pKi 88
pKi 6.4 (Ki 4.2x10-7 M) [88]
Sch 202596 Small molecule or natural product Hs Antagonist 5.8 pKi 16
pKi 5.8 (Ki 1.7x10-6 M) [16]
GalR3ant Small molecule or natural product Hs Antagonist <5.0 pKi 52
pKi <5.0 (Ki >1x10-5 M) [52]
M35 Peptide Click here for species-specific activity table Rn Antagonist 11.0 pIC50 33,91
pIC50 11.0 (IC50 1x10-11 M) [33,91]
M35 Peptide Click here for species-specific activity table Hs Antagonist 10.4 pIC50 91
pIC50 10.4 (IC50 4x10-11 M) [91]
M40 Peptide Click here for species-specific activity table Hs Antagonist 9.3 pIC50 91
pIC50 9.3 (IC50 5x10-10 M) [91]
M40 Peptide Click here for species-specific activity table Rn Antagonist 9.1 pIC50 33,91
pIC50 9.1 (IC50 9x10-10 M) [33,91]
M15 Peptide Click here for species-specific activity table Rn Antagonist 9.0 pIC50 33,91
pIC50 9.0 (IC50 1x10-9 M) [33,91]
M15 Peptide Click here for species-specific activity table Hs Antagonist 8.8 – 8.8 pIC50 22,91
pIC50 8.8 – 8.8 (IC50 1.5x10-9 – 1.46x10-9 M) [22,91]
C7 Peptide Click here for species-specific activity table Hs Antagonist 8.2 – 9.0 pIC50 22,91
pIC50 8.2 – 9.0 (IC50 6.3x10-9 – 1.04x10-9 M) [22,91]
C7 Peptide Click here for species-specific activity table Rn Antagonist 8.3 pIC50 33,91
pIC50 8.3 (IC50 4.9x10-9 M) [33,91]
dithiipin-1,1,4,4-tetroxide analogue 7 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.7 pIC50 84
pIC50 6.7 (IC50 1.9x10-7 M) [84]
2,3-dihydro-1,4-dithiin-1,1,4,4-tetroxide Small molecule or natural product Hs Antagonist 5.6 pIC50 84
pIC50 5.6 (IC50 2.7x10-6 M) [84]
View species-specific antagonist tables
Antagonist Comments
In [84] a series of compounds was tested. The IC50 values for two of the analogues at the human GAL1 receptor are reported in the table above. Analogue 7 is reported as the first non-peptidic sub-micromolar antagonist to human GAL1 receptor.
GalR3ant displays receptor selectivity for GAL3 receptor, with low affinity for GAL1 and GAL2 receptors [53].
[24] has radioligand binding data for both membrane and whole-cell based assays.
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Potassium channel
Comments:  Stimulation of GAL1 receptor transfected cells inhibits forskolin-stimulated cAMP production in a pertussis toxin-sensitive manner [24,29,71,85]. GAL1 receptor activation opens G-protein-regulated inwardly rectifying K+ (GIRK) channels [86] and stimulates pertussis-toxin sensitive MAPK activity, which is inhibited by expression of the C-terminus of β-adrenergic receptor kinase (which specifically inhibits G-βγ signalling). This demonstrates that GAL1 receptor couples to a Gi/βγ signalling pathway to mediate MAPK activation [95] (reviewed in [45]).
References:  7,29,71,86
Tissue Distribution Click here for help
Bowes melanoma cell line > small intestine and fetal brain. None in colon adenocarcinoma cell line (HT29) or human liver.
Species:  Human
Technique:  Northern blot.
References:  29
Low expression. In periphery, most abundant in heart, small intestine, prostate, testes; in central nervous system, most abundant in cerebral cortex, amygdala, substantia nigra (not detectable in cerebellum).
Species:  Human
Technique:  RT-PCR.
References:  91
GAL1 receptor expressed in human gastrointestinal tract from oesophagus to rectum: largest amount in duodenum and least amount in gastric fundus.
Species:  Human
Technique:  RT-PCR.
References:  51
GAL1 receptor mRNA in > 20% of all lumbar 4 and 5 dorsal root ganglion neuron profiles, mainly small and medium sized neurons; almost all expressed CGRP mRNA. GAL1 receptor mRNA levels were transiently down-regulated by inflammation and more strongly by peripheral nerve injury
Species:  Rat
Technique:  In situ hybridisation.
References:  104
Bed nucleus of the accessory olfactory tract > Hypothalamic paraventricular nucleus (lateral magnocellular); thalamic paraventricular nucleus; subiculum (ventral); lateral parabrachial nucleus > supraoptic nucleus; dorsomedial nucleus; thalamic central medial nucleus; paracentral nucleus; CA1 (ventral region); medial (anteroventral) amygdala > insular cortex (granular); lateral septum (dorsal, ventral regions); bed nucleus of stria terminalis; medial preoptic area; anterior medial preoptic nucleus; medial preoptic nucleus; hypothalamic paraventricular nucleus (medial parvocellular); lateroanterior hypothalamic nucleus; ventromedial nucleus (ventrolateral region); lateral habenula; anterior cortical amygdala; basolmedial amygdala; amygdaloid piriform transition; posterior cortical nucleus; locus coeruleus; pontine reticular formation > taenia tecta (anterior region); septohippocampal nucleus; lateral preoptic area; subfornical organ; anterior hypothalamic area; lateral hypothalamus (tuberal region); mammillary nuclei; posterior hypothalamic area; anterodorsal thalamic nucleus; intermediodorsal nucleus; zona incerta; subincertal nucleus; precommissural nucleus; entorhinal cortex; medial amygdala (anterodorsal); central nucleus of the amygdala; ventral tegmental area; central grey; lateral substantia nigra.
Species:  Rat
Technique:  In situ hybridisation.
References:  71
Broad distribution of GAL1 receptor mRNA, especially heart, large intestines and testes (brain not included in this analysis).
Species:  Rat
Technique:  RT-PCR.
References:  91
Brain; spinal cord >> small intestine. No expression in anterior pituitary, spleen, stomach, large intestine, adrenal gland, liver, lung, kidney, heart
Species:  Rat
Technique:  Northern blot.
References:  71
Amygdala (anterior cortical amygdaloid and parastrial nuclei, amygdalohippocampal area), thalamus (subthalamic, mediodorsal, interanteromedial thalamic nuclei), ventral part of the hippocampus (CA1 field), medulla oblongata (parabrachial, vestibular, reticular, spinal, motor trigeminal nuclei); dorsal part of spinal cord (3rd and 4th layers).
Species:  Rat
Technique:  In situ hybridisation.
References:  15
High: nucleus of the lateral olfactory tract, temporal pole of CA1 region of hippocampus.Moderate: piriform cortex, lateral septum, nucleus accumbens shell, ventral pallidum, bed nucleus stria terminalis, substantia innominata, amygdalopiriform region; anterior portion of paraventricular thalamic nucleus, centromedial nucleus, paracentral nucleus, rhomboid nucleus, subparafascicular nucleus; medial preoptic area, medial preoptic nucleus, lateral hypothalamus, perifornical region, hypothalamic paraventricular nucleus (lateral and medial zones of posterior magnocellular subdivision); central grey area of mesencephalon; external subdivision of lateral parabrachial nucleus, pontine reticular nucleus, reticulotegmental nucleus, gigantocellular, paramedian, lateral reticular nuclei, raphe magnus; dorsal horn at all levels of spinal cord (mostly laminae 1 and 2, and a few at laminae 3 and 4). Weak: glomerular and internal granular layers of the olfactory bulb, anterior olfactory nucleus, dorsal endopiriform nucleus, horizontal nucleus of the diagonal band, posterior ventral medial amygdaloid nucleus, amygdalohippocampal area; posterior intralaminar nucleus, caudal zona incerta; anterior hypothalamic area, several hypothalamic nuclei (dorsomedial, ventromedial, supraoptic, dorsal premammillary, medial mammillary, supramammillary); anterior and olivary pretectal nuclei, intermediate gray of the superior colliculus, rostral periolivary nucleus, dorsal raphe, paramedian raphe; locus coeruleus, subcoeruleus, A5 region of the pons, dorsal tegmental nucleus, medial aspect of solitary tract nucleus, dorsal vagal complex. None (or very little); sensorimotor cortex, dorsal hippocampus, cerebellum.
Species:  Rat
Technique:  In situ hybridisation.
References:  28
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
GAL1 receptor activation opens GIRK channels.
Species:  Rat
Tissue:  Oocytes.
Response measured:  Measurement of activation of G-protein-regulated inwardly rectifying K+ (GIRK) channels in an oocyte expressing GAL1, GIRK1 and GIRK4.
References:  86
Reduced forskolin-stimulated cAMP formation, presumably via interaction with pertussis toxin sensitive Gi/Go protein.
Species:  Mouse
Tissue:  CHO cells.
Response measured:  Measurement of mitogen-activated protein kinase (MAPK) activity in GAL1-transfected CHO cells following application of galanin.
References:  98
Galanin stimulated pertussis-toxin sensitive MAPK activity, which was inhibited by expression of the C-terminus of β-adrenergic receptor kinase (which specifically inhibits Gβγ signalling); but was not affected by the protein kinase C (PKC) inhibitor, bis[indolylmaleimide] or cellular depletion of PKC. These data demonstrate that GAL1 couples to a Giβγ signalling pathway to mediate MAPK activation.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Measurement of mitogen-activated protein kinase (MAPK) activity in GAL1-transfected CHO cells following application of galanin.
References: 
Exposure to a fluorescein-N-galanin (F-Gal) stimulated rapid and extensive (78%) internalisation of surface F-Gal into GAL1-transfected CHO cells (and also substantial homodimerisation of the receptor).
Species:  Rat
Tissue:  CHO cells.
Response measured:  Measurement of receptor internalisation in GAL1-transfected CHO cells.
References:  93,101
Galanin reduced basal and forskolin-stimulated cAMP formation, which was blocked by treatement with pertussis toxin. Galanin did not activate inositol phospholipid turnover.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Measurement of forskolin-stimulated cAMP formation in GAL1-transfected CHO cells following application of galanin.
References:  7,71,85
Reduced forskolin-stimulated increase of cAMP in a dose-dependent manner (did not affect basal cAMP production).
Species:  Human
Tissue:  COS cells.
Response measured:  Measurement of forskolin-stimulated cAMP production in GAL1-transfected COS cells following application of human galanin.
References:  29
Galanin(1-29), which is a high affinity agonist for both GAL1 and GAL2 receptors, significantly reduces CREB phosphorylation induced by high-frequency trans stimulation, suggesting GAL1 receptor may be involved.
Species:  Mouse
Tissue:  Hippocampal tissue.
Response measured:  Measurement of LTP-induced CREB phosphorylation in the dentate gyrus.
References:  4
Gal1 receptor reduces forskolin-stimulated cAMP formation in GAL1 receptor-transfected HEK293E cells following application of galanin and galanin-related peptides.
Species:  Human
Tissue:  HEK293E cells.
Response measured:  Measurement of forkolin-stimulated cAMP production.
References:  24
Galanin induces activation of ERK 1/2 (also known as MAPK 1/2/3) and suppresses proliferation. In addition, galanin stimulation mediates decreased expression of cyclin D1 and increased expression of cyclin-dependent kinase inhibitors (CKI), p27Kip1 and p57Kip2, which is prevented by pretreatment with the ERK 1/2-specific inhibitor U0126. In addition, pertussis toxin inhibition demonstrates that galanin and GAL1 receptor induce ERK 1/2 activation via Gαi, not the phosphatidylinositol 3-kinase (PI3K) pathway linked to the Gβγ subunit (i.e. the PI3K inhibitor, LY294002, did not prevent ERK 1/2 activation or cell growth suppression).
Species:  Human
Tissue:  Human oral squamous cell carcinoma cells.
Response measured:  Measurement of extracellular-regulated protein kinase-1/2 (ERK 1/2) in GAL1 receptor-transfected human oral squamous cell carcinoma cells.
References:  41
GAL1 and 5HT1A receptors heteromerise. Agonist activation of GAL1 or 5HT receptors elicits an allosteric antagonistic interaction across the GAL1-5HT1A receptor interface blocking any excessive inhibition of the AC pathway or stimulation of the MAPK pathway.
Species:  Human
Tissue:  HEK293 cells transfected with human GAL1 and human 5HT1A receptors.
Response measured:  Measurement of adenylate cyclase (AC) and mitogen-activated protein kinase (MAPK) pathways in GAL1-5HT1A receptor-transfected HEK293 cells.
References:  12
Physiological Functions Click here for help
GAL1 receptor appears to mediate the ‘pro-depressive’ effects of galanin (in the forced swim test).
Species:  Rat
Tissue:  Brain/in vivo.
References:  43
High dose galanin mediates an anti-allodynic effect on neuropathic pain at the spinal cord mediated via GAL1 receptors.
Species:  Rat
Tissue:  Locus coeruleus neurons.
References:  56
High dose galanin mediates an anti-allodynic effect on neuropathic pain at the spinal cord mediated via GAL1 receptors.
Species:  Rat
Tissue:  Spinal cord.
References:  49
Galanin inhibits (hyperpolarises) arcuate neurons, probably mediated via activation of GAL1 receptors.
Species:  Rat
Tissue:  Arcuate nucleus.
References:  74
Spinal galanin produces a reliable inhibition of formalin-induced facilitated nociceptive processing, possibly mediated via GAL1 receptors.
Species:  Rat
Tissue:  In vivo (intrathecal injections).
References:  34
The GAL1 receptor mediates the galanin excitatory action on gastric motility in the rat stomach (but not the inhibitory effect).
Species:  Rat
Tissue:  Stomach.
References:  26
Intrathecal administration of a peptide nucleic acid targeting GAL1 receptor reduces the galanin-mediated inhibitory effect on nociceptive transmission in the rat spinal cord.
Species:  Rat
Tissue:  In vivo intrathecal injections.
References:  76
Galanin inhibits midbrain dopamine activity, likely via a GAL1 receptor-mediated reduction of tyrosine hydroxylase in midbrain dopamine neurons.
Species:  Rat
Tissue:  Rat embryonic (E14) ventral mesencephalon culture.
References:  19
GAL1 receptor has antiproliferative effects in oral squamous cell cancer.
Species:  Human
Tissue:  Immortalised oral keratinocytes and oropharyngeal squamous cell carcinoma cell line.
References:  30
Galanin appears to mediate the antiproliferative and proapoptotic effects on immature rat thymocytes via GAL1 (and GAL3) receptors.
Species:  Rat
Tissue:  Thymocytes.
References:  92
GAL1 receptor may be involved in attenuating the induction, maintenance and late phase of long-term potentiation (LTP), and may be involved in reducing the level of LTP- mediated phosphorylation of CREB in the dentate gyrus granule cells.
Species:  Mouse
Tissue:  In vivo/brain.
References:  4
In a rat model of status epilepticus, galanin is involved in inhibiting seizures during the early phase, predominantly via GAL1 receptor.
Species:  Rat
Tissue:  In vivo/brain.
References:  59
Activation of GAL1 receptor in the dorsal raphe facilitate limbic seizures, and a decrease of 5HT.
Species:  Rat
Tissue:  Dorsal raphe/hippocampus/in vivo.
References:  62
Following kindling to the ventral hippocampus, a GAL1 receptor agonist (M617) was demonstrated to delay epileptogenesis.
Species:  Mouse
Tissue:  Brain/in vivo.
References:  61
Activation of peripheral GAL1 receptor results in anti-nociception.
Species:  Rat
Tissue:  In vivo (intraplantar injections).
References:  39
Galanin inihibits neural activity in the subfornical organ, mediated at least in part via GAL1 receptor.
Species:  Rat
Tissue:  Subfornical organ slices.
References:  40
Galanin inhibits colony formation and tumour growth of human oral squamous cell carcinomas (via ERK 1/2 activation).
Species:  Human
Tissue:  Human oral squamous cell carcinoma cell line transfected with GAL1 receptor.
References:  41
Galanin inhibits gastro-oesophageal vagal afferent in tension receptors and mucosal receptors predominantly via GAL1 receptor.
Species:  Mouse
Tissue:  Gastro-oesophageal vagal afferents.
References:  69
GAL1 receptor agonists increase conductance at voltages positive to -70mV and activate inwardly-rectifying conductance in ‘delay’ neurons (suggesting it may be acting as a spinal antinociceptive) and activate inwardly-rectifying conductance in ‘tonic’ neurons (suggesting it may be acting as a spinal pro-nociceptive).
Species:  Rat
Tissue:  Neurons from the substantia gelatinosa.
References:  1
Galanin plays a role in mediating the inhibitory effect of low-frequency stimulation on perforant path-kindled seizures, exerted via GAL1 receptor during focal-kindled seizures.
Species:  Rat
Tissue:  Brain/in vivo.
References:  83
GAL1 receptor mediates the inhibition of depolarisation-evoked Ca2+ influx in myenteric neurons, suggesting that it is involved in the inhibition of cholinergic transmission to the longitudinal muscle of the gastrointestinal tract and the reduction of peristalsis efficiency in the small intestine.
Species:  Rat
Tissue:  Myenteric neurons.
References:  3
GAL1 receptor mediates the effects of high dose galanin injection-induced decreases of locomotor activity (following restraint stress), stress-induced hyperthermia and stress hormone responses (corticosterone and ACTH).
Species:  Mouse
Tissue:  Brain/in vivo.
References:  65
GAL1 receptor mediates hyperalgesia during thermal pain (i.e. selective destruction of GAL1 receptor expressing superficial dorsal horn interneurons by lumbar intrathecal injections of galanin-saporin led to heat hypo-algesia).
Species:  Rat
Tissue:  Lumbar spine – superficial dorsal horn.
References:  75
Galanin appears to inhibit cooling evoked neuronal activity and nociceptive behaviours via a GAL1 receptor mode of action.
Species:  Rat
Tissue:  C-fibre nociceptors/in vivo.
References:  35
Galanin exerts an analgesic effect in diabetic neuropathic pain, likely via GAL1 receptor.
Species:  Rat
Tissue:  In vivo.
References:  103
GAL1 receptor silencing induces apoptosis in drug-sensitive and drug-resistant cell lines, and synergistically enhances the effects of chemotherapy.
Species:  Human
Tissue:  Colorectal cancer cell line.
References:  89
Galanin receptor agonist M617 injection into the central amygdala induces significant antinociception.
Species:  Rat
Tissue:  In vivo (hindpaw).
References:  48
Galanin may play a role in decreasing motivation for saccharin reward at times of high appetitive behaviour via GAL1 receptor.
Species:  Rat
Tissue:  In vivo/brain.
References:  2
Galanin stimulates cortisol secretion from human inner adrenocortical cells, acting though GAL1 receptors.
Species:  Human
Tissue:  Adrenal tissue.
References:  6
Physiological Consequences of Altering Gene Expression Click here for help
Mice with GAL1 receptor knockout were tested for general health, growth, growth hormone and seizure activity. GAL1 receptor knockout mice were viable and capable of breeding. They exhibited no significant difference in growth rate relative to wildtype controls, but had reduced circulating levels of insulin-like growth factor-1 (IGF-1) and exhibited tonic-clonic seizures.
Species:  Mouse
Tissue:  In vivo/brain/plasma.
Technique:  Gene knock-outs.
References:  37
In paradigms of anxiety-like behaviour mice with GAL1 receptor knockout display increased anxiety-like behaviour on the elevated plus maze test, but not on the light-dark exploration, emergence, and open field test. These mice demonstrate no abnormalities in health, neurological reflexes, motoric functions or sensory abilities.
Species:  Mouse
Tissue:  Brain.
Technique:  Gene knock-outs.
References:  31
Mice with GAL1 receptor knockout were investigated for seizures and subsequent neuropeptide changes in the hippocampus. Mice with GAL1 receptor knockout develop spontaneous seizures with 25% penetrance, with a strong upregulation of galanin immunoreactivity and mRNA in the polymorph layer of the dentate gyrus, a strong upregulation of enkephalin in the granule cells/mossy fibres, a modest decrease of dynorphin mRNA in the granule cells/mossy fibres, an increase in NPY and substance P mRNA levels in the polymorph cells, and an increase in NPY immunoreactivity in the molecular layer, and upregulation of substance P immunoreactivity in the fibres in the granule and molecular layers; and CCK was strongly downregulated in the granule cell/mossy fibre system, but CCK immunoreactivity appeared increased in the supragranular and molecular layers.
Species:  Mouse
Tissue:  In vivo/brain(hippocampus).
Technique:  Gene knock-outs.
References:  23
Mice with GAL1 receptor knockout were tested for susceptibility to status epilepticus by induction with Li-Pilocarpine, 60 min electrical perforant path stimulation (PPS) or systemic kainic acid. None of the GAL1 receptor knockout or wildtype mice dispalyed spontaneous seizures or spikes. Following Li-Pilocarpine, GAL1 receptor knockout mice displayed more severe seizures (compared to wildtype mice), more profound injury to the CA1 pyramidal cell layer, and injury to hilar interneurons and dentate granule cells. Following PPS, GAL1 receptor knockout mice developed more severe seizures, and mild injury to hilar interneurons, but no difference in the extent of neuronal degeneration. Following kainic acid, there was no difference in seizures between GAL1 receptor knockout and wildtype mice, and no injury to the hippocampus.
Species:  Mouse
Tissue:  In vivo/brain.
Technique:  Gene knock-outs.
References:  60
Mice with GAL1 receptor knockout were tested in several different types of learning and memory tasks, as well as assessed for general health, neurological reflexes, sensory abilities and motor functions. GAL1 receptor knockout mice were impaired in a trace version of cued fear conditioning; otherwise they were unimpaired on a number of tests of learning and memory (social transmission of food preference, Morris water maze, delay version of cued fear conditioning, contextual fear conditioning), and had normal scores on measures of general health and neurological function.
Species:  Mouse
Tissue:  In vivo.
Technique:  Gene knock-outs.
References:  102
GAL1 receptor knockout mice displayed no difference in behaviour in the tail suspension test compared to wildtype mice.
Species:  Mouse
Tissue:  In vivo.
Technique:  Gene knock-outs.
References:  32
Mice with GAL1 receptor knockout were tested for the development of neuropathic pain-like behaviours after photochemically induced partial sciatic nerve ischaemic injury. Under basal conditions,GAL1 receptor knockout mice had shortened response latency on the hot plate test, but not tail flick and radiant heat tests; mechanical sensitivity was not different compared to wildtype controls; but the cold response was moderately enhanced in GAL1 receptor knockout mice. Following partial sciatic nerve injury, the duration of mechanical and heat hypersensitivity was significantly increased in GAL1 receptor knockout. These data suggest an inhibitory role for galanin acting on GAL1 receptor in nociception and neuropathic pain. In a further study mice with GAL1 receptor knockout exhibited increased duration, but not magnitude, of neuropathic pain-like behaviour after nerve injury.
Species:  Mouse
Tissue:  In vivo (sciatic nerve).
Technique:  Gene knock-outs.
References:  10,100
Mice with GAL1 receptor knockout were tested for modulation of nociception. These mice displayed no difference from wildtype for acute nociception, but demonstrated a modest tendency towards increased hyperalgesia after tissue injury and inflammation.
Species:  Mouse
Tissue:  In vivo.
Technique:  Gene knock-outs.
References:  57
Mice with GAL1 receptor knockout were tested to determine the receptor's role in modulation of cholinergic neurotransmission in the heart. In control mice, the vagus nerve-stimulated increase in blood pressure and pulse pressure is attenuated by galanin, propranolol (β-adrenoceptor antagonist) and NPY Y2 antagonist (BIIE0426); however, these measures were not attenuated in GAL1 receptor knockout mice, suggesting that galanin via GAL1 receptor is involved in the prolonged attenuation of parasympathetic slowing of the heart following activation of the cardiac sympathetic nerve.
Species:  Mouse
Tissue:  Heart/in vivo.
Technique:  Gene knock-outs.
References:  73
Physiological Consequences of Altering Gene Expression Comments
Some studies report that GAL1 receptor knockout mice exhibit spontaneous seizures [23,37,63], while other studies do not [60].
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Galr1tm1Dgen Galr1tm1Dgen/Galr1tm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:1096364  MP:0002169 no abnormal phenotype detected
Gene Expression and Pathophysiology Click here for help
GAL1 receptor expression is reduced in the hippocampus of mouse strains 'susceptible' to seizure-induced cell death compared to 'resistant' strains.
Tissue or cell type:  Hippocampal tissue.
Pathophysiology: 
Species:  Mouse
Technique:  Real-time QPCR.
References:  42
Expression of GAL1 receptor in CNS tumours, including glioblastomas, appears to be the most likely receptor responsible for observed galanin binding in these tumours.
Tissue or cell type:  CNS tumours, including glioblastomas.
Pathophysiology: 
Species:  Human
Technique:  Immunofluorescence analysis, radioligand binding (including autoradiography) and RT-PCR.
References:  8
GAL1 receptor expression is elevated in childhood neuroblastic tumours.
Tissue or cell type:  Neuroblastic tumours.
Pathophysiology: 
Species:  Human
Technique:  Immunohistochemistry, in situ hybridization, fluorescent- and radio-ligand binding.
References:  9,72
Gene Expression and Pathophysiology Comments
Humans with 18q syndrome have a deletion as large as 36Mb from the long arm of chromosome 18, which includes GAL1 receptor. This syndrome is highly variable, usually related to the extent of the deleted region, and can include: decreased growth, microcephaly, facial abnormalities, hypotonia, developmental delay, intellectual disability, congenital aural atrea with hearing impairment and limb abnormalities. It is hypothesised that GAL1 receptor may be a candidate for the growth hormone insufficiency phenotype [18,58]. In addition, a 12 year old boy presented with delayed development and CNS demyelination, and was found to have a cryptic unbalanced translocation between chromosomes 4q and 18q, which included GAL1 receptor, although the role for GAL1 receptor in this disorder is unknown [27]. A patient with 18q deletion syndrome demonstrated congenital aural atresia and a multiple-anomaly mental retardation syndrome. The chromosomal deletion site included GAL1 receptor [21].
Homozygous deletion of GAL1 receptor, along with other known tumour suppressor genes, has been identified in oesophageal adenocarcinoma [66]. Squamous cell carcinoma is associated with decreased GAL1 receptor expression, mediated by mechanisms including frequent promoter hypermethylation, gene silencing and growth suppression after reexpression [64,90].
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The SNP rs2717162 is an intronic C/T SNP in the GAL1 receptor gene (major allele = T; minor allele = C). Patients with the CC genotype are associated with lower craving scores than TT and TC genotypes in European Americans. in addition, the presence of at least one minor (C) allele of this SNP is associated with reduced odds of quitting smoking with bupropion (although there were equivalent rates of quitting between alleles in the nicotine-replacement therapy group).
Global MAF (%):  36
Subpopulation MAF (%):  AFR (40%), AMR (29%), ASN (56%), EUR (22%)
SNP accession: 
Validation:  1000 Genomes, HapMap, Frequency
References:  25,50
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The SNPs rs9959924 (major allele = C; minor allele = T; intronic) and rs2717164 (major allele = T; minor allele = G; intronic) demonstrate a significant associaton with smoking quantity, with the minor alleles associated with a protective effect from heavy smoking.
SNP accession: 
References:  36
Biologically Significant Variant Comments
Analysis of single nucleotide polymorphisms (SNPs) of the GAL1 receptor and galanin reveal that they do not play a major role in early onset obesity or dietary fat intake in obese children and adolescents [99].

References

Show »

1. Alier KA, Chen Y, Sollenberg UE, Langel U, Smith PA. (2008) Selective stimulation of GalR1 and GalR2 in rat substantia gelatinosa reveals a cellular basis for the anti- and pro-nociceptive actions of galanin. Pain, 137 (1): 138-46. [PMID:17910903]

2. Anderson ME, Runesson J, Saar I, Langel U, Robinson JK. (2013) Galanin, through GalR1 but not GalR2 receptors, decreases motivation at times of high appetitive behavior. Behav Brain Res, 239: 90-3. [PMID:23142608]

3. Anselmi L, Stella Jr SL, Brecha NC, Sternini C. (2009) Galanin inhibition of voltage-dependent Ca(2+) influx in rat cultured myenteric neurons is mediated by galanin receptor 1. J Neurosci Res, 87 (5): 1107-14. [PMID:19006083]

4. Badie-Mahdavi H, Lu X, Behrens MM, Bartfai T. (2005) Role of galanin receptor 1 and galanin receptor 2 activation in synaptic plasticity associated with 3',5'-cyclic AMP response element-binding protein phosphorylation in the dentate gyrus: studies with a galanin receptor 2 agonist and galanin receptor 1 knockout mice. Neuroscience, 133 (2): 591-604. [PMID:15885916]

5. Bartfai T, Lu X, Badie-Mahdavi H, Barr AM, Mazarati A, Hua XY, Yaksh T, Haberhauer G, Ceide SC, Trembleau L et al.. (2004) Galmic, a nonpeptide galanin receptor agonist, affects behaviors in seizure, pain, and forced-swim tests. Proc Natl Acad Sci USA, 101 (28): 10470-5. [PMID:15240875]

6. Belloni AS, Malendowicz LK, Rucinski M, Guidolin D, Nussdorfer GG. (2007) Galanin stimulates cortisol secretion from human adrenocortical cells through the activation of galanin receptor subtype 1 coupled to the adenylate cyclase-dependent signaling cascade. Int J Mol Med, 20 (6): 859-64. [PMID:17982695]

7. Beran RG, Pachlatko C. (1997) Final report of the ILAE Commission on Economic Aspects of Epilepsy, 1994-1997. International League Against Epilepsy. Epilepsia, 38 (12): 1359-62. [PMID:9578534]

8. Berger A, Santic R, Almer D, Hauser-Kronberger C, Huemer M, Humpel C, Stockhammer G, Sperl W, Kofler B. (2003) Galanin and galanin receptors in human gliomas. Acta Neuropathol, 105 (6): 555-60. [PMID:12734662]

9. Berger A, Tuechler C, Almer D, Kogner P, Ratschek M, Kerbl R, Iismaa TP, Jones N, Sperl W, Kofler B. (2002) Elevated expression of galanin receptors in childhood neuroblastic tumors. Neuroendocrinology, 75 (2): 130-8. [PMID:11867941]

10. Blakeman KH, Hao JX, Xu XJ, Jacoby AS, Shine J, Crawley JN, Iismaa T, Wiesenfeld-Hallin Z. (2003) Hyperalgesia and increased neuropathic pain-like response in mice lacking galanin receptor 1 receptors. Neuroscience, 117 (1): 221-7. [PMID:12605908]

11. Borowsky B, Walker MW, Huang LY, Jones KA, Smith KE, Bard J, Branchek TA, Gerald C. (1998) Cloning and characterization of the human galanin GALR2 receptor. Peptides, 19 (10): 1771-81. [PMID:9880084]

12. Borroto-Escuela DO, Narvaez M, Marcellino D, Parrado C, Narvaez JA, Tarakanov AO, Agnati LF, Díaz-Cabiale Z, Fuxe K. (2010) Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization. Biochem Biophys Res Commun, 393 (4): 767-72. [PMID:20171159]

13. Boughton CK, Patterson M, Bewick GA, Tadross JA, Gardiner JV, Beale KE, Chaudery F, Hunter G, Busbridge M, Leavy EM et al.. (2010) Alarin stimulates food intake and gonadotrophin release in male rats. Br J Pharmacol, 161 (3): 601-13. [PMID:20880399]

14. Bulaj G, Green BR, Lee HK, Robertson CR, White K, Zhang L, Sochanska M, Flynn SP, Scholl EA, Pruess TH et al.. (2008) Design, synthesis, and characterization of high-affinity, systemically-active galanin analogues with potent anticonvulsant activities. J Med Chem, 51 (24): 8038-47. [PMID:19053761]

15. Burgevin MC, Loquet I, Quarteronet D, Habert-Ortoli E. (1995) Cloning, pharmacological characterization, and anatomical distribution of a rat cDNA encoding for a galanin receptor. J Mol Neurosci, 6 (1): 33-41. [PMID:8562318]

16. Chu M, Mierzwa R, Truumees I, King A, Sapidou E, Barrabee E, Terracciano J, Patel MG, Gullo VP Burrier R et al. (1997) A new fungal metabolite, Sch 202696, with Inhibitory Activity in the Galanin Receptor GALR1 Assay. Tetrahedreon Letters, 38 (35): 6111-6114.

17. Church WB, Jones KA, Kuiper DA, Shine J, Iismaa TP. (2002) Molecular modelling and site-directed mutagenesis of human GALR1 galanin receptor defines determinants of receptor subtype specificity. Protein Eng, 15 (4): 313-23. [PMID:11983932]

18. Cody JD, Hale DE, Brkanac Z, Kaye CI, Leach RJ. (1997) Growth hormone insufficiency associated with haploinsufficiency at 18q23. Am J Med Genet, 71 (4): 420-5. [PMID:9286448]

19. Counts SE, McGuire SO, Sortwell CE, Crawley JN, Collier TJ, Mufson EJ. (2002) Galanin inhibits tyrosine hydroxylase expression in midbrain dopaminergic neurons. J Neurochem, 83 (2): 442-51. [PMID:12423254]

20. Davis TM, McFail-Isom L, Keane E, Williams LD. (1998) Melting of a DNA hairpin without hyperchromism. Biochemistry, 37 (19): 6975-8. [PMID:9578584]

21. Dostal A, Nemeckova J, Gaillyova R, Vranova V, Zezulkova D, Lejska M, Slapak I, Dostalova Z, Kuglik P. (2006) Identification of 2.3-Mb gene locus for congenital aural atresia in 18q22.3 deletion: a case report analyzed by comparative genomic hybridization. Otol Neurotol, 27 (3): 427-32. [PMID:16639285]

22. Fathi Z, Battaglino PM, Iben LG, Li H, Baker E, Zhang D, McGovern R, Mahle CD, Sutherland GR, Iismaa TP et al.. (1998) Molecular characterization, pharmacological properties and chromosomal localization of the human GALR2 galanin receptor. Brain Res Mol Brain Res, 58 (1-2): 156-69. [PMID:9685625]

23. Fetissov SO, Jacoby AS, Brumovsky PR, Shine J, Iismaa TP, Hökfelt T. (2003) Altered hippocampal expression of neuropeptides in seizure-prone GALR1 knockout mice. Epilepsia, 44 (8): 1022-33. [PMID:12887433]

24. Fitzgerald LW, Patterson JP, Conklin DS, Horlick R, Largent BL. (1998) Pharmacological and biochemical characterization of a recombinant human galanin GALR1 receptor: agonist character of chimeric galanin peptides. J Pharmacol Exp Ther, 287 (2): 448-56. [PMID:9808667]

25. Gold AB, Wileyto EP, Lori A, Conti D, Cubells JF, Lerman C. (2012) Pharmacogenetic association of the galanin receptor (GALR1) SNP rs2717162 with smoking cessation. Neuropsychopharmacology, 37 (7): 1683-8. [PMID:22373943]

26. Guerrini S, Raybould HE, Anselmi L, Agazzi A, Cervio E, Reeve Jr JR, Tonini M, Sternini C. (2004) Role of galanin receptor 1 in gastric motility in rat. Neurogastroenterol Motil, 16 (4): 429-38. [PMID:15305998]

27. Gunn SR, Mohammed M, Reveles XT, Viskochil DH, Palumbos JC, Johnson-Pais TL, Hale DE, Lancaster JL, Hardies LJ, Boespflug-Tanguy O et al.. (2003) Molecular characterization of a patient with central nervous system dysmyelination and cryptic unbalanced translocation between chromosomes 4q and 18q. Am J Med Genet A, 120A (1): 127-35. [PMID:12794705]

28. Gustafson EL, Smith KE, Durkin MM, Gerald C, Branchek TA. (1996) Distribution of a rat galanin receptor mRNA in rat brain. Neuroreport, 7 (4): 953-7. [PMID:8724681]

29. Habert-Ortoli E, Amiranoff B, Loquet I, Laburthe M, Mayaux JF. (1994) Molecular cloning of a functional human galanin receptor. Proc Natl Acad Sci USA, 91 (21): 9780-3. [PMID:7524088]

30. Henson BS, Neubig RR, Jang I, Ogawa T, Zhang Z, Carey TE, D'Silva NJ. (2005) Galanin receptor 1 has anti-proliferative effects in oral squamous cell carcinoma. J Biol Chem, 280 (24): 22564-71. [PMID:15767248]

31. Holmes A, Kinney JW, Wrenn CC, Li Q, Yang RJ, Ma L, Vishwanath J, Saavedra MC, Innerfield CE, Jacoby AS et al.. (2003) Galanin GAL-R1 receptor null mutant mice display increased anxiety-like behavior specific to the elevated plus-maze. Neuropsychopharmacology, 28 (6): 1031-44. [PMID:12700679]

32. Holmes A, Li Q, Koenig EA, Gold E, Stephenson D, Yang RJ, Dreiling J, Sullivan T, Crawley JN. (2005) Phenotypic assessment of galanin overexpressing and galanin receptor R1 knockout mice in the tail suspension test for depression-related behavior. Psychopharmacology (Berl.), 178 (2-3): 276-85. [PMID:15365683]

33. Howard AD, Tan C, Shiao LL, Palyha OC, McKee KK, Weinberg DH, Feighner SD, Cascieri MA, Smith RG, Van Der Ploeg LH et al.. (1997) Molecular cloning and characterization of a new receptor for galanin. FEBS Lett, 405 (3): 285-90. [PMID:9108306]

34. Hua XY, Hayes CS, Hofer A, Fitzsimmons B, Kilk K, Langel U, Bartfai T, Yaksh TL. (2004) Galanin acts at GalR1 receptors in spinal antinociception: synergy with morphine and AP-5. J Pharmacol Exp Ther, 308 (2): 574-82. [PMID:14610237]

35. Hulse RP, Donaldson LF, Wynick D. (2012) Differential roles of galanin on mechanical and cooling responses at the primary afferent nociceptor. Mol Pain, 8: 41. [PMID:22672616]

36. Jackson KJ, Chen X, Miles MF, Harenza J, Damaj MI. (2011) The neuropeptide galanin and variants in the GalR1 gene are associated with nicotine dependence. Neuropsychopharmacology, 36 (11): 2339-48. [PMID:21796100]

37. Jacoby AS, Hort YJ, Constantinescu G, Shine J, Iismaa TP. (2002) Critical role for GALR1 galanin receptor in galanin regulation of neuroendocrine function and seizure activity. Brain Res Mol Brain Res, 107 (2): 195-200. [PMID:12487125]

38. Jacoby AS, Webb GC, Liu ML, Kofler B, Hort YJ, Fathi Z, Bottema CD, Shine J, Iismaa TP. (1997) Structural organization of the mouse and human GALR1 galanin receptor genes (Galnr and GALNR) and chromosomal localization of the mouse gene. Genomics, 45 (3): 496-508. [PMID:9367674]

39. Jimenez-Andrade JM, Lundström L, Sollenberg UE, Langel U, Castañeda-Hernandez G, Carlton SM. (2006) Activation of peripheral galanin receptors: differential effects on nociception. Pharmacol Biochem Behav, 85 (1): 273-80. [PMID:16996122]

40. Kai A, Ono K, Kawano H, Honda E, Nakanishi O, Inenaga K. (2006) Galanin inhibits neural activity in the subfornical organ in rat slice preparation. Neuroscience, 143 (3): 769-77. [PMID:17027169]

41. Kanazawa T, Iwashita T, Kommareddi P, Nair T, Misawa K, Misawa Y, Ueda Y, Tono T, Carey TE. (2007) Galanin and galanin receptor type 1 suppress proliferation in squamous carcinoma cells: activation of the extracellular signal regulated kinase pathway and induction of cyclin-dependent kinase inhibitors. Oncogene, 26 (39): 5762-71. [PMID:17384686]

42. Kong S, Lorenzana A, Deng Q, McNeill TH, Schauwecker PE. (2008) Variation in Galr1 expression determines susceptibility to exocitotoxin-induced cell death in mice. Genes Brain Behav, 7 (5): 587-98. [PMID:18363852]

43. Kuteeva E, Wardi T, Lundström L, Sollenberg U, Langel U, Hökfelt T, Ogren SO. (2008) Differential role of galanin receptors in the regulation of depression-like behavior and monoamine/stress-related genes at the cell body level. Neuropsychopharmacology, 33 (11): 2573-85. [PMID:18172432]

44. Lang R, Berger A, Santic R, Geisberger R, Hermann A, Herzog H, Kofler B. (2005) Pharmacological and functional characterization of galanin-like peptide fragments as potent galanin receptor agonists. Neuropeptides, 39 (3): 179-84. [PMID:15944009]

45. Lang R, Gundlach AL, Kofler B. (2007) The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther, 115 (2): 177-207. [PMID:17604107]

46. Langel U, Pooga M, Kairane C, Zilmer M, Bartfai T. (1996) A galanin-mastoparan chimeric peptide activates the Na+,K(+)-ATPase and reverses its inhibition by ouabain. Regul Pept, 62 (1): 47-52. [PMID:8738882]

47. Lee SK, Arbini AA, Galloway MT. (2001) Angioleiomyoma of the patellar tendon sheath. Case report. Am J Knee Surg, 14 (3): 178-80. [PMID:11491429]

48. Li J, Zhang JJ, Xu SL, Yu LC. (2012) Antinociceptive effects induced by injection of the galanin receptor 1 agonist M617 into central nucleus of amygdala in rats. Neurosci Lett, 526 (1): 45-8. [PMID:22884928]

49. Liu HX, Brumovsky P, Schmidt R, Brown W, Payza K, Hodzic L, Pou C, Godbout C, Hökfelt T. (2001) Receptor subtype-specific pronociceptive and analgesic actions of galanin in the spinal cord: selective actions via GalR1 and GalR2 receptors. Proc Natl Acad Sci USA, 98 (17): 9960-4. [PMID:11481429]

50. Lori A, Tang Y, O'Malley S, Picciotto MR, Wu R, Conneely KN, Cubells JF. (2011) The galanin receptor 1 gene associates with tobacco craving in smokers seeking cessation treatment. Neuropsychopharmacology, 36 (7): 1412-20. [PMID:21430647]

51. Lorimer DD, Benya RV. (1996) Cloning and quantification of galanin-1 receptor expression by mucosal cells lining the human gastrointestinal tract. Biochem Biophys Res Commun, 222 (2): 379-85. [PMID:8670213]

52. Lu X, Lundström L, Bartfai T. (2005) Galanin (2-11) binds to GalR3 in transfected cell lines: limitations for pharmacological definition of receptor subtypes. Neuropeptides, 39 (3): 165-7. [PMID:15944007]

53. Lu X, Lundström L, Langel U, Bartfai T. (2005) Galanin receptor ligands. Neuropeptides, 39 (3): 143-6. [PMID:15944002]

54. Lundkvist J, Land T, Kahl U, Bedecs K, Bartfai T. (1995) cDNA sequence, ligand biding, and regulation of galanin/GMAP in mouse brain. Neurosci Lett, 200 (2): 121-4. [PMID:8614559]

55. Lundström L, Sollenberg U, Brewer A, Kouya PF, Zheng K, Xu X, Sheng X, Robinson JK, Wiesenfeld-Hallin Z, Xu Z et al. (2005) A Galanin Receptor Subtype 1 Specific Agonist. International Journal of Peptide Research and Therapeutics,, 11 (1): 17-27.

56. Ma X, Tong YG, Schmidt R, Brown W, Payza K, Hodzic L, Pou C, Godbout C, Hökfelt T, Xu ZQ. (2001) Effects of galanin receptor agonists on locus coeruleus neurons. Brain Res, 919 (1): 169-74. [PMID:11689176]

57. Malkmus S, Lu X, Bartfai T, Yaksh TL, Hua XY. (2005) Increased hyperalgesia after tissue injury and faster recovery of allodynia after nerve injury in the GalR1 knockout mice. Neuropeptides, 39 (3): 217-21. [PMID:15944015]

58. Margarit E, Morales C, Rodríguez-Revenga L, Monné R, Badenas C, Soler A, Clusellas N, Mademont I, Sánchez A. (2012) Familial 4.8 MB deletion on 18q23 associated with growth hormone insufficiency and phenotypic variability. Am J Med Genet A, 158A (3): 611-6. [PMID:22302430]

59. Mazarati A, Lu X. (2005) Regulation of limbic status epilepticus by hippocampal galanin type 1 and type 2 receptors. Neuropeptides, 39 (3): 277-80. [PMID:15944022]

60. Mazarati A, Lu X, Shinmei S, Badie-Mahdavi H, Bartfai T. (2004) Patterns of seizures, hippocampal injury and neurogenesis in three models of status epilepticus in galanin receptor type 1 (GalR1) knockout mice. Neuroscience, 128 (2): 431-41. [PMID:15350653]

61. Mazarati A, Lundström L, Sollenberg U, Shin D, Langel U, Sankar R. (2006) Regulation of kindling epileptogenesis by hippocampal galanin type 1 and type 2 receptors: The effects of subtype-selective agonists and the role of G-protein-mediated signaling. J Pharmacol Exp Ther, 318 (2): 700-8. [PMID:16699066]

62. Mazarati AM, Baldwin RA, Shinmei S, Sankar R. (2005) In vivo interaction between serotonin and galanin receptors types 1 and 2 in the dorsal raphe: implication for limbic seizures. J Neurochem, 95 (5): 1495-503. [PMID:16219029]

63. McColl CD, Jacoby AS, Shine J, Iismaa TP, Bekkers JM. (2006) Galanin receptor-1 knockout mice exhibit spontaneous epilepsy, abnormal EEGs and altered inhibition in the hippocampus. Neuropharmacology, 50 (2): 209-18. [PMID:16243364]

64. Misawa K, Ueda Y, Kanazawa T, Misawa Y, Jang I, Brenner JC, Ogawa T, Takebayashi S, Grenman RA, Herman JG et al.. (2008) Epigenetic inactivation of galanin receptor 1 in head and neck cancer. Clin Cancer Res, 14 (23): 7604-13. [PMID:19047085]

65. Mitsukawa K, Lu X, Bartfai T. (2009) Bidirectional regulation of stress responses by galanin in mice: involvement of galanin receptor subtype 1. Neuroscience, 160 (4): 837-46. [PMID:19272414]

66. Nancarrow DJ, Handoko HY, Smithers BM, Gotley DC, Drew PA, Watson DI, Clouston AD, Hayward NK, Whiteman DC. (2008) Genome-wide copy number analysis in esophageal adenocarcinoma using high-density single-nucleotide polymorphism arrays. Cancer Res, 68 (11): 4163-72. [PMID:18519675]

67. Nicholl J, Kofler B, Sutherland GR, Shine J, Iismaa TP. (1995) Assignment of the gene encoding human galanin receptor (GALNR) to 18q23 by in situ hybridization. Genomics, 30 (3): 629-30. [PMID:8825658]

68. Ohtaki T, Kumano S, Ishibashi Y, Ogi K, Matsui H, Harada M, Kitada C, Kurokawa T, Onda H, Fujino M. (1999) Isolation and cDNA cloning of a novel galanin-like peptide (GALP) from porcine hypothalamus. J Biol Chem, 274 (52): 37041-5. [PMID:10601261]

69. Page AJ, Slattery JA, Brierley SM, Jacoby AS, Blackshaw LA. (2007) Involvement of galanin receptors 1 and 2 in the modulation of mouse vagal afferent mechanosensitivity. J Physiol (Lond.), 583 (Pt 2): 675-84. [PMID:17627995]

70. Pang L, Hashemi T, Lee HJ, Maguire M, Graziano MP, Bayne M, Hawes B, Wong G, Wang S. (1998) The mouse GalR2 galanin receptor: genomic organization, cDNA cloning, and functional characterization. J Neurochem, 71 (6): 2252-9. [PMID:9832122]

71. Parker EM, Izzarelli DG, Nowak HP, Mahle CD, Iben LG, Wang J, Goldstein ME. (1995) Cloning and characterization of the rat GALR1 galanin receptor from Rin14B insulinoma cells. Brain Res Mol Brain Res, 34 (2): 179-89. [PMID:8750821]

72. Perel Y, Amrein L, Dobremez E, Rivel J, Daniel JY, Landry M. (2002) Galanin and galanin receptor expression in neuroblastic tumours: correlation with their differentiation status. Br J Cancer, 86 (1): 117-22. [PMID:11857022]

73. Potter EK, Smith-White MA. (2005) Galanin modulates cholinergic neurotransmission in the heart. Neuropeptides, 39 (3): 345-8. [PMID:15944033]

74. Poulain P, Decrocq N, Mitchell V. (2003) Direct inhibitory action of galanin on hypothalamic arcuate nucleus neurones expressing galanin receptor Gal-r1 mRNA. Neuroendocrinology, 78 (2): 105-17. [PMID:12915763]

75. Pristov JB, Mitrović A, Spasojević I. (2011) A comparative study of antioxidative activities of cell-wall polysaccharides. Carbohydr Res, 346 (14): 2255-9. [PMID:21880306]

76. Rezaei K, Xu IS, Wu WP, Shi TJ, Soomets U, Land T, Xu XJ, Wiesenfeld-Hallin Z, Hökfelt T, Bartfai T et al.. (2001) Intrathecal administration of PNA targeting galanin receptor reduces galanin-mediated inhibitory effect in the rat spinal cord. Neuroreport, 12 (2): 317-20. [PMID:11209942]

77. Robertson CR, Scholl EA, Pruess TH, Green BR, White HS, Bulaj G. (2010) Engineering galanin analogues that discriminate between GalR1 and GalR2 receptor subtypes and exhibit anticonvulsant activity following systemic delivery. J Med Chem, 53 (4): 1871-5. [PMID:20121116]

78. Runesson J, Saar I, Lundström L, Järv J, Langel U. (2009) A novel GalR2-specific peptide agonist. Neuropeptides, 43 (3): 187-92. [PMID:19467704]

79. Saar I, Lahe J, Langel K, Runesson J, Webling K, Järv J, Rytkönen J, Närvänen A, Bartfai T, Kurrikoff K et al.. (2013) Novel systemically active galanin receptor 2 ligands in depression-like behavior. J Neurochem, 127 (1): 114-23. [PMID:23600864]

80. Saar I, Runesson J, Järv J, Kurrikoff K, Langel U. (2013) Novel galanin receptor subtype specific ligand in depression like behavior. Neurochem Res, 38 (2): 398-404. [PMID:23192661]

81. Saar I, Runesson J, McNamara I, Järv J, Robinson JK, Langel U. (2011) Novel galanin receptor subtype specific ligands in feeding regulation. Neurochem Int, 58 (6): 714-20. [PMID:21333705]

82. Saar K, Mahlapuu R, Laidmäe E, Valkna A, Kahl U, Karelson E, Langel U. (2001) Characterisation of a new chimeric ligand for galanin receptors: galanin(1-13)-[D-Trp(32)]-neuropeptide Y(25-36)amide. Regul Pept, 102 (1): 15-9. [PMID:11600206]

83. Sadegh M, Mirnajafi-Zadeh J, Javan M, Fathollahi Y, Mohammad-Zadeh M, Jahanshahi A, Noorbakhsh SM. (2007) The role of galanin receptors in anticonvulsant effects of low-frequency stimulation in perforant path-kindled rats. Neuroscience, 150 (2): 396-403. [PMID:17993248]

84. Scott MK, Ross TM, Lee DH, Wang HY, Shank RP, Wild KD, Davis CB, Crooke JJ, Potocki AC, Reitz AB. (2000) 2,3-Dihydro-dithiin and -dithiepine-1,1,4,4-tetroxides: small molecule non-peptide antagonists of the human galanin hGAL-1 receptor. Bioorg Med Chem, 8 (6): 1383-91. [PMID:10896115]

85. Smith KE, Forray C, Walker MW, Jones KA, Tamm JA, Bard J, Branchek TA, Linemeyer DL, Gerald C. (1997) Expression cloning of a rat hypothalamic galanin receptor coupled to phosphoinositide turnover. J Biol Chem, 272 (39): 24612-6. [PMID:9305929]

86. Smith KE, Walker MW, Artymyshyn R, Bard J, Borowsky B, Tamm JA, Yao WJ, Vaysse PJ, Branchek TA, Gerald C et al.. (1998) Cloned human and rat galanin GALR3 receptors. Pharmacology and activation of G-protein inwardly rectifying K+ channels. J Biol Chem, 273 (36): 23321-6. [PMID:9722565]

87. Sollenberg U, Bartfai T, Langel U. (2005) Galnon--a low-molecular weight ligand of the galanin receptors. Neuropeptides, 39 (3): 161-3. [PMID:15944006]

88. Sollenberg UE, Lundstrom L, Barfa T, Langel U. (2006) M871- A Novel Peptide Antagonist Selectively Recognising the Galanin Receptor Type 2. Int J Pept Res, 12 (2): 115-119.

89. Stevenson L, Allen WL, Turkington R, Jithesh PV, Proutski I, Stewart G, Lenz HJ, Van Schaeybroeck S, Longley DB, Johnston PG. (2012) Identification of galanin and its receptor GalR1 as novel determinants of resistance to chemotherapy and potential biomarkers in colorectal cancer. Clin Cancer Res, 18 (19): 5412-26. [PMID:22859720]

90. Sugimoto T, Seki N, Shimizu S, Kikkawa N, Tsukada J, Shimada H, Sasaki K, Hanazawa T, Okamoto Y, Hata A. (2009) The galanin signaling cascade is a candidate pathway regulating oncogenesis in human squamous cell carcinoma. Genes Chromosomes Cancer, 48 (2): 132-42. [PMID:18973137]

91. Sullivan KA, Shiao LL, Cascieri MA. (1997) Pharmacological characterization and tissue distribution of the human and rat GALR1 receptors. Biochem Biophys Res Commun, 233 (3): 823-8. [PMID:9168941]

92. Trejter M, Brelinska R, Warchol JB, Butowska W, Neri G, Rebuffat P, Gottardo L, Malendowicz LK. (2002) Effects of galanin on proliferation and apoptosis of immature rat thymocytes. Int J Mol Med, 10 (2): 183-6. [PMID:12119556]

93. Wang S, Clemmons A, Strader C, Bayne M. (1998) Evidence for hydrophobic interaction between galanin and the GalR1 galanin receptor and GalR1-mediated ligand internalization: fluorescent probing with a fluorescein-galanin. Biochemistry, 37 (26): 9528-35. [PMID:9649336]

94. Wang S, Ghibaudi L, Hashemi T, He C, Strader C, Bayne M, Davis H, Hwa JJ. (1998) The GalR2 galanin receptor mediates galanin-induced jejunal contraction, but not feeding behavior, in the rat: differentiation of central and peripheral effects of receptor subtype activation. FEBS Lett, 434 (3): 277-82. [PMID:9742938]

95. Wang S, Hashemi T, Fried S, Clemmons AL, Hawes BE. (1998) Differential intracellular signaling of the GalR1 and GalR2 galanin receptor subtypes. Biochemistry, 37 (19): 6711-7. [PMID:9578554]

96. Wang S, Hashemi T, He C, Strader C, Bayne M. (1997) Molecular cloning and pharmacological characterization of a new galanin receptor subtype. Mol Pharmacol, 52 (3): 337-43. [PMID:9281594]

97. Wang S, He C, Hashemi T, Bayne M. (1997) Cloning and expressional characterization of a novel galanin receptor. Identification of different pharmacophores within galanin for the three galanin receptor subtypes. J Biol Chem, 272 (51): 31949-52. [PMID:9405385]

98. Wang S, He C, Maguire MT, Clemmons AL, Burrier RE, Guzzi MF, Strader CD, Parker EM, Bayne ML. (1997) Genomic organization and functional characterization of the mouse GalR1 galanin receptor. FEBS Lett, 411 (2-3): 225-30. [PMID:9271210]

99. Wiedmann M, Hagendorff A, Böhm R, Schulz T, Mössner J, Caca K. (2005) Malignant oesophago-pleuro-pericardial fistula in a patient with oesophageal carcinoma. Z Kardiol, 94 (6): 411-4. [PMID:15940442]

100. Wiesenfeld-Hallin Z, Xu XJ, Crawley JN, Hökfelt T. (2005) Galanin and spinal nociceptive mechanisms: recent results from transgenic and knock-out models. Neuropeptides, 39 (3): 207-10. [PMID:15944013]

101. Wirz SA, Davis CN, Lu X, Zal T, Bartfai T. (2005) Homodimerization and internalization of galanin type 1 receptor in living CHO cells. Neuropeptides, 39 (6): 535-46. [PMID:16242774]

102. Wrenn CC, Kinney JW, Marriott LK, Holmes A, Harris AP, Saavedra MC, Starosta G, Innerfield CE, Jacoby AS, Shine J et al.. (2004) Learning and memory performance in mice lacking the GAL-R1 subtype of galanin receptor. Eur J Neurosci, 19 (5): 1384-96. [PMID:15016096]

103. Xu X, Liu Z, Liu H, Yang X, Li Z. (2012) The effects of galanin on neuropathic pain in streptozotocin-induced diabetic rats. Eur J Pharmacol, 680 (1-3): 28-33. [PMID:22306246]

104. Xu ZQ, Shi TJ, Landry M, Hökfelt T. (1996) Evidence for galanin receptors in primary sensory neurones and effect of axotomy and inflammation. Neuroreport, 8 (1): 237-42. [PMID:9051788]

105. Zhang L, Klein BD, Metcalf CS, Smith MD, McDougle DR, Lee HK, White HS, Bulaj G. (2013) Incorporation of monodisperse oligoethyleneglycol amino acids into anticonvulsant analogues of galanin and neuropeptide y provides peripherally acting analgesics. Mol Pharm, 10 (2): 574-85. [PMID:23259957]

106. Zhang L, Robertson CR, Green BR, Pruess TH, White HS, Bulaj G. (2009) Structural requirements for a lipoamino acid in modulating the anticonvulsant activities of systemically active galanin analogues. J Med Chem, 52 (5): 1310-6. [PMID:19199479]

Contributors

Show »

How to cite this page