α2A-adrenoceptor

Nomenclature: α2A-adrenoceptor

Family: Adrenoceptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 450 10q24-q26 ADRA2A adrenoceptor alpha 2A 21
Mouse 7 450 19 D2 Adra2a adrenergic receptor, alpha 2a 26
Rat 7 450 1 Adra2a adrenoceptor alpha 2A 23
Previous and Unofficial Names
α2-C10
RG20
α2D
ADRA2
ADRA2R
ADRAR
adrenergic, alpha-2A-, receptor
alpha-2AAR subtype C10
alpha-2A-adrenergic receptor
CA2-47
RATRG20
Adrenergic alpha 2A receptor
Adrenergic, alpha 2A, receptor
adrenergic receptor, alpha 2a
alpha-2A adrenergic receptor
alpha-2A adrenoceptor
alpha-2A adrenoreceptor
alpha-2AAR
alpha-2D adrenergic receptor
alpha2A
alpha2A-adrenergic receptor
Adra-2a
Adra-2
alpha2A-AR
alpha(2A)AR
AW122659
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
(-)-adrenaline
(-)-noradrenaline
Comments: Adrenaline exhibits greater relative potency than noradrenaline
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
dexmedetomidine Hs Partial agonist 7.6 – 9.6 pKi 17,35,37
pKi 7.6 – 9.6 [17,35,37]
apraclonidine Hs Agonist 8.54 pKi 31
pKi 8.54 (Ki 2.9x10-9 M) [31]
clonidine Hs Partial agonist 7.2 – 9.2 pKi 17,35,37
pKi 7.2 – 9.2 [17,35,37]
oxymetazoline Hs Partial agonist 8.0 pKi 17,38
pKi 8.0 [17,38]
brimonidine Hs Full agonist 6.7 – 8.7 pKi 17,35,37
pKi 6.7 – 8.7 [17,35,37]
pergolide Hs Partial agonist 7.3 pKi 29
pKi 7.3 [29]
guanfacine Hs Partial agonist 7.1 – 7.3 pKi 17,27
pKi 7.1 – 7.3 [17,27]
(-)-noradrenaline Hs Full agonist 5.6 – 8.4 pKi 17,35,37
pKi 5.6 – 8.4 [17,35,37]
(-)-adrenaline Hs Full agonist 5.6 – 8.3 pKi 17,37
pKi 5.6 – 8.3 [17,37]
apomorphine Hs Partial agonist 6.9 pKi 29
pKi 6.9 [29]
xylazine Hs Partial agonist 5.7 pKi 17
pKi 5.7 [17]
guanabenz Hs Agonist 7.39 pIC50 2
pIC50 7.39 (IC50 4.1x10-8 M) [2]
Agonist Comments
[3H]UK4,304 binds to the α2A receptor of human platelet membranes with high and low affinity Kd values of 2.6 and 170 nM, respectively with 73% bound at the high affinity site [32]. The discrepancies between the two studies relate to buffer differences (and probably tissue source and membrane preparation methods).
[125I]p-iodoclonidine binds to the human α2A receptor with a Kd of 1.5 nM [33].
The species ortholog of the human α2A receptors (α2D) found in the rat, mouse and cow has significantly different antogonist pharmacology, but the agonist pharmacology appears to be similar.

Apraclonidine is an approved drug agonist of α2-adrenoceptors [31].
The approved drug oxymetazoline has been mapped to the primary targets α1A and α2A adrenoceptors as these have comparably the highest affinity interaction with the drug. This does not preclude clinically relevant activity at other adrenoceptors.
As the endogenous ligand, (-)-adrenaline has intrinsic activity across the adrenoceptor family, but we've only tagged α1D and α2A subtypes as primary drug target as the drug has highest affinity at these isoforms.
Guanabenz order of affinity is α2A-AR>α2B-AR>α2C-AR [2].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]rauwolscine Hs Antagonist 9.5 pKd 4,6
pKd 9.5 [4,6]
[3H]RX821002 Hs Antagonist 8.8 – 9.5 pKd 6-7
pKd 8.8 – 9.5 [6-7]
[3H]MK-912 Hs Antagonist 8.9 pKd 38
pKd 8.9 [38]
lisuride Hs Antagonist 10.3 pKi 29
pKi 10.3 [29]
terguride Hs Antagonist 9.5 pKi 29
pKi 9.5 [29]
RX821002 Hs Antagonist 9.2 pKi 38
pKi 9.2 [38]
yohimbine Hs Antagonist 8.4 – 9.2 pKi 4,7,38
pKi 8.4 – 9.2 [4,7,38]
BRL 44408 Hs Antagonist 8.2 – 8.77 pKi 38,40
pKi 8.2 – 8.77 [38,40]
phentolamine Hs Antagonist 8.4 pKi 4,7
pKi 8.4 [4,7]
rauwolscine Hs Antagonist 8.4 pKi 38
pKi 8.4 [38]
WB 4101 Hs Antagonist 7.6 – 8.9 pKi 4,7,38
pKi 7.6 – 8.9 [4,7,38]
bromocriptine Hs Antagonist 8.0 pKi 29
pKi 8.0 [29]
cabergoline Hs Antagonist 7.9 pKi 29
pKi 7.9 [29]
mirtazapine Hs Antagonist 7.7 pKi 11
pKi 7.7 (Ki 2x10-8 M) [11]
Description: Inhibition of [3H]rauwolscine binding.
tolazoline Hs Antagonist 7.62 pKi 17
pKi 7.62 (Ki 2.29x10-7 M) [17]
Description: Inhibition of agonist-stimulated [35S]GTPγS binding
lurasidone Hs Antagonist 7.39 pKi 16
pKi 7.39 (Ki 4.07x10-8 M) [16]
spiroxatrine Hs Antagonist 7.3 pKi 38
pKi 7.3 [38]
piribedil Hs Antagonist 7.1 pKi 29
pKi 7.1 [29]
chlorpromazine Hs Antagonist 5.9 – 6.6 pKi 4,7
pKi 5.9 – 6.6 [4,7]
ARC-239 Hs Antagonist 5.5 – 6.8 pKi 4,7,38
pKi 5.5 – 6.8 [4,7,38]
prazosin Hs Antagonist 5.3 – 6.5 pKi 4,7,38
pKi 5.3 – 6.5 [4,7,38]
mirtazapine Hs Antagonist 7.07 pIC50 20
pIC50 7.07 (IC50 8.511x10-8 M) [20]
Antagonist Comments
The species orthologs of the human α2A receptors (α2D) found in the rat, mouse, cow and chicken have significantly different antagonist pharmacology.
For example, [3H]rauwolscine has a much lower affinity for the α2D as compared to the α2A, whereas [3H]RX821002 has higher affinity [6].
Other agents that have a five-fold or greater lower affinity for the α2D include WB 4101, oxymetazoline, SKF 104078, raubasine and chlorpromazine [33]).
In binding assays, affinities are dependent on buffer condidtions [6].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
HMA Hs Negative 2.5 pKd 24,39
pKd 2.5 [24,39]
EIPA Hs Positive 1.8 pKd 39
pKd 1.8 [39]
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Adenylate cyclase inhibition
Potassium channel
Calcium channel
Phospholipase A2 stimulation
References:  5,18,25
Secondary Transduction Mechanisms
Transducer Effector/Response
Gs family Adenylate cyclase stimulation
Comments:  The physiological significance of this mechanism is unknown.
References:  9
Tissue Distribution
Brain > spleen > kidney > aorta = lung = skeletal muscle > heart = liver.
Species:  Human
Technique:  RNAse protection of mRNA.
References:  10,36
Brain > spleen = kidney = aorta > lung = skeletal muscle.
Absent in heart and liver.
Species:  Rat
Technique:  RNAse protection of mRNA.
References:  3,12
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of the inhibition of adenylate cyclase activity using intact cell preparations (either native or transfected) using the [3H]adenine prelabeling technique to measure cAMP accumulation.
Species:  Human
Tissue:  HT29 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  5
Segments of saphenous vein are incubated with [3H]noradrenaline and subsequently superfused with physiological salt solution containing uptake 1 and uptake 2 blockers. The antagonists potencies in facilitating the electrically (2 Hz) evoked tritium overflow is determined.
Species:  Human
Tissue:  Saphenous vein.
Response measured:  Electrically evoked tritium overflow.
References:  8,30
Physiological Functions
Hypotension.
Species:  Mouse
Tissue:  CNS.
References:  19,28
Sedation.
Species:  Mouse
Tissue:  CNS.
References:  15,19,22
Analgesia.
Species:  Mouse
Tissue:  Brain.
References:  15,19,22
Hypothermia.
Species:  Mouse
Tissue:  CNS.
References:  15,19
Anesthetic-sparing effect.
Species:  Mouse
Tissue:  CNS.
References:  19,22
Presynaptic inhibition of noradrenaline release.
Species:  Mouse
Tissue:  Vasa deferens, heart.
References:  1,13,19
Physiological Consequences of Altering Gene Expression
The α2A-adrenoceptor knock-out mice show an increase in sympathetic activity, resting tachycardia, depletion of cardiac tissue noradrenaline concentration and down-regulation of cardiac β-adrenoceptors.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  1
α2A-adrenoceptor knockout mice exhibit disruption of presynaptic inhibition of noradrenaline release at high stimulation frequencies. This study showed that the α2A receptor is the principal autoreceptor in the presynaptic feedback loop regulating noradrenaline release. However, another α2 autoreceptor is also present.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  13
α2A-adrenoceptor knockout mice exhibit no amitriptyline-induced (a tricyclic antidepressant) or clonidine-induced analgesia. This study shows that the α2A-adrenoceptors are involved in the sedative effects of these drugs.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  34
The hypotensive effects of α2A agonists are abolished in α2A-adrenoceptor knockout mice.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  14
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adra2atm1Bkk Adra2atm1Bkk/Adra2atm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87934  MP:0002078 abnormal glucose homeostasis PMID: 17992256 
Adra2atm1Bkk|Adra2btm1Gsb|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2btm1Gsb/Adra2btm1Gsb,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87935  MGI:87936  MP:0001712 abnormal placenta development PMID: 12068299 
Adra2atm1Bkk Adra2atm1Bkk/Adra2atm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:87934  MP:0005447 abnormal synaptic norepinephrine release PMID: 10647009 
Adra2atm1Bkk|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87936  MP:0005447 abnormal synaptic norepinephrine release PMID: 10647009 
Adra2atm1Bkk Adra2atm1Bkk/Adra2atm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:87934  MP:0000230 abnormal systemic arterial blood pressure PMID: 10385696 
Adra2atm1Lel Adra2atm1Lel/Adra2atm1Lel
involves: 129S2/SvPas * C57BL/6
MGI:87934  MP:0000230 abnormal systemic arterial blood pressure PMID: 8670421 
Adra2atm1Bkk|Adra2btm1Gsb|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2btm1Gsb/Adra2btm1Gsb,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87935  MGI:87936  MP:0001718 abnormal yolk sac morphology PMID: 12068299 
Adra2atm1Bkk|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87936  MP:0001625 cardiac hypertrophy PMID: 10647009 
Adra2atm1Bkk|Adra2btm1Gsb|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2btm1Gsb/Adra2btm1Gsb,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87935  MGI:87936  MP:0005333 decreased heart rate PMID: 12068299 
Adra2atm1Bkk|Adra2btm1Gsb|Adra2ctm1Gsb Adra2atm1Bkk/Adra2atm1Bkk,Adra2btm1Gsb/Adra2btm1Gsb,Adra2ctm1Gsb/Adra2ctm1Gsb
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * DBA/2J
MGI:87934  MGI:87935  MGI:87936  MP:0006207 embryonic lethality during organogenesis PMID: 12068299 
Adra2atm1Bkk Adra2atm1Bkk/Adra2atm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87934  MP:0000189 hypoglycemia PMID: 17992256 
Adra2atm1Bkk Adra2atm1Bkk/Adra2atm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:87934  MP:0002626 increased heart rate PMID: 10385696 
Adra2atm1Qiwa Adra2atm1Qiwa/Adra2atm1Qiwa
B6.129-Adra2a
MGI:87934  MP:0002169 no abnormal phenotype detected PMID: 19276088 
General Comments
Receptors designated as α2A and α2D are species orthologues. Although these receptors are highly homologous, they have sufficiently different pharmacology to have been designated as separate subtypes in the literature. The α2A subtype is found in the human, pig and rabbit, whereas the α2D is found in the rat, mouse and cow.
Available Assays
DiscoveRx PathHunter® CHO-K1 ADRA2A β-Arrestin Cell Line (Cat no. 93-0424C2)
PathHunter® eXpress ADRA2A CHO-K1 β-Arrestin GPCR Assay (Cat no. 93-0424E2CP0M)
more info

References

Show »

1. Altman JD, Trendelenburg AU, Macmillan L, Bernstein D, Limbird L, Starke K, Kobilka BK, Hein L. (1999) Abnormal regulation of the sympathetic nervous system in alpha2A-adrenergic receptor knockout mice. Molecular Pharmacology56: 154-161. [PMID:10385696]

2. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicoligy Program: Dept of Health and Human Services. Accessed on 02/05/2014. Modified on 02/05/2014. DrugMatrix, https://ntp.niehs.nih.gov/drugmatrix/index.html

3. Blaxall HS, Hass NA, Bylund DB. (1994) Expression of α2-adrenergic receptor genes in rat tissues. Receptor4: 191-199. [PMID:7812219]

4. Bylund DB, Blaxall HS, Iversen LJ, Caron MG, Lefkowitz RJ, Lomasney JW. (1992) Pharmacological characteristics of alpha 2-adrenergic receptors: comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning. Mol Pharmacol.42: 1-5. [PMID:1353247]

5. Bylund DB, Ray-Prenger C. (1989) Alpha-2A and alpha-2B adrenergic receptor subtypes: attenuation of cyclic AMP production in cell lines containing only one receptor subtype. J. Pharmacol. Exp. Ther.251: 640-644. [PMID:2553931]

6. Deupree JD, Hinton KA, Cerutis DR, Bylund DB. (1996) Buffers differentially alter the binding of [3H]rauwolscine and [3H]RX821002 to the alpha-2 adrenergic receptor subtypes. J Pharmacol Exp Ther.278: 1215-1227. [PMID:8819505]

7. Devedjian JC, Esclapez F, Denis-Pouxviel C, Paris H. (1994) Further characterization of human alpha 2-adrenoceptor subtypes: [3H]RX821002 binding and definition of additional selective drugs. Eur J Pharmacol.252: 43-49. [PMID:7908642]

8. Docherty JR. (1998) Subtypes of functional alpha-1 and alpha-2 adrenoceptors. Eur J Pharmacol.361: 1-15. [PMID:9851536]

9. Eason MG, Kurose H, Holt BD, Raymond JR, Liggett SB. (1992) Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J Biol Chem.267: 15795-15801. [PMID:1322406]

10. Eason MG, Liggett SB. (1993) Human alpha-2 adrenergic receptor subtype distribution: Widespread and subtype-selective expression of alpha 2C10, alpha 2C4, and alpha 2C2 mRNA in multiple tissues. Mol Pharmacol.44: 70-75. [PMID:7688069]

11. Fernández J, Alonso JM, Andrés JI, Cid JM, Díaz A, Iturrino L, Gil P, Megens A, Sipido VK, Trabanco AA. (2005) Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. J. Med. Chem.48 (6): 1709-12. [PMID:15771415]

12. Handy DE, Flordellis CS, Bogdanova NN, Bresnahan MR, Gavras H. (1993) Diverse tissue expression of rat alpha 2-adrenergic receptor genes. Hypertension.21: 861-865. [PMID:7684725]

13. Hein L, Altman JD, Kobilka BK. (1999) Two functionally distinct 2-adrenergic receptors regulate sympathetic neurotransmission. Nature.402: 181-118. [PMID:10647009]

14. Hein L, Limbird LE, Eglen RM, Kobilka BK. (1999) Gene substitution/knockout to delineate the role of alpha 2-adrenoceptor subtypes in mediating central effects of catecholamines and imidazolines. Ann N Y Acad Sci881: 265-271. [PMID:10415924]

15. Hunter JC, Fontana DJ, Hedley LR, Jasper JR, Lewis R, Link RE, Secchi R, Sutton J, Eglen RM. (1997) Assessment of the role of alpha-2 adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol.122: 1339-1344. [PMID:9421280]

16. Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R, Matsumoto K, Nishikawa H, Ueda Y, Toma S et al.. (2010) Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J. Pharmacol. Exp. Ther.334 (1): 171-81. [PMID:20404009]

17. Jasper JR, Lesnick JD, Chang LK, Yamanishi SS, Chang TK, Hsu SAO, Daunt DA, Bonhaus DW, Eglen RM. (1998) Ligand efficacy and potency at recombinant alpha 2 adrenergic receptors - Agonist-mediated [35S]GTPgammaS binding. Biochem Pharmacol.55: 1035-1043. [PMID:9605427]

18. Jones SB, Halenda SP, Bylund DB. (1991) Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms. Mol Pharmacol.39: 239-245. [PMID:1847497]

19. Kable JW, Murrin LC, Bylund DB. (2000) In vivo gene modification elucidates subtype-specific functions of alpha-2 adrenergic receptors. J Pharmacol Exp Ther.293: 1-7. [PMID:10734146]

20. Kennis LE, Bischoff FP, Mertens CJ, Love CJ, Van den Keybus FA, Pieters S, Braeken M, Megens AA, Leysen JE. (2000) New 2-substituted 1,2,3,4-tetrahydrobenzofuro[3,2-c]pyridine having highly active and potent central alpha 2-antagonistic activity as potential antidepressants. Bioorg. Med. Chem. Lett.10 (1): 71-4. [PMID:10636247]

21. Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW. (1987) Cloning, sequencing, and expression of the gene encoding for the human platelet α2-adrenergic receptor subtypes. Science238: 650-656. [PMID:2823383]

22. Lakhlani PP, MacMillan LB, Guo TZ, McCool BA, Lovinger DM, Maze M, Limbird LE. (1997) Substitution of a mutant alpha-2A adrenergic receptor via "hit and run" gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci U S A.94: 9950-9955. [PMID:9275232]

23. Lanier SM, Downing S, Duzic E, Homcy CJ. (1991) Isolation of rat genomic clones encoding subtypes of the alpha-2 adrenergic receptor. J. Biol. Chem.266: 10470-10478. [PMID:1645350]

24. Leppik RA, Lazareno S, Mynett A, Birdsall NJ. (1998) Characterization of the allosteric interactions between antagonists and amiloride analogues at the human alpha2A-adrenergic receptor. Mol Pharmacol.53: 916-925. [PMID:9584219]

25. Limbird LE. (1988) Receptors linked to inhibition of adenylate cyclase: Additional signaling mechanisms. FASEB J.2: 2686-2695. [PMID:2840317]

26. Link R, Daunt D, Barsh G, Chruscinski A, Kobilka B. (1992) Cloning of two mouse genes encoding alpha 2-adrenergic receptor subtypes and identification of a single amino acid in the mouse alpha 2-C10 homolog responsible for an interspecies variation in antagonist binding. Mol Pharmacol.42: 16-27. [PMID:1353249]

27. MacLennan SJ, Luong LA, Jasper JR, To ZP, Eglen RM. (1997) Characterization of alpha 2-adrenoceptors mediating contraction of dog saphenous vein: identity with the human alpha 2A subtype. Br. J. Pharmacol.121 (8): 1721-9. [PMID:9283709]

28. MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE. (1996) Central hypotensive effects of the alpha-2A adrenergic receptor subtype. Science.273: 801-803. [PMID:8670421]

29. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A. (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther303: 791-804. [PMID:12388666]

30. Molderings GJ, Göthert M. (1995) Subtype determination of presynaptic alpha-2 autoreceptors in the rabbit pulmonary artery and human saphenous vein. Naunyn Schmiedebergs Arch Pharmacol.352: 483-490. [PMID:8751076]

31. Munk SA, Harcourt D, Ambrus G, Denys L, Gluchowski C, Burke JA, Kharlamb AB, Manlapaz CA, Padillo EU, Runde E et al.. (1996) Synthesis and evaluation of 2-[(5-methylbenz-1-ox-4-azin-6-yl)imino]imidazoline, a potent, peripherally acting alpha 2 adrenoceptor agonist. J. Med. Chem.39 (18): 3533-8. [PMID:8784451]

32. Neubig RR, Gantzos RD, Brasier RS. (1985) Agonist and antagonist binding to alpha 2-adrenergic receptors in purified membranes from human platelets. Implications of receptor-inhibitory nucleotide-binding protein stoichiometry. Mol Pharmacol28: 475-486. [PMID:2865672]

33. O'Rourke MF, Iversen LJ, Lomasney JW, Bylund DB. (1994) Species orthologs of the alpha-2A adrenergic receptor: the pharmacological properties of the bovine and rat receptors differ from the human and porcine receptors. J Pharmacol Exp Ther.271: 735-740. [PMID:7965790]

34. Ozdogan UK, Lahdesmaki J, Mansikka H, Scheinin M. (2004) Loss of amitriptyline analgesia in alpha 2A-adrenoceptor deficient mice. Eur J Pharmacol485: 193-196. [PMID:14757140]

35. Peltonen JM, Pihlavisto M, Scheinin M. (1998) Subtype-specific stimulation of [35S]GTPgammaS binding by recombinant alpha-2 adrenoceptors. Eur J Pharmacol.355: 275-279. [PMID:9760042]

36. Perala M, Hirvonen H, Kalimo H, Ala-Uotila S, Regan JW, Akerman KE, Scheinin M. (1992) Differential expression of two alpha 2-adrenergic receptor subtype mRNAs in human tissues. Mol Brain Res.16: 57-63. [PMID:1334200]

37. Pihlavisto M, Sjöholm B, Scheinin M, Wurster S. (1998) Modulation of agonist binding to recombinant human alpha-2 adrenoceptors by sodium ions. Biochim Biophys Acta Mol Cell Res.1448: 135-146. [PMID:9824686]

38. Uhlén S, Porter AC, Neubig RR. (1994) The novel alpha-2 adrenergic radioligand [3H]-MK912 is alpha-2C selective among human alpha-2A, alpha-2B and alpha-2C adrenoceptors. J Pharmacol Exp Ther271: 1558-1565. [PMID:7996470]

39. Wilson AL, Womble SW, Prakash C, Cragoe EJ Jr, Blair IA, Limbird LE. (1992) Novel amiloride analog allosterically modulates the alpha 2-adrenergic receptor but does not inhibit Na+/H+ exchange. Mol Pharmacol.42: 175-179. [PMID:1325028]

40. Young P, Berge J, Chapman H, Cawthorne MA. (1989) Novel alpha 2-adrenoceptor antagonists show selectivity for alpha 2A- and alpha 2B-adrenoceptor subtypes. Eur. J. Pharmacol.168 (3): 381-6. [PMID:2573535]

How to cite this page

Richard A. Bond, David B. Bylund, Douglas C. Eikenburg, J. Paul Hieble, Rebecca Hills, Kenneth P. Minneman, Sergio Parra.
Adrenoceptors: α2A-adrenoceptor. Last modified on 27/05/2014. Accessed on 28/08/2014. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=25.