Top ▲

δ receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 317

Nomenclature: δ receptor

Family: Opioid receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 372 1p35.3 OPRD1 opioid receptor delta 1 46,88
Mouse 7 372 4 64.78 cM Oprd1 opioid receptor, delta 1 26,44,102
Rat 7 372 5q36 Oprd1 opioid receptor, delta 1 1
Previous and Unofficial Names Click here for help
DOP | DOR | OP1 | Delta receptor | DOR-1 | DOPr | opioid receptor
Database Links Click here for help
Specialist databases
GPCRdb oprd_human (Hs), oprd_mouse (Mm), oprd_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the delta opioid receptor bound to naltrindole
PDB Id:  4EJ4
Ligand:  naltrindole
Resolution:  3.4Å
Species:  Mouse
References:  35
Image of receptor 3D structure from RCSB PDB
Description:  1.8A resolution crystal structure of residues 36–338 of δ receptor with an N-terminal b562RIL (BRIL) fusion protein.
PDB Id:  4N6H
Ligand:  naltrindole
Resolution:  1.8Å
Species:  Human
References:  27
Natural/Endogenous Ligands Click here for help
dynorphin A-(1-13) {Sp: Human, Mouse, Rat}
dynorphin A {Sp: Human, Mouse, Rat}
dynorphin A-(1-8) {Sp: Human, Mouse, Rat}
dynorphin B {Sp: Human, Mouse, Rat}
endomorphin-1 {Sp: Human}
β-endorphin {Sp: Human} , β-endorphin {Sp: Mouse} , β-endorphin {Sp: Rat}
[Leu]enkephalin {Sp: Human, Mouse, Rat}
[Met]enkephalin {Sp: Human, Mouse, Rat}
α-neoendorphin {Sp: Human, Mouse, Rat}
Principal endogenous agonists (Human)
β-endorphin (POMC, P01189), [Leu]enkephalin (PENK, P01210), [Met]enkephalin (PENK, P01210)

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H][D-Ala2]deltorphin I Peptide Ligand is labelled Ligand is radioactive Hs Agonist 9.4 pKd 91
pKd 9.4 (Kd 4.5x10-10 M) [91]
[3H]DPDPE Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 8.9 pKd 2
pKd 8.9 [2]
[3H]deltorphin II Peptide Ligand is labelled Ligand is radioactive Hs Full agonist 8.7 pKd 10
pKd 8.7 [10]
UFP-512 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Agonist 10.2 pKi 95
pKi 10.2 [95]
Description: Measuring displacement of [3H]-diprenorphine in vitro
AZD7268 Small molecule or natural product Primary target of this compound Hs Agonist 9.5 pKi 66
pKi 9.5 (Ki 3x10-10 M) [66]
BW373U86 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Agonist 9.5 pKi 50
pKi 9.5 (Ki 3.2x10-10 M) [50]
DSLET Peptide Click here for species-specific activity table Hs Full agonist 9.3 pKi 93
pKi 9.3 [93]
[3H]diprenorphine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 9.3 pKi 3,93
pKi 9.3 (Ki 5.01x10-10 M) [3,93]
diprenorphine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.3 pKi 93
pKi 9.3 [93]
DADLE Peptide Click here for species-specific activity table Hs Full agonist 9.2 pKi 93
pKi 9.2 (Ki 6.3x10-10 M) [93]
(-)-cyclazocine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 9.1 pKi 93
pKi 9.1 [93]
DADLE Peptide Mm Full agonist 9.1 pKi 79
pKi 9.1 [79]
ADL5859 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Agonist 9.1 pKi 50
pKi 9.1 (Ki 8.4x10-10 M) [50]
(-)-bremazocine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.0 pKi 93
pKi 9.0 [93]
β-endorphin {Sp: Human} Peptide Click here for species-specific activity table Mm Full agonist 9.0 pKi 79
pKi 9.0 [79]
DPDPE Peptide Click here for species-specific activity table Hs Full agonist 8.8 pKi 65,93
pKi 8.8 [65,93]
deltorphin II Peptide Hs Full agonist 8.8 pKi 93
pKi 8.8 [93]
etorphine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.8 pKi 93
pKi 8.8 (Ki 1.58x10-9 M) [93]
[D-Ala2]deltorphin II Peptide Hs Full agonist 8.8 pKi 24
pKi 8.8 [24]
BU08028 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 8.8 pKi 43
pKi 8.8 (Ki 1.59x10-9 M) [43]
BW373U86 Small molecule or natural product Click here for species-specific activity table Rn Agonist 8.7 pKi 13
pKi 8.7 (Ki 1.8x10-9 M) [13]
[Leu]enkephalin {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.7 pKi 93
pKi 8.7 [93]
DSTBULET Peptide Hs Full agonist 8.6 pKi 20
pKi 8.6 (Ki 2.81x10-9 M) [20]
ADL5747 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Agonist 8.6 pKi 51
pKi 8.6 (Ki 2.7x10-9 M) [51]
ethylketocyclazocine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.5 pKi 93
pKi 8.5 (Ki 3.16x10-9 M) [93]
deltorphin II Peptide Mm Full agonist 8.5 pKi 79
pKi 8.5 [79]
carfentanil Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Cp Agonist 8.5 pKi 15
pKi 8.5 (Ki 3.28x10-9 M) [15]
Description: Binding affinity-displacement of [3H]DPDPE in guinea pig whole brain
[Leu]enkephalin {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Mm Full agonist 8.4 pKi 79
pKi 8.4 [79]
dynorphin A-(1-8) {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Partial agonist 8.4 pKi 93
pKi 8.4 [93]
DSLET Peptide Mm Full agonist 8.3 pKi 79
pKi 8.3 [79]
β-endorphin {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.3 pKi 93
pKi 8.3 [93]
SRI22141 Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.3 pKi 54
pKi 8.3 (Ki 5.1x10-9 M) [54]
Description: Binding affinity
nalmefene Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 8.1 pKi 93
pKi 8.1 [93]
tramadol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 8.0 pKi 97
pKi 8.0 (Ki 9.4x10-9 M) [97]
Description: Displacement of the delta antagonist naltrindole from the delta receptor expressed in CHO cells.
dynorphin-(1-11) Peptide Click here for species-specific activity table Hs Full agonist 8.0 pKi 93
pKi 8.0 [93]
DPDPE Peptide Mm Full agonist 7.9 pKi 79
pKi 7.9 [79]
dynorphin A-(1-13) {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 7.8 pKi 93
pKi 7.8 [93]
dynorphin B {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 7.8 pKi 93
pKi 7.8 [93]
cebranopadol Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.7 pKi 55
pKi 7.7 (Ki 1.8x10-8 M) [55]
Description: Radioligand binding assay
hydromorphone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 7.4 pKi 96
pKi 7.4 (Ki 3.8x10-8 M) [96]
dynorphin A {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 7.4 pKi 93
pKi 7.4 [93]
nalorphine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 7.4 pKi 93
pKi 7.4 [93]
(-)-pentazocine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 7.3 pKi 93
pKi 7.3 [93]
PN6047 Small molecule or natural product Hs Biased agonist 7.3 pKi 16
pKi 7.3 [16]
SNC80 Small molecule or natural product Hs Full agonist 7.2 pKi 12,78
pKi 7.2 [12,78]
normorphine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.1 pKi 93
pKi 7.1 [93]
AR-M1000390 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Agonist 7.0 pKi 61
pKi 7.0 (Ki 1.06x10-7 M) [61]
(-)-methadone Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.9 pKi 93
pKi 6.9 [93]
morphine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 6.9 pKi 93
pKi 6.9 [93]
fentanyl Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 6.8 pKi 93
pKi 6.8 [93]
bilorphin Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.7 pKi 19
pKi 6.7 (Ki 1.9x10-7 M) [19]
dihydromorphine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.7 pKi 93
pKi 6.7 [93]
etonitazene Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.7 pKi 93
pKi 6.7 [93]
nalbuphine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 6.2 pKi 96
pKi 6.2 (Ki 5.8x10-7 M) [96]
endomorphin-1 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 6.1 pKi 33
pKi 6.1 [33]
SCH221510 Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.5 pKi 94
pKi 5.5 (Ki 2.854x10-6 M) [94]
Description: Radioligand binding assay
oxycodegol Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.4 pKi 64
pKi 5.4 (Ki 4.15x10-6 M) [64]
Description: Competitive membrane binding assay measuring displacement [3H]DPDPE from human δ receptors expressed by CHO cells.
SRI22141 Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.9 pEC50 54
pEC50 8.9 (EC50 1.3x10-9 M) [54]
Description: Potency in a 35S-GTPγS assay
AR-M1000390 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Agonist 9.1 pIC50 4
pIC50 9.1 (IC50 8.9x10-10 M) [4]
TAN-67 Small molecule or natural product Mm Agonist 8.4 pIC50 30
pIC50 8.4 (IC50 3.65x10-9 M) [30]
Description: Bioassay using mouse vas deferens.
α-neoendorphin {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Mm Full agonist 8.0 pIC50 102
pIC50 8.0 [102]
[Met]enkephalin {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Immunopharmacology Ligand Mm Full agonist 7.4 pIC50 102
pIC50 7.4 [102]
ethylketocyclazocine Small molecule or natural product Click here for species-specific activity table Mm Full agonist 6.2 pIC50 102
pIC50 6.2 [102]
pethidine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist <5.0 pIC50 76
pIC50 <5.0 (IC50 >1x10-5 M) [76]
View species-specific agonist tables
Agonist Comments
The above reported affinities are based on binding to receptors in membrane preparations with buffers optimized for agonist binding. The affinity of agonists in intact cells, or in the presence of sodium and GTP/GDP analogues is often different and multiple affinity sites have been observed [47].

Discrimination of full or partial agonism is very dependent on the level of receptor expression and on the assay used to monitor agonist effects. Many agents may behave as full agonists or potent partial agonists in cell lines expressing cloned receptors in high concentration, but in other environments they may show only weak agonist activity. The identification of agonist activity in the table is largely based on the ability to stimulate GTPγ35S binding in cell lines expressing cloned human δ receptors. Agents giving 85% or greater stimulation than that given by DPDPE have been characterized as Full Agonists [93].

Diprenorphine is a very weak partial agonist and in some assays may behave as an antagonist.

Deltorphin II is endogenous in some species of amphibians.

Alternative sources for binding information for the same ligands in different species can be found in the following reference [71].

Although many of the agonists are considered to be highly selective for the δ opioid receptor, data using δ and μ knockout mice show that ICV administration of opioids considered δ receptor selective, such as deltorphin and DPDPE can activate μ opioid receptors to elicit analgesia [83].

We have tagged the μ receptor as the primary drug target for hydrocodone based on this drug having the highest affinity at this receptor compared to the κ and δ receptors [68]. In [68] an affinity constant was not calculated for the δ receptor, but hydrocodone was reported to inhibit [3H]naltrindole binding by 37%. Similarly, we have tagged the μ receptor as the primary target of the drug hydromorphone [96].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]naltrindole Small molecule or natural product Ligand is labelled Ligand is radioactive Ligand has a PDB structure Rn Antagonist 10.4 pKd 101
pKd 10.4 (Kd 3.7x10-11 M) [101]
naltriben Small molecule or natural product Ligand has a PDB structure Mm Antagonist 10.9 pKi 79
pKi 10.9 [79]
naltrindole Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 10.7 pKi 79
pKi 10.7 [79]
naltriben Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 10.0 pKi 90,93
pKi 10.0 (Ki 1x10-10 M) [90,93]
naltriben Small molecule or natural product Ligand has a PDB structure Rn Inverse agonist 10.0 pKi 67
pKi 10.0 [67]
UFP-505 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.8 pKi 21-22
pKi 9.8 [21-22]
naltrindole Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 9.7 pKi 75,93
pKi 9.7 [75,93]
BNTX Small molecule or natural product Mm Antagonist 9.2 pKi 79
pKi 9.2 [79]
naldemedine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.0 pKi 40
pKi 9.0 (Ki 9.1x10-10 M) [40]
TIPPψ Small molecule or natural product Hs Inverse agonist 9.0 pKi 85,93
pKi 9.0 [85,93]
quadazocine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.9 pKi 93
pKi 8.9 [93]
eluxadoline Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 8.9 pKi 8
pKi 8.9 (Ki 1.3x10-9 M) [8]
BNTX Small molecule or natural product Rn Inverse agonist 8.7 pKi 67
pKi 8.7 [67]
samidorphan Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.6 pKi 98
pKi 8.6 (Ki 2.6x10-9 M) [98]
BNTX Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.4 pKi 93
pKi 8.4 [93]
nor-binaltorphimine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.2 pKi 93
pKi 8.2 [93]
naltrexone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.0 pKi 93
pKi 8.0 [93]
alvimopan Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.9 pKi 49
pKi 7.9 (Ki 1.2x10-8 M) [49]
β-FNA Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.9 pKi 93
pKi 7.9 [93]
naloxone Small molecule or natural product Approved drug Click here for species-specific activity table Mm Antagonist 7.8 pKi 79
pKi 7.8 [79]
AT-076 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.7 pKi 93,104
pKi 7.7 (Ki 1.96x10-8 M) [93,104]
Description: Radioligand binding assay
ICI 174,864 Peptide Rn Inverse agonist 7.4 pKi 67
pKi 7.4 [67]
naloxone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.2 pKi 93
pKi 7.2 [93]
LY2456302 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.8 pKi 81
pKi 6.8 (Ki 1.55x10-7 M) [81]
naltrexone Small molecule or natural product Approved drug Click here for species-specific activity table Mm Antagonist 6.8 pKi 79
pKi 6.8 [79]
NFP Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.8 pKi 105
pKi 6.8 (Ki 1.57x10-7 M) [105]
Description: In a competitive radioligand membrane binding assay measuring displacement of [3H]diprenorphine by NFP from δ receptor expressed in CHO cells.
CTAP Peptide Click here for species-specific activity table Hs Antagonist 6.4 pKi 93
pKi 6.4 [93]
methylnaltrexone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.1 pKi 96
pKi 6.1 (Ki 9x10-7 M) [96]
zyklophin Peptide Click here for species-specific activity table Hs Antagonist <5.0 pKi 70
pKi <5.0 (Ki >1x10-5 M) [70]
nor-binaltorphimine Small molecule or natural product Click here for species-specific activity table Mm Antagonist 6.7 pIC50 102
pIC50 6.7 [102]
naloxone Small molecule or natural product Approved drug Click here for species-specific activity table Mm Antagonist 6.2 pIC50 102
pIC50 6.2 [102]
NMRA-140 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.2 pIC50 37
pIC50 5.2 (IC50 6.5x10-6 M) [37]
View species-specific antagonist tables
Antagonist Comments
δ opioid receptors were one of the first G protein-coupled receptors to be shown to exhibit constitutive activity [18]. As observed with agonist binding affinities, some antagonist affinities can be modulated markedly by ions and GTP/GDP analogues [67]. The assigning of an antagonist as an inverse agonist or neutral antagonist appears to be dependent upon the state of the receptor, and following agonist treatment many neutral antagonists and weak partial agonists have been reported to become inverse agonists [56].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
BMS-986187 Small molecule or natural product Hs Positive 8.1 pKi
pKi 8.1 (Ki 7x10-9 M) BMS-986187 significantly increased the binding affinity of Leu-Enkephalin from 221 nM to 7 nM
Allosteric Modulator Comments
Although no small molecules are considered direct allosteric regulators of δ opioid receptors, a number of proteins such as G protein-coupled receptor kinases, β-arrestins and G proteins clearly regulate receptor affinities and function. Furthermore number of proteins such as G protein-coupled receptor kinases, β-arrestins and G proteins clearly regulate receptor affinities and function. Furthermore, sodium and guanyl nucleotides can modify the functional δ opioid receptor complex and G protein interaction. Also, other G protein-coupled receptors appear to be able to form heterodimers with δ opioid receptors potentially modifying δ opioid activity [80] reviewed in [14,25].
Other Binding Ligands
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
compound 16 [PMID: 31498617] Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Binding 5.6 pKi 77
pKi 5.6 (Ki 2.47x10-6 M) [77]
Description: Receptor binding in a radioligand displacement assay using [3H]DADLE as tracer.
Immuno Process Associations
Immuno Process:  Cytokine production & signalling
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Phospholipase C stimulation
Potassium channel
Calcium channel
Other - See Comments
Comments:  δ receptors have been shown to modulate many kinase cascades including ERKs, Akts, JNKs, STAT3, P38 involving Src, Ras, Rac, Raf-1, Cdc42, RTKs.
References:  42,48,57,86
Tissue Distribution Click here for help
Skin.
Species:  Human
Technique:  RT-PCR and Immunohistochemistry.
References:  82
Immune cells.
Species:  Human
Technique:  RT-PCR.
References:  31
Detailed description of the location of δ receptors was determined in comparison with μ receptors using fluorescent knock-in technology. &delta-eGFP receptor knock-in mice were bred with μ m-Cherry receptor knock-in mice to produce a double fluorescent mouse. In the forebrain, μ and δ were mainly found in separate neurons. Considerable neuronal co-localization was detected in subcortical networks essential for survival. These networks were involved in eating and sexual behaviour, as well as perception and response to aversive stimuli.
Species:  Mouse
Technique:  Immunohistochemistry.
References:  23
Pregnant uterus and placenta.
Species:  Mouse
Technique:  in situ hybridisation.
References:  108
Embryo:
CNS: medial habenula, hypothalamus, pons, medulla, dorsal root ganglion, caudate putamen, medial habenula, tegmentum, trigeminal nucleus.
Periphery: heart, limb bud, tooth, olfactory epithelium.
Species:  Mouse
Technique:  in situ hybridisation.
References:  106
δ receptors were localized using fluorescent knock-in technology with eGFP attached to the carboxy terminal of the δ receptor. Cellular distribution and internalization also demonstrated.
Species:  Mouse
Technique:  Immunohistochemistry.
References:  74,84
CNS: cortex, olfactory bulb, olfactory tubercle, caudate putamen, nucleus accumbens, amygdala.
Species:  Mouse
Technique:  Radioligand binding.
References:  34,45
Intestine.
Species:  Mouse
Technique:  RT-PCR.
References:  73
Widely distributed throughout the CNS, most prominant expression in the forebrain regions.
Caudate putamen, nucleus accumbens, amygdala, pontine nucleus, olfactory bulb, olfactory tubercle > interpeduncular nucleus, cortex (most dense in layers II-III and V-VI) > thalamus, hypothalamus, stria terminalis, hippocampus, globus pallidus, preoptic area, colliculi.
Virtually no binding in the periaqueductal grey and raphe nuclei.
Species:  Rat
Technique:  Radioligand binding.
References:  7,60
Ear: cochlea.
Species:  Rat
Technique:  RT-PCR and immunocytochemistry.
References:  41
CNS: superficial layers (laminae I and II) of the dorsal horn of the spinal cord.
Species:  Rat
Technique:  Radioligand binding.
References:  5
Autoradiographic binding with [3H]DPDPE and [3H]DSLET, in an attempt to demonstrate differential distribution of DOP subtypes, showed no major differences in receptor distribution although regional differences in binding levels between the two δ ligands were observed.
Brain: dorsomedial hypothalamus, ventromedial hypothalamus, superior colliculis, medial division of bed nucleus stria terminalis, external cortex of the inferior colliculis, amygdaloid nuclei, cingulate cortex, CA1, CA2, and CA3 regions of Ammon's horn, dentate gyrus, laminar VI of the frontal, forelimb, hindlimb and parietal cortices, nucleus accumbens, caudate/putamen.
Species:  Rat
Technique:  Radioligand binding.
References:  38
Tissue Distribution Comments
Studies of the distribution of δ opioid receptors in humans has been limited to autoradiography and in situ hybridisation analysis [7,72]. DOP receptors in the CNS appear to have a similar distribution in rat and human [7] and mouse [34]. One notable exception is the spinal cord where DOP receptors are considerably more abundant in the dorsal horn and dorsal root ganglia than in rodent counterparts [63]. Many brain stem nuclei (such as the lateral reticular nucleus, the medial vestibular nucleus and trapezoid nucleus) express high levels of DOP mRNA yet DOP binding is undetectable [107]. For a review of δ opioid receptor expression in the rat see [59].
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of musculature contraction of sections of mouse vas deferens following stimulation of the intramural nerves.
Species:  Mouse
Tissue:  Vas deferens.
Response measured:  Inhibition of electrically-evoked contraction.
References:  39
Measurement of musculature contraction of sections of mouse ileum following stimulation of the intramural nerves.
Species:  Mouse
Tissue:  Ileum.
Response measured:  Inhibition of electrically-evoked contraction.
References:  89
Measurement of cAMP levels in NG108-15 cells (a fusion of a mouse neuroblastoma, the genetic source of δ receptors, and a rat glioma cell line).
Species:  Mouse
Tissue:  NG108-15 cell line.
Response measured:  Inhibition of cAMP accumulation.
References:  87
Measurement of [35S]GTPγS binding in NG108-15 cells (a fusion of a mouse neuroblastoma, the genetic source of δ receptors, and a rat glioma cell line).
Species:  Mouse
Tissue:  NG108-15 cell line.
Response measured:  [35S]GTPγS binding.
References:  92
Physiological Functions Click here for help
Spinal analgesia in the mouse. Intrathecal injections of δ opioid agonists induce analgesia but require externalisation of δ receptors via interaction with products from the substance P precursor.
Species:  Mouse
Tissue:  Periaqueductal gray neuronal slices.
References:  36
In vivo δ receptor coupling to ion channels is not a robust phenomenon in some areas of the CNS unless the system is triggered by externalisation.
Species:  Mouse
Tissue: 
References:  36
GABAergic inhibition via δ receptors acting on locus coeruleus and hippocampal neurones has been inferred by measurement of the frequency of miniture inhibitory postsynaptic currents (IPSCs).
Species:  Rat
Tissue:  Brain slices.
References:  58,69
Reversal of thermal hyperalgesic activity by delta opioid agonists in a chronic inflammation model.
Species:  Rat
Tissue:  In vivo.
References:  11,29
Seizure promoting activity of δ receptor agonists administered systemically.
Species:  Mouse
Tissue:  In vivo.
References:  9
Studies with δ receptor knockout mice suggest the involvement of the δ receptor with spatial memory. CPP experiments suggest that the δ receptor is involved in drug spatial context association.
Species:  Mouse
Tissue:  In vivo.
References:  52-53
Physiological Functions Comments
For reviews on the signalling and function of the δ opioid receptor see [17,48,100]
Physiological Consequences of Altering Gene Expression Click here for help
Homozygote δ opioid receptor knockout mice are viable, fertile and show no gross anatomical deficits.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  28,107
δ opioid receptor knockout mice exhibit increased anxiety and depressive-like behaviour.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  28
δ opioid receptor knockout mice exhibit increased sensitivity to inflammatory pain.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  62
δ opioid receptor knockout mice exhibit modified morphine tolerance.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  107
Physiological Consequences of Altering Gene Expression Comments
Some of the physiological effects observed with knockout mice may be mouse-strain restricted and not generalise to all backgrounds.
For a review on opioid receptor knockout mice see reference [32].
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Oprd1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep
involves: 129S/SvEv * C57BL/6J
MGI:97438  MP:0009748 abnormal behavioral response to addictive substance PMID: 12486185 
Oprd1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep
involves: 129S/SvEv * C57BL/6J
MGI:97438  MP:0001980 abnormal chemically-elicited antinociception PMID: 12486185 
Oprd1tm1Jep|Oprm1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv * 129S2/SvPas
MGI:97438  MGI:97441  MP:0008872 abnormal physiological response to xenobiotic PMID: 17544222 
Oprd1tm1Kff Oprd1tm1Kff/Oprd1tm1Kff
involves: 129/Sv * C57BL/6
MGI:97438  MP:0003064 decreased coping response PMID: 10835636 
Oprd1tm1Kff Oprd1tm1Kff/Oprd1tm1Kff
involves: 129/Sv * C57BL/6
MGI:97438  MP:0001399 hyperactivity PMID: 10835636 
Oprd1tm1Jep|Oprm1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv * 129S2/SvPas
MGI:97438  MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 17544222 
Oprd1tm1Jep|Oprm1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv * 129S2/SvPas
MGI:97438  MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 17544222 
Oprd1tm1Kff Oprd1tm1Kff/Oprd1tm1Kff
involves: 129/Sv * C57BL/6
MGI:97438  MP:0001363 increased anxiety-related response PMID: 10835636 
Oprd1tm1Dgen Oprd1tm1Dgen/Oprd1tm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:97438  MP:0002906 increased susceptibility to pharmacologically induced seizures
Biologically Significant Variant Comments
δ1 and δ2 receptor subtypes have been proposed based upon in vivo pharmacology of DPDPE and deltorphin II. However, no δ opioid receptor variants have been characterised as δ1 and δ2 receptor proteins, and knockout of the δ receptor gene in mice eliminates binding of the two ligands. There is mounting evidence that hetero-oligomerisation of the δ and κ opioid receptors results in the δ1 subtype and that κ/δ hetero-oligomers are functional in the spinal cord [6,28,99,103]. δ receptors have also been proposed to interact with μ receptors (for review see [103]). The observed pharmacological cross-talk may partially arise from agonist cross-reactivity. In vivo and knockout data suggest that analgesia from ICV administration of DPDPE or deltorphan II can occur via μ opioid receptors [83].

Pharmacological diversity of δ receptors likely results from interaction with different proteins (such as the formation of heterooligomers with other GPCRs) or differential posttranslational modifications as opposed to distinct variants of the primary sequence of the receptor protein [25].

References

Show »

1. Abood ME, Noel MA, Farnsworth JS, Tao Q. (1994) Molecular cloning and expression of a delta-opioid receptor from rat brain. J Neurosci Res, 37 (6): 714-9. [PMID:7519274]

2. Akiyama K, Gee KW, Mosberg HI, Hruby VJ, Yamamura HI. (1985) Characterization of [3H][2-D-penicillamine, 5-D-penicillamine]-enkephalin binding to delta opiate receptors in the rat brain and neuroblastoma--glioma hybrid cell line (NG 108-15). Proc Natl Acad Sci USA, 82 (8): 2543-7. [PMID:2986120]

3. Ann DK, Hasegawa J, Ko JL, Chen ST, Lee NM, Loh HH. (1992) Specific reduction of delta-opioid receptor binding in transfected NG108-15 cells. J Biol Chem, 267 (11): 7921-6. [PMID:1313812]

4. Arora S, Keenan SM, Peng Y, Welsh W, Zhang Q. (2006) Opioid receptor subtype-selective agents. Patent number: WO2006124687 A1. Assignee: Arora S, Keenan SM, Peng Y, Welsh W, Zhang Q.. Priority date: 12/05/2005. Publication date: 23/11/2006.

5. Besse D, Lombard MC, Besson JM. (1991) Autoradiographic distribution of mu, delta and kappa opioid binding sites in the superficial dorsal horn, over the rostrocaudal axis of the rat spinal cord. Brain Res, 548 (1-2): 287-91. [PMID:1651143]

6. Bhushan RG, Sharma SK, Xie Z, Daniels DJ, Portoghese PS. (2004) A bivalent ligand (KDN-21) reveals spinal delta and kappa opioid receptors are organized as heterodimers that give rise to delta(1) and kappa(2) phenotypes. Selective targeting of delta-kappa heterodimers. J Med Chem, 47: 2969-2972. [PMID:15163177]

7. Blackburn TP, Cross AJ, Hille C, Slater P. (1988) Autoradiographic localization of delta opiate receptors in rat and human brain. Neuroscience, 27 (2): 497-506. [PMID:2851117]

8. Breslin HJ, Diamond CJ, Kavash RW, Cai C, Dyatkin AB, Miskowski TA, Zhang SP, Wade PR, Hornby PJ, He W. (2012) Identification of a dual δ OR antagonist/μ OR agonist as a potential therapeutic for diarrhea-predominant Irritable Bowel Syndrome (IBS-d). Bioorg Med Chem Lett, 22 (14): 4869-72. [PMID:22695132]

9. Broom DC, Guo L, Coop A, Husbands SM, Lewis JW, Woods JH, Traynor JR. (2000) BU48: a novel buprenorphine analog that exhibits delta-opioid-mediated convulsions but not delta-opioid-mediated antinociception in mice. J Pharmacol Exp Ther, 294 (3): 1195-200. [PMID:10945877]

10. Búzás B, Tóth G, Cavagnero S, Hruby VJ, Borsodi A. (1992) Synthesis and binding characteristics of the highly delta-specific new tritiated opioid peptide, [3H]deltorphin II. Life Sci, 50 (14): PL75-8. [PMID:1313131]

11. Cahill CM, Morinville A, Hoffert C, O'Donnell D, Beaudet A. (2003) Up-regulation and trafficking of delta opioid receptor in a model of chronic inflammation: implications for pain control. Pain, 101 (1-2): 199-208. [PMID:12507715]

12. Calderon SN, Rothman RB, Porreca F, Flippen-Anderson JL, McNutt RW, Xu H, Smith LE, Bilsky EJ, Davis P, Rice KC. (1994) Probes for narcotic receptor mediated phenomena. 19. Synthesis of (+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3- methoxybenzyl]-N,N-diethylbenzamide (SNC 80): a highly selective, nonpeptide delta opioid receptor agonist. J Med Chem, 37 (14): 2125-8. [PMID:8035418]

13. Chang KJ, Rigdon GC, Howard JL, McNutt RW. (1993) A novel, potent and selective nonpeptidic delta opioid receptor agonist BW373U86. J Pharmacol Exp Ther, 267 (2): 852-7. [PMID:8246159]

14. Christopoulos A, Kenakin T. (2002) G protein-coupled receptor allosterism and complexing. Pharmacol Rev, 54 (2): 323-74. [PMID:12037145]

15. Cometta-Morini C, Maguire PA, Loew GH. (1992) Molecular determinants of mu receptor recognition for the fentanyl class of compounds. Mol Pharmacol, 41 (1): 185-96. [PMID:1310142]

16. Conibear AE, Asghar J, Hill R, Henderson G, Borbely E, Tekus V, Helyes Z, Palandri J, Bailey C, Starke I et al.. (2020) A Novel G Protein-Biased Agonist at the δ Opioid Receptor with Analgesic Efficacy in Models of Chronic Pain. J Pharmacol Exp Ther, 372 (2): 224-236. [PMID:31594792]

17. Connor M, Christie MD. (1999) Opioid receptor signalling mechanisms. Clin Exp Pharmacol Physiol, 26 (7): 493-9. [PMID:10405772]

18. Costa T, Herz A. (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA, 86 (19): 7321-5. [PMID:2552439]

19. Dekan Z, Sianati S, Yousuf A, Sutcliffe KJ, Gillis A, Mallet C, Singh P, Jin AH, Wang AM, Mohammadi SA et al.. (2019) A tetrapeptide class of biased analgesics from an Australian fungus targets the µ-opioid receptor. Proc Natl Acad Sci USA, 116 (44): 22353-22358. [PMID:31611414]

20. Delay-Goyet P, Seguin C, Gacel G, Roques BP. (1988) [3H][D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 and [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6(O-tert-butyl). Two new enkephalin analogs with both a good selectivity and a high affinity toward delta-opioid binding sites. J Biol Chem, 263 (9): 4124-30. [PMID:2831220]

21. Dietis N, McDonald J, Molinari S, Calo G, Guerrini R, Rowbotham DJ, Lambert DG. (2012) Pharmacological characterization of the bifunctional opioid ligand H-Dmt-Tic-Gly-NH-Bzl (UFP-505). Br J Anaesth, 108 (2): 262-70. [PMID:22194444]

22. Dietis N, Niwa H, Tose R, McDonald J, Ruggieri V, Filaferro M, Vitale G, Micheli L, Ghelardini C, Salvadori S et al.. (2018) In vitro and in vivo characterization of the bifunctional μ and δ opioid receptor ligand UFP-505. Br J Pharmacol, 175 (14): 2881-2896. [PMID:29524334]

23. Erbs E, Faget L, Scherrer G, Matifas A, Filliol D, Vonesch JL, Koch M, Kessler P, Hentsch D, Birling MC et al.. (2015) A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct Funct, 220 (2): 677-702. [PMID:24623156]

24. Erspamer V, Melchiorri P, Falconieri-Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G. (1989) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites. Proc Natl Acad Sci USA, 86 (13): 5188-92. [PMID:2544892]

25. Evans CJ. (2004) Secrets of the opium poppy revealed. Neuropharmacology, 47 Suppl 1: 293-9. [PMID:15464145]

26. Evans CJ, Keith Jr DE, Morrison H, Magendzo K, Edwards RH. (1992) Cloning of a delta opioid receptor by functional expression. Science, 258 (5090): 1952-5. [PMID:1335167]

27. Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, Roth BL, Stevens RC. (2014) Molecular control of δ-opioid receptor signalling. Nature, 506 (7487): 191-6. [PMID:24413399]

28. Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F, Befort K, Gavériaux-Ruff C, Dierich A, LeMeur M et al.. (2000) Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet, 25 (2): 195-200. [PMID:10835636]

29. Fraser GL, Gaudreau GA, Clarke PB, Ménard DP, Perkins MN. (2000) Antihyperalgesic effects of delta opioid agonists in a rat model of chronic inflammation. Br J Pharmacol, 129 (8): 1668-72. [PMID:10780972]

30. Fujii H, Kawai K, Kawamura K, Mizusuna A, Onoda Y, Murachi M, Tanaka T, Endoh T, Nagase H. (2001) Synthesis of optically active TAN-67, a highly selective delta opioid receptor agonist, and investigation of its pharmacological properties. Drug Des Discov, 17 (4): 325-30. [PMID:11765135]

31. Gavériaux C, Peluso J, Simonin F, Laforet J, Kieffer B. (1995) Identification of kappa- and delta-opioid receptor transcripts in immune cells. FEBS Lett, 369 (2-3): 272-6. [PMID:7649271]

32. Gavériaux-Ruff C, Kieffer BL. (2002) Opioid receptor genes inactivated in mice: the highlights. Neuropeptides, 36 (2-3): 62-71. [PMID:12359497]

33. Gong J, Strong JA, Zhang S, Yue X, DeHaven RN, Daubert JD, Cassel JA, Yu G, Mansson E, Yu L. (1998) Endomorphins fully activate a cloned human mu opioid receptor. FEBS Lett, 439 (1-2): 152-6. [PMID:9849897]

34. Goody RJ, Oakley SM, Filliol D, Kieffer BL, Kitchen I. (2002) Quantitative autoradiographic mapping of opioid receptors in the brain of delta-opioid receptor gene knockout mice. Brain Res, 945 (1): 9-19. [PMID:12113946]

35. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. (2012) Structure of the δ-opioid receptor bound to naltrindole. Nature, 485 (7398): 400-4. [PMID:22596164]

36. Guan JS, Xu ZZ, Gao H, He SQ, Ma GQ, Sun T, Wang LH, Zhang ZN, Lena I, Kitchen I et al.. (2005) Interaction with vesicle luminal protachykinin regulates surface expression of delta-opioid receptors and opioid analgesia. Cell, 122 (4): 619-31. [PMID:16122428]

37. Guerrero M, Urbano M, Kim EK, Gamo AM, Riley S, Abgaryan L, Leaf N, Van Orden LJ, Brown SJ, Xie JY et al.. (2019) Design and Synthesis of a Novel and Selective Kappa Opioid Receptor (KOR) Antagonist (BTRX-335140). J Med Chem, 62 (4): 1761-1780. [PMID:30707578]

38. Hiller JM, Fan LQ, Simon EJ. (1996) Autoradiographic comparison of [3H]DPDPE and [3H]DSLET binding: evidence for distinct delta 1 and delta 2 opioid receptor populations in rat brain. Brain Res, 719 (1-2): 85-95. [PMID:8782867]

39. Hughes J, Kosterlitz HW, Leslie FM. (1975) Effect of morphine on adrenergic transmission in the mouse vas deferens. Assessment of agonist and antogonist potencies of narcotic analgesics. Br J Pharmacol, 53 (3): 371-81. [PMID:236796]

40. Inagaki M, Kume M, Tamura Y, Hara S, Goto Y, Haga N, Hasegawa T, Nakamura T, Koike K, Oonishi S et al.. (2019) Discovery of naldemedine: A potent and orally available opioid receptor antagonist for treatment of opioid-induced adverse effects. Bioorg Med Chem Lett, 29 (1): 73-77. [PMID:30446313]

41. Jongkamonwiwat N, Phansuwan-Pujito P, Sarapoke P, Chetsawang B, Casalotti SO, Forge A, Dodson H, Govitrapong P. (2003) The presence of opioid receptors in rat inner ear. Hear Res, 181 (1-2): 85-93. [PMID:12855366]

42. Kam AY, Chan AS, Wong YH. (2003) Rac and Cdc42-dependent regulation of c-Jun N-terminal kinases by the delta-opioid receptor. J Neurochem, 84 (3): 503-13. [PMID:12558970]

43. Khroyan TV, Polgar WE, Cami-Kobeci G, Husbands SM, Zaveri NT, Toll L. (2011) The first universal opioid ligand, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028): characterization of the in vitro profile and in vivo behavioral effects in mouse models of acute pain and cocaine-induced reward. J Pharmacol Exp Ther, 336 (3): 952-61. [PMID:21177476]

44. Kieffer BL, Befort K, Gaveriaux-Ruff C, Hirth CG. (1992) Delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characerization. Proc Natl Acad Sci USA, 89: 12048-12052. [PMID:1334555]

45. Kitchen I, Slowe SJ, Matthes HW, Kieffer B. (1997) Quantitative autoradiographic mapping of mu-, delta- and kappa-opioid receptors in knockout mice lacking the mu-opioid receptor gene. Brain Res, 778 (1): 73-88. [PMID:9462879]

46. Knapp RJ, Malatynska E, Fang L, Li X, Babin E, Nguyen M, Santoro G, Varga EV, Hruby VJ, Roeske WR et al.. (1994) Identification of a human delta opioid receptor: cloning and expression. Life Sci, 54 (25): PL463-9. [PMID:8201839]

47. Law PY, Hom DS, Loh HH. (1985) Multiple affinity states of opiate receptor in neuroblastoma x glioma NG108-15 hybrid cells. Opiate agonist association rate is a function of receptor occupancy. J Biol Chem, 260 (6): 3561-9. [PMID:2982865]

48. Law PY, Wong YH, Loh HH. (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol, 40: 389-430. [PMID:10836142]

49. Le Bourdonnec B, Barker WM, Belanger S, Wiant DD, Conway-James NC, Cassel JA, O'Neill TJ, Little PJ, DeHaven RN, DeHaven-Hudkins DL et al.. (2008) Novel trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines as mu opioid receptor antagonists with improved opioid receptor selectivity profiles. Bioorg Med Chem Lett, 18 (6): 2006-12. [PMID:18313920]

50. Le Bourdonnec B, Windh RT, Ajello CW, Leister LK, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M, Wiant DD et al.. (2008) Potent, orally bioavailable delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4'-piperidine]-4-yl)benzamide (ADL5859). J Med Chem, 51 (19): 5893-6. [PMID:18788723]

51. Le Bourdonnec B, Windh RT, Leister LK, Zhou QJ, Ajello CW, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M et al.. (2009) Spirocyclic delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4'-piperidine]-4-yl) benzamide (ADL5747). J Med Chem, 52 (18): 5685-702. [PMID:19694468]

52. Le Merrer J, Plaza-Zabala A, Del Boca C, Matifas A, Maldonado R, Kieffer BL. (2011) Deletion of the δ opioid receptor gene impairs place conditioning but preserves morphine reinforcement. Biol Psychiatry, 69 (7): 700-3. [PMID:21168121]

53. Le Merrer J, Rezai X, Scherrer G, Becker JA, Kieffer BL. (2013) Impaired hippocampus-dependent and facilitated striatum-dependent behaviors in mice lacking the δ opioid receptor. Neuropsychopharmacology, 38 (6): 1050-9. [PMID:23303070]

54. Lei W, Vekariya RH, Ananthan S, Streicher JM. (2020) A Novel Mu-Delta Opioid Agonist Demonstrates Enhanced Efficacy With Reduced Tolerance and Dependence in Mouse Neuropathic Pain Models. J Pain, 21 (1-2): 146-160. [PMID:31201990]

55. Linz K, Christoph T, Tzschentke TM, Koch T, Schiene K, Gautrois M, Schröder W, Kögel BY, Beier H, Englberger W et al.. (2014) Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist. J Pharmacol Exp Ther, 349 (3): 535-48. [PMID:24713140]

56. Liu JG, Prather PL. (2002) Chronic agonist treatment converts antagonists into inverse agonists at delta-opioid receptors. J Pharmacol Exp Ther, 302 (3): 1070-9. [PMID:12183665]

57. Lo RK, Wong YH. (2004) Signal transducer and activator of transcription 3 activation by the delta-opioid receptor via Galpha14 involves multiple intermediates. Mol Pharmacol, 65 (6): 1427-39. [PMID:15155836]

58. Lupica CR. (1995) Delta and mu enkephalins inhibit spontaneous GABA-mediated IPSCs via a cyclic AMP-independent mechanism in the rat hippocampus. J Neurosci, 15 (1 Pt 2): 737-49. [PMID:7823176]

59. Mansour A, Fox CA, Akil H, Watson SJ. (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci, 18: 22-29. [PMID:7535487]

60. Mansour A, Thompson RC, Akil H, Watson SJ. (1993) Delta opioid receptor mRNA distribution in the brain: comparison to delta receptor binding and proenkephalin mRNA. J Chem Neuroanat, 6: 351-362. [PMID:8142072]

61. Marie N, Landemore G, Debout C, Jauzac P, Allouche S. (2003) Pharmacological characterization of AR-M1000390 at human delta opioid receptors. Life Sci, 73 (13): 1691-704. [PMID:12875901]

62. Martin M, Matifas A, Maldonado R, Kieffer BL. (2003) Acute antinociceptive responses in single and combinatorial opioid receptor knockout mice: distinct mu, delta and kappa tones. Eur J Neurosci, 17 (4): 701-8. [PMID:12603260]

63. Mennicken F, Zhang J, Hoffert C, Ahmad S, Beaudet A, O'Donnell D. (2003) Phylogenetic changes in the expression of delta opioid receptors in spinal cord and dorsal root ganglia. J Comp Neurol, 465 (3): 349-60. [PMID:12966560]

64. Miyazaki T, Choi IY, Rubas W, Anand NK, Ali C, Evans J, Gursahani H, Hennessy M, Kim G, McWeeney D et al.. (2017) NKTR-181: A Novel Mu-Opioid Analgesic with Inherently Low Abuse Potential. J Pharmacol Exp Ther, 363 (1): 104-113. [PMID:28778859]

65. Mosberg HI, Hurst R, Hruby VJ, Gee K, Yamamura HI, Galligan JJ, Burks TF. (1983) Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors. Proc Natl Acad Sci USA, 80 (19): 5871-4. [PMID:6310598]

66. MRC. AZD7268 δ‐Opioid receptor agonist. Accessed on 28/10/2014. Modified on 28/10/2014. MRC/AstraZeneca: Mechanisms of Disease Call, http://webarchive.nationalarchives.gov.uk/20120104105854/http://www.mrc.ac.uk/consumption/groups/public/documents/content/mrc008373.pdf

67. Neilan CL, Akil H, Woods JH, Traynor JR. (1999) Constitutive activity of the delta-opioid receptor expressed in C6 glioma cells: identification of non-peptide delta-inverse agonists. Br J Pharmacol, 128 (3): 556-62. [PMID:10516632]

68. Neumeyer JL, Zhang B, Zhang T, Sromek AW, Knapp BI, Cohen DJ, Bidlack JM. (2012) Synthesis, binding affinity, and functional in vitro activity of 3-benzylaminomorphinan and 3-benzylaminomorphine ligands at opioid receptors. J Med Chem, 55 (8): 3878-90. [PMID:22439881]

69. Pan YZ, Li DP, Chen SR, Pan HL. (2002) Activation of delta-opioid receptors excites spinally projecting locus coeruleus neurons through inhibition of GABAergic inputs. J Neurophysiol, 88 (5): 2675-83. [PMID:12424303]

70. Patkar KA, Yan X, Murray TF, Aldrich JV. (2005) [Nalpha-benzylTyr1,cyclo(D-Asp5,Dap8)]- dynorphin A-(1-11)NH2 cyclized in the "address" domain is a novel kappa-opioid receptor antagonist. J Med Chem, 48 (14): 4500-3. [PMID:15999987]

71. Payza K. (2003) Binding and activity of opioid ligands at the cloned human delta, mu and kappa receptors. In The Delta Receptor. Edited by Chang KJ (CRC Press) 261-275. [ISBN:0824740319]

72. Peckys D, Landwehrmeyer GB. (1999) Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience, 88 (4): 1093-135. [PMID:10336124]

73. Pol O, Palacio JR, Puig MM. (2003) The expression of delta- and kappa-opioid receptor is enhanced during intestinal inflammation in mice. J Pharmacol Exp Ther, 306 (2): 455-62. [PMID:12724348]

74. Poole DP, Pelayo JC, Scherrer G, Evans CJ, Kieffer BL, Bunnett NW. (2011) Localization and regulation of fluorescently labeled delta opioid receptor, expressed in enteric neurons of mice. Gastroenterology, 141 (3): 982-991.e1-8. [PMID:21699782]

75. Portoghese PS, Sultana M, Takemori AE. (1988) Naltrindole, a highly selective and potent non-peptide delta opioid receptor antagonist. Eur J Pharmacol, 146 (1): 185-6. [PMID:2832195]

76. Poulain R, Horvath D, Bonnet B, Eckhoff C, Chapelain B, Bodinier MC, Déprez B. (2001) From hit to lead. Combining two complementary methods for focused library design. Application to mu opiate ligands. J Med Chem, 44 (21): 3378-90. [PMID:11585443]

77. Prchalová E, Hin N, Thomas AG, Veeravalli V, Ng J, Alt J, Rais R, Rojas C, Li Z, Hihara H et al.. (2019) Discovery of Benzamidine- and 1-Aminoisoquinoline-Based Human MAS-Related G-Protein-Coupled Receptor X1 (MRGPRX1) Agonists. J Med Chem, 62 (18): 8631-8641. [PMID:31498617]

78. Quock RM, Hosohata Y, Knapp RJ, Burkey TH, Hosohata K, Zhang X, Rice KC, Nagase H, Hruby VJ, Porreca F et al.. (1997) Relative efficacies of delta-opioid receptor agonists at the cloned human delta-opioid receptor. Eur J Pharmacol, 326 (1): 101-4. [PMID:9178661]

79. Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T. (1994) Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol Pharmacol, 45 (2): 330-4. [PMID:8114680]

80. Rios CD, Jordan BA, Gomes I, Devi LA. (2001) G-protein-coupled receptor dimerization: modulation of receptor function. Pharmacol Ther, 92 (2-3): 71-87. [PMID:11916530]

81. Rorick-Kehn LM, Witkin JM, Statnick MA, Eberle EL, McKinzie JH, Kahl SD, Forster BM, Wong CJ, Li X, Crile RS et al.. (2014) LY2456302 is a novel, potent, orally-bioavailable small molecule kappa-selective antagonist with activity in animal models predictive of efficacy in mood and addictive disorders. Neuropharmacology, 77: 131-44. [PMID:24071566]

82. Salemi S, Aeschlimann A, Reisch N, Jüngel A, Gay RE, Heppner FL, Michel BA, Gay S, Sprott H. (2005) Detection of kappa and delta opioid receptors in skin--outside the nervous system. Biochem Biophys Res Commun, 338 (2): 1012-7. [PMID:16263089]

83. Scherrer G, Befort K, Contet C, Becker J, Matifas A, Kieffer BL. (2004) The delta agonists DPDPE and deltorphin II recruit predominantly mu receptors to produce thermal analgesia: a parallel study of mu, delta and combinatorial opioid receptor knockout mice. Eur J Neurosci, 19 (8): 2239-48. [PMID:15090050]

84. Scherrer G, Tryoen-Tóth P, Filliol D, Matifas A, Laustriat D, Cao YQ, Basbaum AI, Dierich A, Vonesh JL, Gavériaux-Ruff C et al.. (2006) Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci USA, 103 (25): 9691-6. [PMID:16766653]

85. Schiller PW, Weltrowska G, Nguyen TM, Wilkes BC, Chung NN, Lemieux C. (1993) TIPP[psi]: a highly potent and stable pseudopeptide delta opioid receptor antagonist with extraordinary delta selectivity. J Med Chem, 36 (21): 3182-7. [PMID:8230106]

86. Schulz R, Eisinger DA, Wehmeyer A. (2004) Opioid control of MAP kinase cascade. Eur J Pharmacol, 500 (1-3): 487-97. [PMID:15464054]

87. Sharma SK, Klee WA, Nirenberg M. (1977) Opiate-dependent modulation of adenylate cyclase. Proc Natl Acad Sci USA, 74 (8): 3365-9. [PMID:269396]

88. Simonin F, Befort K, Gavériaux-Ruff C, Matthes H, Nappey V, Lannes B, Micheletti G, Kieffer B. (1994) The human delta-opioid receptor: genomic organization, cDNA cloning, functional expression, and distribution in human brain. Mol Pharmacol, 46 (6): 1015-21. [PMID:7808419]

89. Smith CF, Waldron C, Brook NA. (1988) Opioid receptors in the mouse ileum. Arch Int Pharmacodyn Ther, 291: 122-31. [PMID:2835021]

90. Sofuoglu M, Portoghese PS, Takemori AE. (1991) Differential antagonism of delta opioid agonists by naltrindole and its benzofuran analog (NTB) in mice: evidence for delta opioid receptor subtypes. J Pharmacol Exp Ther, 257 (2): 676-80. [PMID:1851833]

91. Stefano GB, Melchiorri P, Negri L, Hughes TK, Scharrer B. (1992) [D-Ala2]deltorphin I binding and pharmacological evidence for a special subtype of delta opioid receptor on human and invertebrate immune cells. Proc Natl Acad Sci USA, 89 (19): 9316-20. [PMID:1329092]

92. Szekeres PG, Traynor JR. (1997) Delta opioid modulation of the binding of guanosine-5'-O-(3-[35S]thio)triphosphate to NG108-15 cell membranes: characterization of agonist and inverse agonist effects. J Pharmacol Exp Ther, 283 (3): 1276-84. [PMID:9400003]

93. Toll L, Berzetei-Gurske IP, Polgar WE, Brandt SR, Adapa ID, Rodriguez L, Schwartz RW, Haggart D, O'Brien A, White A et al.. (1998) Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res Monogr, 178: 440-66. [PMID:9686407]

94. Varty GB, Lu SX, Morgan CA, Cohen-Williams ME, Hodgson RA, Smith-Torhan A, Zhang H, Fawzi AB, Graziano MP, Ho GD et al.. (2008) The anxiolytic-like effects of the novel, orally active nociceptin opioid receptor agonist 8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510). J Pharmacol Exp Ther, 326 (2): 672-82. [PMID:18492950]

95. Vergura R, Balboni G, Spagnolo B, Gavioli E, Lambert DG, McDonald J, Trapella C, Lazarus LH, Regoli D, Guerrini R et al.. (2008) Anxiolytic- and antidepressant-like activities of H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), a novel selective delta opioid receptor agonist. Peptides, 29 (1): 93-103. [PMID:18069089]

96. Wentland MP, Lou R, Lu Q, Bu Y, Denhardt C, Jin J, Ganorkar R, VanAlstine MA, Guo C, Cohen DJ et al.. (2009) Syntheses of novel high affinity ligands for opioid receptors. Bioorg Med Chem Lett, 19 (8): 2289-94. [PMID:19282177]

97. Wentland MP, Lou R, Lu Q, Bu Y, VanAlstine MA, Cohen DJ, Bidlack JM. (2009) Syntheses and opioid receptor binding properties of carboxamido-substituted opioids. Bioorg Med Chem Lett, 19 (1): 203-8. [PMID:19027293]

98. Wentland MP, Lu Q, Lou R, Bu Y, Knapp BI, Bidlack JM. (2005) Synthesis and opioid receptor binding properties of a highly potent 4-hydroxy analogue of naltrexone. Bioorg Med Chem Lett, 15 (8): 2107-10. [PMID:15808478]

99. Xie Z, Bhushan RG, Daniels DJ, Portoghese PS. (2005) Interaction of bivalent ligand KDN21 with heterodimeric delta-kappa opioid receptors in human embryonic kidney 293 cells. Mol Pharmacol, 68: 1079-1086. [PMID:16006595]

100. Yaksh TL, Noueihed R. (1985) The physiology and pharmacology of spinal opiates. Annu Rev Pharmacol Toxicol, 25: 433-62. [PMID:2988422]

101. Yamamura MS, Horvath R, Toth G, Otvos F, Malatynska E, Knapp RJ, Porreca F, Hruby VJ, Yamamura HI. (1992) Characterization of [3H]naltrindole binding to delta opioid receptors in rat brain. Life Sci, 50 (16): PL119-24. [PMID:1313133]

102. Yasuda K, Raynor K, Kong H, Breder CD, Takeda J, Reisine T, Bell GI. (1993) Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc Natl Acad Sci USA, 90 (14): 6736-40. [PMID:8393575]

103. Zaki PA, Bilsky EJ, Vanderah TW, Lai J, Evans CJ, Porreca F. (1996) Opioid receptor types and subtypes: the delta receptor as a model. Annu Rev Pharmacol Toxicol, 36: 379-401. [PMID:8725395]

104. Zaveri N. (2003) Peptide and nonpeptide ligands for the nociceptin/orphanin FQ receptor ORL1: research tools and potential therapeutic agents. Life Sci, 73: 663-678. [PMID:12801588]

105. Zheng Y, Obeng S, Wang H, Jali AM, Peddibhotla B, Williams DA, Zou C, Stevens DL, Dewey WL, Akbarali HI et al.. (2019) Design, Synthesis, and Biological Evaluation of the Third Generation 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4'-pyridyl)carboxamido]morphinan (NAP) Derivatives as μ/κ Opioid Receptor Dual Selective Ligands. J Med Chem, 62 (2): 561-574. [PMID:30608693]

106. Zhu Y, Hsu MS, Pintar JE. (1998) Developmental expression of the mu, kappa, and delta opioid receptor mRNAs in mouse. J Neurosci, 18 (7): 2538-49. [PMID:9502813]

107. Zhu Y, King MA, Schuller AG, Nitsche JF, Reidl M, Elde RP, Unterwald E, Pasternak GW, Pintar JE. (1999) Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron, 24: 243-252. [PMID:10677041]

108. Zhu Y, Pintar JE. (1998) Expression of opioid receptors and ligands in pregnant mouse uterus and placenta. Biol Reprod, 59 (4): 925-32. [PMID:9746745]

Contributors

Show »

How to cite this page