PrRP receptor | Prolactin-releasing peptide receptor | IUPHAR/BPS Guide to PHARMACOLOGY

PrRP receptor

Target id: 337

Nomenclature: PrRP receptor

Family: Prolactin-releasing peptide receptor

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for PrRP receptor in GtoImmuPdb

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 370 10q26.13 PRLHR prolactin releasing hormone receptor 28
Mouse 7 370 19 D3 Prlhr prolactin releasing hormone receptor
Rat 7 370 1q55 Prlhr prolactin releasing hormone receptor 49
Previous and Unofficial Names
PrRPR | GPR10 [14] | G protein-coupled receptor 10 | prRP receptor
Database Links
Specialist databases
GPCRDB prlhr_human (Hs), prlhr_mouse (Mm), prlhr_rat (Rn)
Other databases
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands
PrRP-20 {Sp: Human}
PrRP-31 {Sp: Human} , PrRP-31 {Sp: Rat}
PrRP-20 {Sp: Rat}
Potency order of endogenous ligands (Human)
PrRP-20 (PRLH, P81277) = PrRP-31 (PRLH, P81277)  [20]

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]PrRP-20 (human) Hs Full agonist 9.2 – 10.6 pKd 20
pKd 9.2 – 10.6 (Kd 5.7x10-10 – 2.6x10-11 M) [20]
PrRP-20 {Sp: Rat} Hs Full agonist 9.7 pKi 20
pKi 9.7 [20]
PrRP-31 {Sp: Rat} Hs Full agonist 9.5 pKi 20
pKi 9.5 [20]
PrRP-20 {Sp: Human} Hs Full agonist 9.0 – 9.6 pKi 9,20
pKi 9.0 – 9.6 [9,20]
PrRP-31 {Sp: Human} Hs Full agonist 9.0 – 9.2 pKi 9,20
pKi 9.0 – 9.2 [9,20]
PrRP-(24-31) (human) Hs Full agonist 7.3 pKi 9
pKi 7.3 [9]
NPY-(18-36) (human, pig) Hs Partial agonist 5.1 pKi 9
pKi 5.1 [9]
[125I]PrRP31 Hs Full agonist - - 8
[8]
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
neuropeptide Y {Sp: Human, Mouse, Rat} Hs Antagonist 5.4 pKi 19
pKi 5.4 [19]
Tissue Distribution
Pituitary gland.
Species:  Human
Technique:  RT-PCR.
References:  51
Pituitary gland.
Species:  Human
Technique:  Immunohistochemistry.
References:  1
Decidua.
Species:  Human
Technique:  RT-PCR.
References:  37
Pituitary gland, adrenal glands (cortex and medulla), cerebellum, hippocampus, pons, medulla obligata, hypothalamus, thalamus, occipital lobe, temporal lobe, frontal lobe.
Species:  Human
Technique:  RT-PCR.
References:  45
Brain (hypothalamus, medulla oblongata and cerebellum), pituitary, heart, soleus muscle, adipose tissue, kidney, adrenal gland, testis, small intestine.
Species:  Rat
Technique:  Radioligand binding.
References:  42
CNS: Reticular nucleus of the thalamus > periventricular hypothalamus, dorsomedial hypothalamus, area postrema, nucleus of the solitary tract-commissural portion > medial preoptic nucleus, medial preoptic area, paraventricular hypothalamus, locus coeruleus > ventrolateral hypothalamus, nucleus of the solitary tract-medial portion > nucleus accumbens, bed nuclei stria terminalis, central amygdala, ventromedial hypothalamus, ventral premammillary nucleus, dorsal raphe nucleus, lateral parabrachial nucleus, rostral dorsomedial reticular formation, intermediate reticular nucleus, ventrolateral reticular nucleus.
Species:  Rat
Technique:  in situ hybridisation.
References:  38
Reticular thalamic nucleus.
Species:  Rat
Technique:  in situ hybridisation.
References:  27
Pituitary gland > cerebellum, hypothalamus, spinal cord, medulla oblongata, thalamus > cerebral cortex > adrenal gland > striatum, hippocampus, midbrain > femur, stomach > skin.
Species:  Rat
Technique:  RT-PCR.
References:  10
Anterior lobe, adrenal medulla, testis, epididymis.
Species:  Rat
Technique:  in situ hybridisation.
References:  34
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of arachidonic acid metabolite release in rat anterior pituitary cells endogenously expressing the PRRP receptor.
Species:  Rat
Tissue:  Primary cultured anterior pituitary cells.
Response measured:  Arachidonic acid metabolite release.
References:  14
Measurement of Ca2+ levels in CHO cells transfected with the PrRP receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Ca2+ mobilisation.
References:  38
Measurement of prolactin release from the pituitary adenoma-derived cell line RC-4B/C endogenously expressing the PrRP receptor.
Species:  Rat
Tissue:  RC-4B/C cell line.
Response measured:  Increased secretion of prolactin.
References:  14
Measurement of Ca2+ levels in HEK 293 cells transfected with the PrRP receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Ca2+ mobilisation.
References:  20
Measurement of Ca2+ and cAMP levels in rat anterior pituitary cells endogenously expressing the PrRP receptor.
Species:  Rat
Tissue:  Primary cultured anterior pituitary cells.
Response measured:  Ca2+ mobilisation and partial supression of cAMP accumulation.
References:  14
Physiological Functions
Hyperthermia.
Species:  Rat
Tissue:  In vivo.
References:  22
Increase in blood pressure and heart rate.
Species:  Rat
Tissue:  In vivo.
References:  15,41
Stimulation of prolactin release.
Species:  Human
Tissue:  Decidual stromal cells.
References:  37
Stimulation of corticotropin-releasing hormone (CRH)-mediated adrenocorticotropin (ACTH) release.
Species:  Rat
Tissue:  In vivo.
References:  30,43
Stimulation of prolactin and adrenocorticotropic hormone (ACTH) release.
Species:  Rat
Tissue:  In vivo.
References:  40
Reduction in food intake. No effect on water intake.
Species:  Rat
Tissue:  In vivo.
References:  22-23,47
Modulation of sleep and absence seizures.
Species:  Rat
Tissue:  In vivo.
References:  27
Stimulation of prolactin release.
Species:  Rat
Tissue:  In vivo.
References:  31
Inhibition of GH release via somatostatin secretion.
Species:  Rat
Tissue:  In vivo.
References:  17
Indirect stimulation of LH and FSH release.
Species:  Rat
Tissue:  In vivo.
References:  44
Stimulation of gastric contractions and increase in intragastric pressure.
Species:  Rat
Tissue:  in vivo (dorsal vagal complex).
References:  11
Modulation of REM sleep via PRL release.
Species:  Rat
Tissue:  In vivo.
References:  50
Antinociception.
Species:  Rat
Tissue:  In vivo.
References:  18
Stimulation of oxytocin (male and female rats) and vasopressin (female rats only).
Species:  Rat
Tissue:  In vivo.
References:  29
Regulation of the opioid system.
Species:  Mouse
Tissue:  In vivo.
References:  21
Proliferation of pancreatic β cells
Species:  Mouse
Tissue:  in vivo.
References:  3,16
Promotion of cartilage survival
Species:  Mouse
Tissue:  in vivo.
References:  2
Promotion of cartilage survival
Species:  Rat
Tissue:  in vivo.
References:  2
Implication in hypogonadotropic hypogonadism and anovulatory infertility
Species:  Human
Tissue: 
References:  33,39
Initiation and progression of peripartum cardiomyopathy (PPCM)
Species:  Mouse
Tissue:  in vivo.
References:  13
Onset of preeclampsia
Species:  Human
Tissue: 
References:  25
Regulation of inflammatory and immune responses in autoimmune diseases
Species:  Human
Tissue: 
References:  6,36
Regulation of inflammatory and immune responses in autoimmune diseases
Species:  Mouse
Tissue: 
References:  6,36
Physiological Consequences of Altering Gene Expression
The use of PRRP receptor knockout mice provide evidence of involvement in the regulation of energy balance. The knockout mice exhibit increased body fat, increased levels of insulin and leptin and decreased glucose tolerance.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  12
PRRP receptor knockout mice exhibit higher nociceptive threshold and increased analgesic and rewarding effects of morphine. PrRP administration in wild-type mice promoted hyperalgesia and reversed morphine-induced antinociception. This effect of PrRP administration is not seen in the knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  18,21
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Prlhrtm1Askr Prlhrtm1Askr/Prlhrtm1Askr
involves: 129S5/SvEvBrd * C57BL/6
MGI:2135956  MP:0001432 abnormal food preference PMID: 14742914 
Prlhrtm1Map Prlhrtm1Map/Prlhrtm1Map
involves: 129S6/SvEvTac * CD-1
MGI:2135956  MP:0002734 abnormal mechanical nociception PMID: 16299503 
Prlhrtm1Map Prlhrtm1Map/Prlhrtm1Map
involves: 129S6/SvEvTac * CD-1
MGI:2135956  MP:0009776 decreased behavioral withdrawal response PMID: 16299503 
Prlhrtm1Map Prlhrtm1Map/Prlhrtm1Map
involves: 129S6/SvEvTac * CD-1
MGI:2135956  MP:0002665 decreased circulating corticosterone level PMID: 16299503 
Prlhrtm1Dgen Prlhrtm1Dgen/Prlhrtm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2135956  MP:0003910 decreased eating behavior PMID: 17904108 
Prlhrtm1Map Prlhrtm1Map/Prlhrtm1Map
involves: 129S6/SvEvTac * CD-1
MGI:2135956  MP:0009713 enhanced conditioned place preference behavior PMID: 16299503 
Prlhrtm1Dgen Prlhrtm1Dgen/Prlhrtm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2135956  MP:0001257 increased body length PMID: 17904108 
Prlhrtm1Dgen Prlhrtm1Dgen/Prlhrtm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2135956  MP:0001260 increased body weight PMID: 17904108 
Prlhrtm1Map Prlhrtm1Map/Prlhrtm1Map
involves: 129S6/SvEvTac * CD-1
MGI:2135956  MP:0001981 increased chemically-elicited antinociception PMID: 16299503 
Prlhrtm1Dgen Prlhrtm1Dgen/Prlhrtm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2135956  MP:0003982 increased cholesterol level PMID: 17904108 
Prlhrtm1Dgen Prlhrtm1Dgen/Prlhrtm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2135956  MP:0001745 increased circulating corticosterone level PMID: 17904108 
Prlhrtm1Dgen Prlhrtm1Dgen/Prlhrtm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2135956  MP:0005559 increased circulating glucose level PMID: 17904108 
Prlhrtm1Dgen Prlhrtm1Dgen/Prlhrtm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2135956  MP:0001556 increased circulating HDL cholesterol level PMID: 17904108 
Prlhrtm1Askr Prlhrtm1Askr/Prlhrtm1Askr
involves: 129S5/SvEvBrd * C57BL/6
MGI:2135956  MP:0002079 increased circulating insulin level PMID: 14742914 
Prlhrtm1Dgen Prlhrtm1Dgen/Prlhrtm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2135956  MP:0000182 increased circulating LDL cholesterol level PMID: 17904108 
Prlhrtm1Dgen Prlhrtm1Dgen/Prlhrtm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2135956  MP:0005669 increased circulating leptin level PMID: 17904108 
Prlhrtm1Dgen Prlhrtm1Dgen/Prlhrtm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2135956  MP:0005458 increased percent body fat PMID: 17904108 
Prlhrtm1Askr Prlhrtm1Askr/Prlhrtm1Askr
involves: 129S5/SvEvBrd * C57BL/6
MGI:2135956  MP:0005455 increased susceptibility to weight gain PMID: 14742914 
Prlhrtm1Map Prlhrtm1Map/Prlhrtm1Map
involves: 129S6/SvEvTac * CD-1
MGI:2135956  MP:0001973 increased thermal nociceptive threshold PMID: 16299503 
Prlhrtm1Dgen Prlhrtm1Dgen/Prlhrtm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:2135956  MP:0010024 increased total body fat amount PMID: 17904108 
Prlhrtm1Askr Prlhrtm1Askr/Prlhrtm1Askr
involves: 129S5/SvEvBrd * C57BL/6
MGI:2135956  MP:0005331 insulin resistance PMID: 14742914 
Biologically Significant Variants
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  SNPs of the PRLR gene 5' UTR and promoter region are associated with increased risk for gestational diabetes mellitus in a population of Chilean subjects
References:  24
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  Altered serum prolactin levels were not associated with breast cancer risk-associated variants, suggesting that common genetic variation is not a strong predictor of prolactin-associated breast cancer risk in this population
References:  26,35
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  Association of gene polymorphisms in prolactin and its receptor with breast cancer risk in several cohorts
References:  5,7,32,46
Type:  Single nucleotide polymorphism
Species:  Rat
Description:  An ATG -> ATA polymorphism in the PRRP receptor has been found in rats suffering from Diabetes Mellitus OLETF type I (Dmo1). This polymorphism causes a loss of food intake supression by PrRP causing hyperphagia leading to obesity and dyslipidaemia.
References:  48
Type:  Single nucleotide polymorphism
Species:  Rat
Description:  Naturally occurring polymorphism in the start codon of the receptor gene.
References:  8
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  8 polymorphisms have been identified in the British Caucasian population with severe early-onset obesity. 2 of these resulted in an altered amino acid sequence; Val283 -> Ile and Pro305 -> Leu.
Pro305 -> Leu resulted in a reduced intracellular Ca2+ response and lower blood pressure.
References:  4

References

Show »

1. Abe T, Koga N, Tomita M, Tonoike T, Kushima M, Takahashi K, Sano Y, Taniyama M. (2003) Cellular localization of prolactin-releasing peptide receptors in the human pituitary. Acta Neuropathol (Berl), 106: 495-500. [PMID:12915950]

2. Adán N, Guzmán-Morales J, Ledesma-Colunga MG, Perales-Canales SI, Quintanar-Stéphano A, López-Barrera F, Méndez I, Moreno-Carranza B, Triebel J, Binart N et al.. (2013) Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis. J. Clin. Invest., 123 (9): 3902-13. [PMID:23908112]

3. Auffret J, Freemark M, Carré N, Mathieu Y, Tourrel-Cuzin C, Lombès M, Movassat J, Binart N. (2013) Defective prolactin signaling impairs pancreatic β-cell development during the perinatal period. Am. J. Physiol. Endocrinol. Metab., 305 (10): E1309-18. [PMID:24064341]

4. Bhattacharyya S, Luan J, Challis B, Schmitz C, Clarkson P, Franks PW, Middelberg R, Keogh J, Farooqi IS, Montague C, Brennand J, Wareham NJ, O'Rahilly S. (2003) Association of polymorphisms in GPR10, the gene encoding the prolactin-releasing peptide receptor with blood pressure, but not obesity, in a U.K. Caucasian population. Diabetes, 52: 1296-1299. [PMID:12716769]

5. Bogorad RL, Courtillot C, Mestayer C, Bernichtein S, Harutyunyan L, Jomain JB, Bachelot A, Kuttenn F, Kelly PA, Goffin V et al.. (2008) Identification of a gain-of-function mutation of the prolactin receptor in women with benign breast tumors. Proc. Natl. Acad. Sci. U.S.A., 105 (38): 14533-8. [PMID:18779591]

6. Costanza M, Binart N, Steinman L, Pedotti R. (2015) Prolactin: a versatile regulator of inflammation and autoimmune pathology. Autoimmun Rev, 14 (3): 223-30. [PMID:25462579]

7. Courtillot C, Chakhtoura Z, Bogorad R, Genestie C, Bernichtein S, Badachi Y, Janaud G, Akakpo JP, Bachelot A, Kuttenn F et al.. (2010) Characterization of two constitutively active prolactin receptor variants in a cohort of 95 women with multiple breast fibroadenomas. J. Clin. Endocrinol. Metab., 95 (1): 271-9. [PMID:19897676]

8. Ellacott KL, Donald EL, Clarkson P, Morten J, Masters D, Brennand J, Luckman SM. (2005) Characterization of a naturally-occurring polymorphism in the UHR-1 gene encoding the putative rat prolactin-releasing peptide receptor. Peptides, 26: 675-681. [PMID:15752583]

9. Engstrom M, Brandt A, Wurster S, Savola JM, Panula P. (2003) Prolactin releasing peptide has high affinity and efficacy at neuropeptide FF2 receptors. J Pharmacol Exp Ther, 305: 825-832. [PMID:12606605]

10. Fujii R, Fukusumi S, Hosoya M, Kawamata Y, Habata Y, Hinuma S, Sekiguchi M, Kitada C, Kurokawa T, Nishimura O, Onda H, Sumino Y, Fujino M. (1999) Tissue distribution of prolactin-releasing peptide (PrRP) and its receptor. Regul Pept, 83: 1-10. [PMID:10498338]

11. Grabauskas G, Zhou SY, Das S, Lu Y, Owyang C, Moises HC. (2004) Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex. J Physiol, 561: 821-839. [PMID:15486017]

12. Gu W, Geddes BJ, Zhang C, Foley KP, Stricker-Krongrad A. (2004) The prolactin-releasing peptide receptor (GPR10) regulates body weight homeostasis in mice. J Mol Neurosci, 22: 93-103. [PMID:14742914]

13. Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C et al.. (2007) A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell, 128 (3): 589-600. [PMID:17289576]

14. Hinuma S, Habata Y, Fujii R, Kawamata Y, Hosoya M, Fukusumi S, Kitada C, Masuo Y, Asano T, Matsumoto H, Sekiguchi M, Kurokawa T, Nishimura O, Onda H, Fujino M. (1998) A prolactin-releasing peptide in the brain. Nature, 393: 272-276. [PMID:9607765]

15. Horiuchi J, Saigusa T, Sugiyama N, Kanba S, Nishida Y, Sato Y, Hinuma S, Arita J. (2002) Effects of prolactin-releasing peptide microinjection into the ventrolateral medulla on arterial pressure and sympathetic activity in rats. Brain Res, 958: 201-209. [PMID:12468046]

16. Huang C, Snider F, Cross JC. (2009) Prolactin receptor is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy. Endocrinology, 150 (4): 1618-26. [PMID:19036882]

17. Iijima N, Matsumoto Y, Yano T, Tanaka M, Yamamoto T, Kakihara K, Kataoka Y, Tamada Y, Matsumoto H, Suzuki N, Hinuma S, Ibata Y. (2001) A novel function of prolactin-releasing peptide in the control of growth hormone via secretion of somatostatin from the hypothalamus. Endocrinology, 142: 3239-3243. [PMID:11416047]

18. Kalliomaki ML, Pertovaara A, Brandt A, Wei H, Pietila P, Kalmari J, Xu M, Kalso E, Panula P. (2004) Prolactin-releasing peptide affects pain, allodynia and autonomic reflexes through medullary mechanisms. Neuropharmacology, 46: 412-424. [PMID:14975697]

19. Lagerström MC, Fredriksson R, Bjarnadóttir TK, Fridmanis D, Holmquist T, Andersson J, Yan YL, Raudsepp T, Zoorob R, Kukkonen JP, Lundin LG, Klovins J, Chowdhary BP, Postlethwait JH, Schiöth HB. (2005) Origin of the prolactin-releasing hormone (PRLH) receptors: evidence of coevolution between PRLH and a redundant neuropeptide Y receptor during vertebrate evolution. Genomics, 85: 688-703. [PMID:15885496]

20. Langmead CJ, Szekeres PG, Chambers JK, Ratcliffe SJ, Jones DN, Hirst WD, Price GW, Herdon HJ. (2000) Characterization of the binding of [(125)I]-human prolactin releasing peptide (PrRP) to GPR10, a novel G protein coupled receptor. Br J Pharmacol, 131: 683-688. [PMID:11030716]

21. Laurent P, Becker JA, Valverde O, Ledent C, de Kerchove d'Exaerde A, Schiffmann SN, Maldonado R, Vassart G, Parmentier M. (2005) The prolactin-releasing peptide antagonizes the opioid system through its receptor GPR10. Nat Neurosci, 8: 1735-1741. [PMID:16299503]

22. Lawrence CB, Celsi F, Brennand J, Luckman SM. (2000) Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat Neurosci, 3: 645-646. [PMID:10862694]

23. Lawrence CB, Ellacott KL, Luckman SM. (2002) PRL-releasing peptide reduces food intake and may mediate satiety signaling. Endocrinology, 143: 360-367. [PMID:11796487]

24. Le TN, Elsea SH, Romero R, Chaiworapongsa T, Francis GL. (2013) Prolactin receptor gene polymorphisms are associated with gestational diabetes. Genet Test Mol Biomarkers, 17 (7): 567-71. [PMID:23651351]

25. Leaños-Miranda A, Campos-Galicia I, Ramírez-Valenzuela KL, Chinolla-Arellano ZL, Isordia-Salas I. (2013) Circulating angiogenic factors and urinary prolactin as predictors of adverse outcomes in women with preeclampsia. Hypertension, 61 (5): 1118-25. [PMID:23460287]

26. Lee SA, Haiman CA, Burtt NP, Pooler LC, Cheng I, Kolonel LN, Pike MC, Altshuler D, Hirschhorn JN, Henderson BE et al.. (2007) A comprehensive analysis of common genetic variation in prolactin (PRL) and PRL receptor (PRLR) genes in relation to plasma prolactin levels and breast cancer risk: the multiethnic cohort. BMC Med. Genet., 8: 72. [PMID:18053149]

27. Lin SH, Arai AC, Espana RA, Berridge CW, Leslie FM, Huguenard JR, Vergnes M, Civelli O. (2002) Prolactin-releasing peptide (PrRP) promotes awakening and suppresses absence seizures. Neuroscience, 114: 229-238. [PMID:12207968]

28. Marchese A, Heiber M, Nguyen T, Heng HH, Saldivia VR, Cheng R, Murphy PM, Tsui LC, Shi X, Gregor P et al.. (1995) Cloning and chromosomal mapping of three novel genes, GPR9, GPR10, and GPR14, encoding receptors related to interleukin 8, neuropeptide Y, and somatostatin receptors. Genomics, 29 (2): 335-44. [PMID:8666380]

29. Maruyama M, Matsumoto H, Fujiwara K, Noguchi J, Kitada C, Hinuma S, Onda H, Nishimura O, Fujino M, Higuchi T, Inoue K. (1999) Central administration of prolactin-releasing peptide stimulates oxytocin release in rats. Neurosci Lett, 276: 193-196. [PMID:10612638]

30. Matsumoto H, Maruyama M, Noguchi J, Horikoshi Y, Fujiwara K, Kitada C, Hinuma S, Onda H, Nishimura O, Inoue K, Fujino M. (2000) Stimulation of corticotropin-releasing hormone-mediated adrenocorticotropin secretion by central administration of prolactin-releasing peptide in rats. Neurosci Lett, 285: 234-238. [PMID:10806329]

31. Matsumoto H, Noguchi J, Horikoshi Y, Kawamata Y, Kitada C, Hinuma S, Onda H, Nishimura O, Fujino M. (1999) Stimulation of prolactin release by prolactin-releasing peptide in rats. Biochem Biophys Res Commun, 259: 321-324. [PMID:10362506]

32. Mong FY, Kuo YL, Liu CW, Liu WS, Chang LC. (2011) Association of gene polymorphisms in prolactin and its receptor with breast cancer risk in Taiwanese women. Mol. Biol. Rep., 38 (7): 4629-36. [PMID:21125332]

33. Newey PJ, Gorvin CM, Cleland SJ, Willberg CB, Bridge M, Azharuddin M, Drummond RS, van der Merwe PA, Klenerman P, Bountra C et al.. (2013) Mutant prolactin receptor and familial hyperprolactinemia. N. Engl. J. Med., 369 (21): 2012-20. [PMID:24195502]

34. Nieminen ML, Brandt A, Pietila P, Panula P. (2000) Expression of mammalian RF-amide peptides neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP) and the PrRP receptor in the peripheral tissues of the rat. Peptides, 21: 1695-1701. [PMID:11090924]

35. Nyante SJ, Faupel-Badger JM, Sherman ME, Pfeiffer RM, Gaudet MM, Falk RT, Andaya AA, Lissowska J, Brinton LA, Peplonska B et al.. (2011) Genetic variation in PRL and PRLR, and relationships with serum prolactin levels and breast cancer risk: results from a population-based case-control study in Poland. Breast Cancer Res., 13 (2): R42. [PMID:21470416]

36. Pereira Suarez AL, López-Rincón G, Martínez Neri PA, Estrada-Chávez C. (2015) Prolactin in inflammatory response. Adv. Exp. Med. Biol., 846: 243-64. [PMID:25472542]

37. Reis FM, Vigano P, Arnaboldi E, Spritzer PM, Petraglia F, Di Blasio AM. (2002) Expression of prolactin-releasing peptide and its receptor in the human decidua. Mol Hum Reprod, 8: 356-362. [PMID:11912284]

38. Roland BL, Sutton SW, Wilson SJ, Luo L, Pyati J, Huvar R, Erlander MG, Lovenberg TW. (1999) Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery. Endocrinology, 140: 5736-5745. [PMID:10579339]

39. Salazar-López-Ortiz CG, Hernández-Bueno JA, González-Bárcena D, López-Gamboa M, Ortiz-Plata A, Porias-Cuéllar HL, Rembao-Bojórquez JD, Sandoval-Huerta GA, Tapia-Serrano R, Vázquez-Castillo GG et al.. (2014) [Clinical practice guideline for the diagnosis and treatment of hyperprolactinemia]. Ginecol Obstet Mex, 82 (2): 123-42. [PMID:24779268]

40. Samson WK, Keown C, Samson CK, Samson HW, Lane B, Baker JR, Taylor MM. (2003) Prolactin-releasing peptide and its homolog RFRP-1 act in hypothalamus but not in anterior pituitary gland to stimulate stress hormone secretion. Endocrine, 20: 59-66. [PMID:12668869]

41. Samson WK, Resch ZT, Murphy TC. (2000) A novel action of the newly described prolactin-releasing peptides: cardiovascular regulation. Brain Res, 858: 19-25. [PMID:10700591]

42. Satoh F, Smith DM, Gardiner JV, Mahmoodi M, Murphy KG, Ghatei MA, Bloom SR. (2000) Characterization and distribution of prolactin releasing peptide (PrRP) binding sites in the rat--evidence for a novel binding site subtype in cardiac and skeletal muscle. Br J Pharmacol, 129: 1787-1793. [PMID:10780987]

43. Seal LJ, Small CJ, Dhillo WS, Kennedy AR, Ghatei MA, Bloom SR. (2002) Prolactin-releasing peptide releases corticotropin-releasing hormone and increases plasma adrenocorticotropin via the paraventricular nucleus of the hypothalamus. Neuroendocrinology, 76: 70-78. [PMID:12169768]

44. Seal LJ, Small CJ, Kim MS, Stanley SA, Taheri S, Ghatei MA, Bloom SR. (2000) Prolactin releasing peptide (PrRP) stimulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) via a hypothalamic mechanism in male rats. Endocrinology, 141: 1909-1912. [PMID:10803604]

45. Takahashi K, Totsune K, Murakami O, Sone M, Noshiro T, Hayashi Y, Sasano H, Shibahara S. (2002) Expression of prolactin-releasing peptide and its receptor in the human adrenal glands and tumor tissues of adrenocortical tumors, pheochromocytomas and neuroblastomas. Peptides, 23: 1135-1140. [PMID:12126742]

46. Vaclavicek A, Hemminki K, Bartram CR, Wagner K, Wappenschmidt B, Meindl A, Schmutzler RK, Klaes R, Untch M, Burwinkel B et al.. (2006) Association of prolactin and its receptor gene regions with familial breast cancer. J. Clin. Endocrinol. Metab., 91 (4): 1513-9. [PMID:16434456]

47. Vergoni AV, Watanobe H, Guidetti G, Savino G, Bertolini A, Schioth HB. (2002) Effect of repeated administration of prolactin releasing peptide on feeding behavior in rats. Brain Res, 955: 207-213. [PMID:12419538]

48. Watanabe TK, Suzuki M, Yamasaki Y, Okuno S, Hishigaki H, Ono T, Oga K, Mizoguchi-Miyakita A, Tsuji A, Kanemoto N, Wakitani S, Takagi T, Nakamura Y, Tanigami A. (2005) Mutated G-protein-coupled receptor GPR10 is responsible for the hyperphagia/dyslipidaemia/obesity locus of Dmo1 in the OLETF rat. Clin Exp Pharmacol Physiol, 32: 355-366. [PMID:15854142]

49. Welch SK, O'Hara BF, Kilduff TS, Heller HC. (1995) Sequence and tissue distribution of a candidate G-coupled receptor cloned from rat hypothalamus. Biochem Biophys Res Commun, 209: 606-613. [PMID:7733930]

50. Zhang SQ, Kimura M, Inoue S. (2000) Effects of prolactin-releasing peptide (PrRP) on sleep regulation in rats. Psychiatry Clin Neurosci, 54: 262-264. [PMID:11186069]

51. Zhang X, Danila DC, Katai M, Swearingen B, Klibanski A. (1999) Expression of prolactin-releasing peptide and its receptor messenger ribonucleic acid in normal human pituitary and pituitary adenomas. J Clin Endocrinol Metab, 84: 4652-4655. [PMID:10599733]

Contributors

Show »

How to cite this page

Helgi Schiöth, Vanni Caruso, Malin Lagerstrom, Rebecca Hills.
Prolactin-releasing peptide receptor: PrRP receptor. Last modified on 20/02/2018. Accessed on 17/11/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=337.