Top ▲

TP receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 346

Nomenclature: TP receptor

Family: Prostanoid receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 343 19p13.3 TBXA2R thromboxane A2 receptor 22
Mouse 7 341 10 39.72 cM Tbxa2r thromboxane A2 receptor 9,58,73
Rat 7 341 7q11 Tbxa2r thromboxane A2 receptor 1
Previous and Unofficial Names Click here for help
prostanoid TP receptor | TXA2-R
Database Links Click here for help
Specialist databases
GPCRdb ta2r_human (Hs), ta2r_mouse (Mm), ta2r_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human thromboxane A2 receptor bound to ramatroban
PDB Id:  6IIU
Ligand:  ramatroban
Resolution:  2.5Å
Species:  Human
References:  14
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human thromboxane A2 receptor bound to daltroban
PDB Id:  6IIV
Ligand:  daltroban
Resolution:  3.0Å
Species:  Human
References:  14
Natural/Endogenous Ligands Click here for help
PGD2
PGE2
PGF
PGI2
thromboxane A2
Comments: Thromboxane A2 is the principal endogenous agonist. PGE2 to a lesser extent can also activate the TP receptor.
Potency order of endogenous ligands
thromboxane A2 = PGH2 >> PGD2, PGE2, PGF, PGI2

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
I-BOP Small molecule or natural product Hs Agonist 8.9 – 9.3 pKd 46
pKd 8.9 – 9.3 (Kd 1.16x10-9 – 4.8x10-10 M) [46]
[125I]BOP Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist 8.7 pKd 51
pKd 8.7 (Kd 2x10-9 M) [51]
[3H]U46619 Small molecule or natural product Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Full agonist 7.8 pKd 2
pKd 7.8 [2]
10,10-difluoro TXA2 Small molecule or natural product Hs Full agonist 7.0 pKd 52
pKd 7.0 (Kd 1x10-7 M) [52]
I-BOP Small molecule or natural product Click here for species-specific activity table Mm Full agonist 9.3 pKi 36
pKi 9.3 [36]
EP 171 Small molecule or natural product Hs Full agonist 8.5 pKi 28
pKi 8.5 [28]
U46609 Small molecule or natural product Hs Full agonist 8.4 pKi 50
pKi 8.4 [50]
STA2 Small molecule or natural product Click here for species-specific activity table Mm Full agonist 7.9 pKi 36
pKi 7.9 [36]
U46619 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 7.5 pKi 2
pKi 7.5 [2]
U46619 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Mm Full agonist 7.2 pKi 36
pKi 7.2 [36]
MB-28767 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.5 pKi 2
pKi 6.5 [2]
carbocyclic thromboxane A2 Small molecule or natural product Hs Full agonist 6.5 pKi 50
pKi 6.5 [50]
cloprostenol Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.2 pKi 2
pKi 5.2 [2]
iloprost Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Full agonist 5.2 pKi 2
pKi 5.2 [2]
PGF Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 5.1 pKi 2
pKi 5.1 [2]
butaprost (free acid form) Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.7 pKi 2
pKi 4.7 [2]
carbacyclin Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.7 pKi 2
pKi 4.7 [2]
PGE2 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 4.5 pKi 2
pKi 4.5 [2]
fluprostenol Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.3 pKi 2
pKi 4.3 [2]
SQ 26655 Small molecule or natural product Rn Full agonist 9.1 pEC50 68
pEC50 9.1 (EC50 9x10-10 M) [68]
AGN192093 Small molecule or natural product Rn Agonist 8.9 pEC50 39
pEC50 8.9 (EC50 1.3x10-9 M) [39]
AGN 191976 Small molecule or natural product Hs Full agonist 7.8 pEC50 39
pEC50 7.8 (EC50 1.6x10-8 M) [39]
STA2 Small molecule or natural product Hs Agonist 6.4 – 7.1 pIC50 6
pIC50 6.4 – 7.1 (IC50 4.2x10-7 – 8.7x10-8 M) [6]
View species-specific agonist tables
Agonist Comments
References [28,50-51] use human platelet preparations instead of transfected cells.

PGH2 and TXA2 are only rarely used as TP agonists owing to their instability under physiological conditions; U46619 is an appropriate substitute. Partial agonism is common among close analogues of PGH2 and TXA2.

References given alongside the TP receptor agonists I-BOP [46] and STA2 [6] use human platelets as the source of TP receptors for competition radio-ligand binding assays to determine the indicated activity values.

Care should be taken in handling highly potent TP agonists such as EP-171 and I-BOP as they are expected to be resistant to in vivo deactivation by 15-OH prostaglandin dehydrogenase owing to their 16-p-halophenoxy moieties.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
I-SAP Small molecule or natural product Hs Antagonist 9.3 pKd 57
pKd 9.3 (Kd 4.7x10-10 M) [57]
[3H]SQ-29548 Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Antagonist 9.0 pKd 1
pKd 9.0 [1]
[3H]S-145 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 8.9 pKd 22
pKd 8.9 [22]
[125I]SAP Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 7.7 – 9.3 pKd 57
pKd 7.7 – 9.3 (Kd 2x10-8 – 5x10-10 M) [57]
[3H]S-145 Small molecule or natural product Ligand is labelled Ligand is radioactive Mm Antagonist 8.5 pKd 58
pKd 8.5 [58]
[125I]SQ-29548 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 8.3 pKd 21
pKd 8.3 [21]
[3H]SQ-29548 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 7.4 – 8.2 pKd 2,85
pKd 7.4 – 8.2 (Kd 4x10-8 – 6.3x10-9 M) [2,85]
[125I]PTA-OH Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 7.7 pKd 19
pKd 7.7 [19]
domitroban Small molecule or natural product Hs Antagonist 9.6 pKi 37
pKi 9.6 [37]
domitroban Small molecule or natural product Mm Antagonist 9.2 pKi 36
pKi 9.2 [36]
KW-3635 Small molecule or natural product Hs Antagonist 8.9 pKi 50
pKi 8.9 [50]
vapiprost Small molecule or natural product Hs Antagonist 8.3 – 9.4 pKi 6,42
pKi 8.3 – 9.4 [6,42]
SQ-29548 Small molecule or natural product Hs Antagonist 8.1 – 9.1 pKi 2,70,85
pKi 8.1 – 9.1 [2,70,85]
ifetroban Small molecule or natural product Hs Antagonist 8.1 – 8.4 pKi 61
pKi 8.1 – 8.4 (Ki 9x10-9 – 4x10-9 M) [61]
ONO-3708 Small molecule or natural product Hs Antagonist 7.4 – 8.9 pKi 32
pKi 7.4 – 8.9 (Ki 3.98x10-8 – 1.26x10-9 M) [32]
ramatroban Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.0 pKi 74
pKi 8.0 [74]
vapiprost Small molecule or natural product Mm Antagonist 7.9 pKi 36
pKi 7.9 [36]
SQ-29548 Small molecule or natural product Mm Antagonist 7.9 pKi 36
pKi 7.9 [36]
daltroban Small molecule or natural product Ligand has a PDB structure Hs Antagonist 7.7 pKi 50
pKi 7.7 [50]
S-5751 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.6 pKi 5
pKi 7.6 [5]
ONO-8711 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 pKi 83
pKi 7.1 [83]
AH23848 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.2 pKi 2
pKi 6.2 [2]
laropiprant Small molecule or natural product Hs Antagonist 6.1 pKi 40
pKi 6.1 [40]
NTP42 Small molecule or natural product Hs Antagonist 7.3 – 8.1 pIC50 35
pIC50 8.1 (IC50 8.25x10-9 M) [35]
Description: Antagonism of U46619-mediated [Ca2+]i mobilization in HEK293 cells expressing TPβ
pIC50 7.3 (IC50 5.62x10-8 M) [35]
Description: Antagonism of U46619-mediated [Ca2+]i mobilization in HEK293 cells expressing TP&aipha;
ICI 192605 Small molecule or natural product Hs Antagonist 7.2 pIC50 66
pIC50 7.2 (IC50 6.5x10-8 M) [66]
terutroban Small molecule or natural product Hs Antagonist 6.5 pIC50 11
pIC50 6.5 (IC50 3.2x10-7 M) [11]
PBT-3 Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 5.9 – 6.7 pIC50 62
pIC50 6.7 (IC50 2x10-7 M) [62]
Description: Antagonism of TPalpha (short) isoform expressed in COS7 cells.
pIC50 5.9 (IC50 1.2x10-6 M) [62]
Description: Antagonism of TPbeta (long) isoform expressed in COS7 cells.
View species-specific antagonist tables
Antagonist Comments
References [6,21,32,37,50,57,61,74] use human platelet preparations instead of transfected cells.

A wide range of structurally diverse TP antagonists are known; GR-32191 and SQ-29548 are in common use. Agents combining TP antagonism and IP agonism [7,20,47] and TP antagonism and TX synthase inhibition [79] are known.
A novel TP antagonist, NTP42, was found to attenuate pulmonary arterial hypertention pathophysiology, especially when it was combined together with sildenafil [54].
Immuno Process Associations
Immuno Process:  Inflammation
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  34
Tissue Distribution Click here for help
Prostate
Species:  Human
Technique:  Immunohistochemistry.
References:  53
Platelets.
Species:  Human
Technique:  Radioligand binding.
References:  44
Uterus.
Species:  Human
Technique:  Immunohistochemistry, immunocytochemistry, Northern blotting, in situ hybridisation, radioligand binding.
References:  69
Placenta > lung.
Species:  Human
Technique:  Northern blotting.
References:  22
Brain, thymus, small intestine.
Species:  Human
Technique:  RT-PCR.
References:  48
Endothelium.
Species:  Human
Technique:  Northern blotting.
References:  63
Prostatic cancer cells.
Species:  Human
Technique:  Radioligand binding.
References:  59
Thymocytes.
Species:  Mouse
Technique:  Radioligand binding.
References:  77
Thymus, spleen, lung.
Species:  Mouse
Technique:  Northern blotting.
References:  58
Thymus, lung, kidney, T cell line (EL-4).
Species:  Mouse
Technique:  RNase protection assay.
References:  9
Fetal: thymus, kidney.
Adult: thymus (cortex), spleen (red pulp).
Species:  Mouse
Technique:  in situ hybridisation.
References:  9
Dorsal root ganglion neurons and keratinocytes.
Species:  Mouse
Technique:  Immunohistochemistry and Ca2+ response.
References:  4
CD4+ and CD8+ T cells from the spleen.
Species:  Mouse
Technique:  RT-PCR.
References:  29
Platelets.
Species:  Rat
Technique:  Radioligand binding.
References:  44
Kidney: glomeruli, arterial walls, luminal membranes of thick ascending limbs of Henle's loop, luminal and basolateral membranes of either distal convoluted tubules or connecting tubules, the basolateral membranes of collecting tubules.
Species:  Rat
Technique:  Western blotting.
References:  71
Hepatic sinusoidal endothelial cells.
Species:  Rat
Technique:  Radioligand binding.
References:  26
Nodosa ganglion neurons.
Species:  Rabbit
Technique:  RT-PCR.
References:  80
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of Ca2+ levels in COS-7 cells transfected with the rat TP receptor.
Species:  Rat
Tissue:  COS-7 cells.
Response measured:  Increase in free Ca2+ concentration.
References:  1
Measurement of ERK and JNK activity in human uterine ULTR cell line endogenously expressing the TP receptor.
Species:  Human
Tissue:  Uterine ULTR cell line.
Response measured:  Activation of ERK signalling cascade.
References:  49
Measurement of Ca2+ levels in HEK 293 cells transfected with the human TP receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Increase in Ca2+ concentration.
References:  34,82
Measurement of Ca2+ in human platelets endogenously expressing the TP receptor.
Species:  Human
Tissue:  Platelets.
Response measured:  Increase in Ca2+ concentration.
References:  34,82
Measurement of Ca2+ levels, using a Ca2+-activated Cl- channel, in Xenopus oocytes transfected with the human TP receptor.
Species:  Human
Tissue:  Xenopus oocytes.
Response measured:  Increase in Ca2+ concentration.
References:  22
Measurement of ERK and JNK activity in HEK 293 cells transfected with the human TP receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Activation of ERK signalling cascade.
References:  49
Measurement of Ca2+ levels in Xenopus oocytes transfected with the rat TP receptor using electrophysiology.
Species:  Rat
Tissue:  Xenopus oocytes.
Response measured:  Increase in Ca2+ concentration.
References:  1
Physiological Functions Click here for help
Contraction of pulmonary venous smooth muscle.
Species:  Human
Tissue:  Pulmonary venous preparations.
References:  60,81
Contraction of pulmonary arterial smooth muscle.
Species:  Human
Tissue:  Pulmonary vascular preparations.
References:  60
Contraction of bronchial smooth muscle.
Species:  Human
Tissue:  Bronchial smooth muscle preparations.
References:  12
Bronchoconstriction.
Species:  Human
Tissue:  In vivo.
References:  27
Vasoconstriction.
Species:  Rat
Tissue:  In vivo.
References:  78
Platelet aggregation.
Species:  Human
Tissue:  In vivo.
References:  18
Platelet aggregation.
Species:  Human
Tissue:  Platelets.
References:  43
Mediation of cellular immune responses and inflammatory tissue injury.
Species:  Mouse
Tissue:  In vivo.
References:  76
Suppression of lipopolysaccharide-induced liver injury by a TP antagonist, S-145.
Species:  Mouse
Tissue:  Liver.
References:  77
The TP agonist I-BOP induces expression of MCP-1/CCL2 in lung cancer cell lines through activation of SP-1.
Species:  Human
Tissue:  Lung cancer cells.
References:  41
TP mediates U46619-induced airway constriction through an M3 muscarinic acetycholine receptor-dependent mechanism.
Species:  Mouse
Tissue:  Lung.
References:  3
Suppression of lipopolysaccharide-induced liver injury by a TP antagonist, S-145.
Species:  Rat
Tissue:  Liver.
References:  26
A TP agonist U46619 induces itch in mice, which is inhibited by a TP antagonist ONO-3708 and is absent in TP knockout mice.
Species:  Mouse
Tissue:  Skin.
References:  4
TP receptor antagonism (ifetroban) is cardioprotective against right ventricular pressure overload.
Species:  Mouse
Tissue:  Heart
References:  84
Physiological Consequences of Altering Gene Expression Click here for help
TP knockout mice display delayed atherogenesis and impaired inflammatory tachycarcia.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  38,72
TP receptor knockout mice exhibit an increase in bleeding time and impaired platelet aggregation in response to TP receptor agonists.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  75
Spleen cells from TP receptor knockout mice exhibit reduced cellular immune responsiveness and TP receptor knockout mice exhibit reduced immune-mediated tissue injury following cardiac transplant rejection in vivo.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  76
TP receptor knockout mice exhibit enhanced immune responses and the development of lymphadenopathy.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  29
TP receptor knockout mice exhibit inhibition of cytokine-induced increase in beating rate, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  72
TP receptor knockout mice enhibit altered renal vascular tone.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  65
TP knockout mice exhibit enhanced susceptibility to Trypanosoma cruzi infection.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockouts.
References:  8
TP knockout mice show a reduction in B16F1 lung colonization and mortality rate in a lung metastasis model of B16H1 melanoma cells.
Species:  Mouse
Tissue:  Lung/melanoma cells.
Technique:  Gene knockouts.
References:  45
TP knockout mice exhibit attenuated microcirculatory dysfunction as examined by leukocyte adhesion to sinusoid, non-perfused sinusoids and release of ALT in the liver in response to TNF-α.
Species:  Mouse
Tissue:  Hepatic microcirculation.
Technique:  Gene knockouts.
References:  31
TP knockout mice exhibit attenuated hypertension and cardiac hypertrophy, but enhanced kidney hypertrophy, glomerulosclerosis, tubule vacuolization, and interstitial chronic inflammation, in response to L-NAME.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockouts.
References:  16
TP knockout mice exhibit attenuation of cardiac hypertrophy and prevention of cardiac fibrosis but do not affect hypertension induced by IP deficiency in response to high salt.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts.
References:  15
Mice deficient in TP selectively in neurons do not exhibit U-46619-induced bronchoconstriction after OVA-induced allergic inflamamtion in the lung.
Species:  Mouse
Tissue:  smooth muscel-TP deficient (Tbxa2rF/− Tgln-cre) mice and neural TP-deficeint (Tbxa2rF/−Nestin-cre) mice.
Technique:  Gene knockouts.
References:  13
TP knockout mice showed reduced apoptosis of thymocytes in response to systemic administration of lipopolysaccharide.
Species:  Mouse
Tissue:  Thymus, CD4+CD8+ double positive thymocytes.
Technique:  Gene knockouts.
References:  64
TP knockout mice exhibit attenuated vascular remodeling to catheter-induced injury and cancel out enhanced response by IP deficiency.
Species:  Mouse
Tissue:  Carotid artery.
Technique:  Gene knockouts.
References:  10
Mice deficient in TP selectively in smooth muscle exhibit enhanced hypertension and aortic remodeling in response to angiotensin II infusion.
Species:  Mouse
Tissue:  TP knockout in smooth muscle cells (KISM22α-Cre+Tpflox/flox).
Technique:  Gene knockouts.
References:  67
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Tbxa2rtm1Cof Tbxa2rtm1Cof/Tbxa2rtm1Cof
C.129P2(B6)-Tbxa2r
MGI:98496  MP:0000249 abnormal blood vessel physiology PMID: 11964481 
Tbxa2rtm1Cof Tbxa2rtm1Cof/Tbxa2rtm1Cof
either: (involves: 129P2/OlaHsd * C57BL/6 * DBA/2) or (involves: 129P2/OlaHsd * 129S/SvEv)
MGI:98496  MP:0001544 abnormal cardiovascular system physiology PMID: 9835625 
Tbxa2rtm1Sna Tbxa2rtm1Sna/Tbxa2rtm1Sna
either: (involves: 129/Ola * BALB/c) or (involves: 129/Ola * C57BL/6)
MGI:98496  MP:0002351 abnormal cervical lymph node morphology PMID: 12778172 
Tbxa2rtm1Sna Tbxa2rtm1Sna/Tbxa2rtm1Sna
either: (involves: 129/Ola * BALB/c) or (involves: 129/Ola * C57BL/6)
MGI:98496  MP:0002723 abnormal immune serum protein physiology PMID: 12778172 
Tbxa2rtm1Sna Tbxa2rtm1Sna/Tbxa2rtm1Sna
either: (involves: 129/Ola * BALB/c) or (involves: 129/Ola * C57BL/6)
MGI:98496  MP:0002722 abnormal immune system organ morphology PMID: 12778172 
Tbxa2rtm1Sna Tbxa2rtm1Sna/Tbxa2rtm1Sna
either: (involves: 129/Ola * BALB/c) or (involves: 129/Ola * C57BL/6)
MGI:98496  MP:0001790 abnormal immune system physiology PMID: 12778172 
Tbxa2rtm1Sna Tbxa2rtm1Sna/Tbxa2rtm1Sna
either: (involves: 129/Ola * BALB/c) or (involves: 129/Ola * C57BL/6)
MGI:98496  MP:0002339 abnormal lymph node morphology PMID: 12778172 
Tbxa2rtm1Cof Tbxa2rtm1Cof/Tbxa2rtm1Cof
either: (involves: 129P2/OlaHsd * C57BL/6 * DBA/2) or (involves: 129P2/OlaHsd * 129S/SvEv)
MGI:98496  MP:0009548 abnormal platelet aggregation PMID: 9835625 
Tbxa2rtm1Cof Tbxa2rtm1Cof/Tbxa2rtm1Cof
C.129P2(B6)-Tbxa2r
MGI:98496  MP:0005464 abnormal platelet physiology PMID: 11964481 
Tbxa2rtm1Cof Tbxa2rtm1Cof/Tbxa2rtm1Cof
C.129P2(B6)-Tbxa2r
MGI:98496  MP:0009818 abnormal thromboxane level PMID: 11964481 
Tbxa2rtm1Sna Tbxa2rtm1Sna/Tbxa2rtm1Sna
either: (involves: 129/Ola * BALB/c) or (involves: 129/Ola * C57BL/6)
MGI:98496  MP:0002531 abnormal type I hypersensitivity reaction PMID: 12778172 
Tbxa2rtm1Sna Tbxa2rtm1Sna/Tbxa2rtm1Sna
either: (involves: 129/Ola * BALB/c) or (involves: 129/Ola * C57BL/6)
MGI:98496  MP:0000702 enlarged lymph nodes PMID: 12778172 
Tbxa2rtm1Sna Tbxa2rtm1Sna/Tbxa2rtm1Sna
either: (involves: 129/Ola * BALB/c) or (involves: 129/Ola * C57BL/6)
MGI:98496  MP:0000691 enlarged spleen PMID: 12778172 
Tbxa2rtm1Cof Tbxa2rtm1Cof/Tbxa2rtm1Cof
either: (involves: 129P2/OlaHsd * C57BL/6 * DBA/2) or (involves: 129P2/OlaHsd * 129S/SvEv)
MGI:98496  MP:0005606 increased bleeding time PMID: 9835625 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Bleeding disorder, platelet-type, 13, susceptibility to
Synonyms: Bleeding diathesis due to thromboxane synthesis deficiency [Orphanet: ORPHA220443]
OMIM: 614009
Orphanet: ORPHA220443
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human R60L Identified in patients suffering from a dominantly inherited bleeding disorder. This mutant receptor displays normal ligand binding but defective signal transduction when expressed in CHO cells. 23
Missense Human D304N 910G>A Mutation leads to loss of receptor binding in a patient with a bleeding diathesis. 55
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  TP SNPs are associated with susceptibility to cerebral infarction.
SNP accession: 
References:  30
Type:  Splice variants
Species:  Human
Description:  Two splice variants of the TP receptor have been found in humans, TPα and TPβ, containing an identical 328 amino acid sequence but differing in their 15 amino acid and 79 amino acid, respectively, C-terminal regions. They have identical ligand and G protein binding properties, similarly regulate PLC, but they are differentially expressed throughout the body and oppositely regulate adeylate cyclase activity.
References:  24,33-34,63,82
Type:  Missense mutation
Species:  Human
Description:  Platelet dysfunction, reduced response to TP agonist and reduced affinity to TP radioligand associated with the Trp29Cys TP receptor variant.
Amino acid change:  W29C
References:  56
General Comments
When dimerized with IP receptor, the TP shifts to IP-like function [25,86,88]. Heterodimerization of TP-α and -β isoforms has been reported [87]. Transcriptional regulation and promoter analysis of TP is presented in [17].

References

Show »

1. Abe T, Takeuchi K, Takahashi N, Tsutsumi E, Taniyama Y, Abe K. (1995) Rat kidney thromboxane receptor: molecular cloning, signal transduction, and intrarenal expression localization. J Clin Invest, 96 (2): 657-64. [PMID:7635958]

2. Abramovitz M, Adam M, Boie Y, Carrière M, Denis D, Godbout C, Lamontagne S, Rochette C, Sawyer N, Tremblay NM et al.. (2000) The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim Biophys Acta, 1483 (2): 285-93. [PMID:10634944]

3. Allen IC, Hartney JM, Coffman TM, Penn RB, Wess J, Koller BH. (2006) Thromboxane A2 induces airway constriction through an M3 muscarinic acetylcholine receptor-dependent mechanism. Am J Physiol Lung Cell Mol Physiol, 290 (3): L526-33. [PMID:16243899]

4. Andoh T, Nishikawa Y, Yamaguchi-Miyamoto T, Nojima H, Narumiya S, Kuraishi Y. (2007) Thromboxane A2 induces itch-associated responses through TP receptors in the skin in mice. J Invest Dermatol, 127 (8): 2042-7. [PMID:17429442]

5. Arimura A, Yasui K, Kishino J, Asanuma F, Hasegawa H, Kakudo S, Ohtani M, Arita H. (2001) Prevention of allergic inflammation by a novel prostaglandin receptor antagonist, S-5751. J Pharmacol Exp Ther, 298 (2): 411-9. [PMID:11454901]

6. Armstrong RA, Humphrey PP, Lumley P. (1993) Characteristics of the binding of [3H]-GR32191 to the thromboxane (TP-) receptor of human platelets. Br J Pharmacol, 110 (2): 539-47. [PMID:8242228]

7. Armstrong RA, Jones RL, MacDermot J, Wilson NH. (1986) Prostaglandin endoperoxide analogues which are both thromboxane receptor antagonists and prostacyclin mimetics. Br J Pharmacol, 87 (3): 543-51. [PMID:3026540]

8. Ashton AW, Mukherjee S, Nagajyothi FN, Huang H, Braunstein VL, Desruisseaux MS, Factor SM, Lopez L, Berman JW, Wittner M et al.. (2007) Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection. J Exp Med, 204 (4): 929-40. [PMID:17420269]

9. Båtshake B, Nilsson C, Sundelin J. (1999) Structure and expression of the murine thromboxane A2 receptor gene. Biochem Biophys Res Commun, 256 (2): 391-7. [PMID:10079195]

10. Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, Grosser T, Lawson JA, FitzGerald GA. (2002) Role of prostacyclin in the cardiovascular response to thromboxane A2. Science, 296 (5567): 539-41. [PMID:11964481]

11. Cimetière B, Dubuffet T, Muller O, Descombes JJ, Simonet S, Laubie M, Verbeuren TJ, Lavielle G. (1998) Synthesis and biological evaluation of new tetrahydronaphthalene derivatives as thromboxane receptor antagonists. Bioorg Med Chem Lett, 8 (11): 1375-80. [PMID:9871769]

12. Coleman RA, Sheldrick RL. (1989) Prostanoid-induced contraction of human bronchial smooth muscle is mediated by TP-receptors. Br J Pharmacol, 96: 688-692. [PMID:2720298]

13. Cyphert JM, Allen IC, Church RJ, Latour AM, Snouwaert JN, Coffman TM, Koller BH. (2012) Allergic inflammation induces a persistent mechanistic switch in thromboxane-mediated airway constriction in the mouse. Am J Physiol Lung Cell Mol Physiol, 302 (1): L140-51. [PMID:21984570]

14. Fan H, Chen S, Yuan X, Han S, Zhang H, Xia W, Xu Y, Zhao Q, Wu B. (2019) Structural basis for ligand recognition of the human thromboxane A2 receptor. Nat Chem Biol, 15 (1): 27-33. [PMID:30510189]

15. Francois H, Athirakul K, Howell D, Dash R, Mao L, Kim HS, Rockman HA, Fitzgerald GA, Koller BH, Coffman TM. (2005) Prostacyclin protects against elevated blood pressure and cardiac fibrosis. Cell Metab, 2 (3): 201-7. [PMID:16154102]

16. Francois H, Makhanova N, Ruiz P, Ellison J, Mao L, Rockman HA, Coffman TM. (2008) A role for the thromboxane receptor in L-NAME hypertension. Am J Physiol Renal Physiol, 295 (4): F1096-102. [PMID:18684890]

17. Gannon AM, Kinsella BT. (2008) Regulation of the human thromboxane A2 receptor gene by Sp1, Egr1, NF-E2, GATA-1, and Ets-1 in megakaryocytes. J Lipid Res, 49 (12): 2590-604. [PMID:18698092]

18. Gresele P, Arnout J, Deckmyn H, Huybrechts E, Pieters G, Vermylen J. (1987) Role of proaggregatory and antiaggregatory prostaglandins in hemostasis. Studies with combined thromboxane synthase inhibition and thromboxane receptor antagonism. J Clin Invest, 80 (5): 1435-45. [PMID:2960694]

19. Halushka PV, Kochel PJ, Mais DE. (1987) Binding of thromboxane A2/prostaglandin H2 agonists to human platelets. Br J Pharmacol, 91 (1): 223-7. [PMID:3594077]

20. Hamanaka N, Takahashi K, Nagao Y, Torisu K, Tokumoto H, Kondo K. (1995) Molecular design of novel PGI2 agonists without PG skeleton. Bioorg Med Chem Lett, 5: 1065-1070.

21. Hedberg A, Hall SE, Ogletree ML, Harris DN, Liu EC. (1988) Characterization of [5,6-3H]SQ 29,548 as a high affinity radioligand, binding to thromboxane A2/prostaglandin H2-receptors in human platelets. J Pharmacol Exp Ther, 245 (3): 786-92. [PMID:2968449]

22. Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kageyama R, Nakanishi S, Narumiya S. (1991) Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature, 349 (6310): 617-20. [PMID:1825698]

23. Hirata T, Kakizuka A, Ushikubi F, Fuse I, Okuma M, Narumiya S. (1994) Arg60 to Leu mutation of the human thromboxane A2 receptor in a dominantly inherited bleeding disorder. J Clin Invest, 94 (4): 1662-7. [PMID:7929844]

24. Hirata T, Ushikubi F, Kakizuka A, Okuma M, Narumiya S. (1996) Two thromboxane A2 receptor isoforms in human platelets. Opposite coupling to adenylyl cyclase with different sensitivity to Arg60 to Leu mutation. J Clin Invest, 97 (4): 949-56. [PMID:8613548]

25. Ibrahim S, McCartney A, Markosyan N, Smyth EM. (2013) Heterodimerization with the prostacyclin receptor triggers thromboxane receptor relocation to lipid rafts. Arterioscler Thromb Vasc Biol, 33 (1): 60-6. [PMID:23162015]

26. Ishiguro S, Arii S, Monden K, Adachi Y, Funaki N, Higashitsuji H, Fujita S, Furutani M, Mise M, Kitao T et al.. (1994) Identification of the thromboxane A2 receptor in hepatic sinusoidal endothelial cells and its role in endotoxin-induced liver injury in rats. Hepatology, 20 (5): 1281-6. [PMID:7927263]

27. Johnston SL, Freezer NJ, Ritter W, O'Toole S, Howarth PH. (1995) Prostaglandin D2-induced bronchoconstriction is mediated only in part by the thromboxane prostanoid receptor. Eur Respir J, 8: 411-415. [PMID:7789486]

28. Jones RL, Wilson NH, Lawrence RA. (1989) EP 171: a high affinity thromboxane A2-mimetic, the actions of which are slowly reversed by receptor blockade. Br J Pharmacol, 96 (4): 875-87. [PMID:2743082]

29. Kabashima K, Murata T, Tanaka H, Matsuoka T, Sakata D, Yoshida N, Katagiri K, Kinashi T, Tanaka T, Miyasaka M et al.. (2003) Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat Immunol, 4 (7): 694-701. [PMID:12778172]

30. Kaneko Y, Nakayama T, Saito K, Morita A, Sato I, Maruyama A, Soma M, Takahashi T, Sato N. (2006) Relationship between the thromboxane A2 receptor gene and susceptibility to cerebral infarction. Hypertens Res, 29 (9): 665-71. [PMID:17249521]

31. Katagiri H, Ito Y, Ito S, Murata T, Yukihiko S, Narumiya S, Watanabe M, Majima M. (2008) TNF-alpha induces thromboxane receptor signaling-dependent microcirculatory dysfunction in mouse liver. Shock, 30 (4): 463-7. [PMID:18800000]

32. Kattelman EJ, Venton DL, Le Breton GC. (1986) Characterization of U46619 binding in unactivated, intact human platelets and determination of binding site affinities of four TXA2/PGH2 receptor antagonists (13-APA, BM 13.177, ONO 3708 and SQ 29,548). Thromb Res, 41 (4): 471-81. [PMID:3008368]

33. Kinsella BT. (2001) Thromboxane A2 signalling in humans: a 'Tail' of two receptors. Biochem Soc Trans, 29 (Pt 6): 641-54. [PMID:11709048]

34. Kinsella BT, O'Mahony DJ, Fitzgerald GA. (1997) The human thromboxane A2 receptor alpha isoform (TP alpha) functionally couples to the G proteins Gq and G11 in vivo and is activated by the isoprostane 8-epi prostaglandin F2 alpha. J Pharmacol Exp Ther, 281 (2): 957-64. [PMID:9152406]

35. Kinsella BT, Reid H. (2016) Thromboxane receptor antagonists. Patent number: WO2016203314A1. Assignee: University College Dublin, National University Of Ireland, Dublin. Priority date: 16/06/2015. Publication date: 22/12/2016.

36. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S. (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 122 (2): 217-24. [PMID:9313928]

37. Kishino J, Hanasaki K, Nagasaki T, Arita H. (1991) Kinetic studies on stereospecific recognition by the thromboxane A2/prostaglandin H2 receptor of the antagonist, S-145. Br J Pharmacol, 103 (4): 1883-8. [PMID:1833018]

38. Kobayashi T, Tahara Y, Matsumoto M, Iguchi M, Sano H, Murayama T, Arai H, Oida H, Yurugi-Kobayashi T, Yamashita JK et al.. (2004) Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J Clin Invest, 114 (6): 784-94. [PMID:15372102]

39. Krauss AH, Woodward DF, Gibson LL, Protzman CE, Williams LS, Burk RM, Gac TS, Roof MB, Abbas F, Marshall K et al.. (1996) Evidence for human thromboxane receptor heterogeneity using a novel series of 9,11-cyclic carbonate derivatives of prostaglandin F2 alpha. Br J Pharmacol, 117 (6): 1171-80. [PMID:8882612]

40. Lai E, Wenning LA, Crumley TM, De Lepeleire I, Liu F, de Hoon JN, Van Hecken A, Depré M, Hilliard D, Greenberg H et al.. (2008) Pharmacokinetics, pharmacodynamics, and safety of a prostaglandin D2 receptor antagonist. Clin Pharmacol Ther, 83 (6): 840-7. [PMID:17882161]

41. Li X, Tai HH. (2013) Activation of thromboxane A2 receptor (TP) increases the expression of monocyte chemoattractant protein -1 (MCP-1)/chemokine (C-C motif) ligand 2 (CCL2) and recruits macrophages to promote invasion of lung cancer cells. PLoS ONE, 8 (1): e54073. [PMID:23349788]

42. Lumley P, White BP, Humphrey PP. (1989) GR32191, a highly potent and specific thromboxane A2 receptor blocking drug on platelets and vascular and airways smooth muscle in vitro. Br J Pharmacol, 97 (3): 783-94. [PMID:2527074]

43. Mais DE, DeHoll D, Sightler H, Halushka PV. (1988) Different pharmacologic activities for 13-azapinane thromboxane A2 analogs in platelets and blood vessels. Eur J Pharmacol, 148 (3): 309-15. [PMID:2968271]

44. Masuda A, Mais DE, Oatis Jr JE, Halushka PV. (1991) Platelet and vascular thromboxane A2/prostaglandin H2 receptors. Evidence for different subclasses in the rat. Biochem Pharmacol, 42 (3): 537-44. [PMID:1830482]

45. Matsui Y, Amano H, Ito Y, Eshima K, Suzuki T, Ogawa F, Iyoda A, Satoh Y, Kato S, Nakamura M et al.. (2012) Thromboxane A₂ receptor signaling facilitates tumor colonization through P-selectin-mediated interaction of tumor cells with platelets and endothelial cells. Cancer Sci, 103 (4): 700-7. [PMID:22296266]

46. Mayeux PR, Morinelli TA, Williams TC, Hazard ES, Mais DE, Oatis JE, Baron DA, Halushka PV. (1991) Differential effect of pH on thromboxane A2/prostaglandin H2 receptor agonist and antagonist binding in human platelets. J Biol Chem, 266 (21): 13752-8. [PMID:1830308]

47. Meanwell NA, Romine JL, Rosenfeld MJ, Martin SW, Trehan AK, Wright JJ, Malley MF, Gougoutas JZ, Brassard CL, Buchanan JO et al.. (1993) Nonprostanoid prostacyclin mimetics. 5. Structure-activity relationships associated with [3-[4-(4,5-diphenyl-2-oxazolyl)-5- oxazolyl]phenoxy]acetic acid. J Med Chem, 36 (24): 3884-903. [PMID:7504734]

48. Miggin SM, Kinsella BT. (1998) Expression and tissue distribution of the mRNAs encoding the human thromboxane A2 receptor (TP) alpha and beta isoforms. Biochim Biophys Acta, 1425 (3): 543-59. [PMID:9838218]

49. Miggin SM, Kinsella BT. (2001) Thromboxane A(2) receptor mediated activation of the mitogen activated protein kinase cascades in human uterine smooth muscle cells. Biochim Biophys Acta, 1539 (1-2): 147-62. [PMID:11389977]

50. Miki I, Kishibayashi N, Nonaka H, Ohshima E, Takami H, Obase H, Ishii A. (1992) Effects of KW-3635, a novel dibenzoxepin derivative of a selective thromboxane A2 antagonist, on human, guinea pig and rat platelets. Jpn J Pharmacol, 59 (3): 357-64. [PMID:1434130]

51. Morinelli TA, Oatis JE, Okwu AK, Mais DE, Mayeux PR, Masuda A, Knapp DR, Halushka PV. (1989) Characterization of an 125I-labeled thromboxane A2/prostaglandin H2 receptor agonist. J Pharmacol Exp Ther, 251: 557-562. [PMID:2530338]

52. Morinelli TA, Okwu AK, Mais DE, Halushka PV, John V, Chen CK, Fried J. (1989) Difluorothromboxane A2 and stereoisomers: stable derivatives of thromboxane A2 with differential effects on platelets and blood vessels. Proc Natl Acad Sci USA, 86 (14): 5600-4. [PMID:2748606]

53. Mulvaney EP, O'Sullivan ÁG, Eivers SB, Reid HM, Kinsella BT. (2019) Differential expression of the TPα and TPβ isoforms of the human T Prostanoid receptor during chronic inflammation of the prostate: Role for FOXP1 in the transcriptional regulation of TPβ during monocyte-macrophage differentiation. Exp Mol Pathol, 110: 104277. [PMID:31271729]

54. Mulvaney EP, Reid HM, Bialesova L, Mendes-Ferreira P, Adão R, Brás-Silva C, Kinsella BT. (2020) Efficacy of the thromboxane receptor antagonist NTP42 alone, or in combination with sildenafil, in the sugen/hypoxia-induced model of pulmonary arterial hypertension. Eur J Pharmacol, 889: 173658. [PMID:33121950]

55. Mumford AD, Dawood BB, Daly ME, Murden SL, Williams MD, Protty MB, Spalton JC, Wheatley M, Mundell SJ, Watson SP. (2010) A novel thromboxane A2 receptor D304N variant that abrogates ligand binding in a patient with a bleeding diathesis. Blood, 115 (2): 363-9. [PMID:19828703]

56. Mumford AD, Nisar S, Darnige L, Jones ML, Bachelot-Loza C, Gandrille S, Zinzindohoue F, Fischer AM, Mundell SJ, Gaussem P et al.. (2013) Platelet dysfunction associated with the novel Trp29Cys thromboxane A₂ receptor variant. J Thromb Haemost, 11 (3): 547-54. [PMID:23279270]

57. Naka M, Mais DE, Morinelli TA, Hamanaka N, Oatis Jr JE, Halushka PV. (1992) 7-[(1R,2S,3S,5R)-6,6-dimethyl-3-(4- iodobenzenesulfonylamino)bicyclo[3.1.1]hept-2-yl]-5(Z)-heptenoic acid: a novel high-affinity radiolabeled antagonist for platelet thromboxane A2/prostaglandin H2 receptors. J Pharmacol Exp Ther, 262 (2): 632-7. [PMID:1386885]

58. Namba T, Sugimoto Y, Hirata M, Hayashi Y, Honda A, Watabe A, Negishi M, Ichikawa A, Narumiya S. (1992) Mouse thromboxane A2 receptor: cDNA cloning, expression and northern blot analysis. Biochem Biophys Res Commun, 184 (3): 1197-203. [PMID:1375456]

59. Nie D, Guo Y, Yang D, Tang Y, Chen Y, Wang MT, Zacharek A, Qiao Y, Che M, Honn KV. (2008) Thromboxane A2 receptors in prostate carcinoma: expression and its role in regulating cell motility via small GTPase Rho. Cancer Res, 68 (1): 115-21. [PMID:18172303]

60. Norel X, de Montpreville V, Brink C. (2004) Vasoconstriction induced by activation of EP1 and EP3 receptors in human lung: effects of ONO-AE-248, ONO-DI-004, ONO-8711 or ONO-8713. Prostaglandins Other Lipid Mediat, 74 (1-4): 101-12. [PMID:15560119]

61. Ogletree ML, Harris DN, Schumacher WA, Webb ML, Misra RN. (1993) Pharmacological profile of BMS 180,291: a potent, long-acting, orally active thromboxane A2/prostaglandin endoperoxide receptor antagonist. J Pharmacol Exp Ther, 264 (2): 570-8. [PMID:8437108]

62. Qiao N, Reynaud D, Demin P, Halushka PV, Pace-Asciak CR. (2003) The thromboxane receptor antagonist PBT-3, a hepoxilin stable analog, selectively antagonizes the TPalpha isoform in transfected COS-7 cells. J Pharmacol Exp Ther, 307 (3): 1142-7. [PMID:14560042]

63. Raychowdhury MK, Yukawa M, Collins LJ, McGrail SH, Kent KC, Ware JA. (1994) Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. J Biol Chem, 269 (30): 19256-61. [PMID:8034687]

64. Rocha PN, Plumb TJ, Robinson LA, Spurney R, Pisetsky D, Koller BH, Coffman TM. (2005) Role of thromboxane A2 in the induction of apoptosis of immature thymocytes by lipopolysaccharide. Clin Diagn Lab Immunol, 12 (8): 896-903. [PMID:16085905]

65. Schnermann J, Traynor T, Pohl H, Thomas DW, Coffman TM, Briggs JP. (2000) Vasoconstrictor responses in thromboxane receptor knockout mice: tubuloglomerular feedback and ureteral obstruction. Acta Physiol Scand, 168 (1): 201-7. [PMID:10691801]

66. Senchyna M, Crankshaw DJ. (1996) Characterization of the prostanoid TP receptor population in human nonpregnant myometrium. J Pharmacol Exp Ther, 279 (1): 262-70. [PMID:8859002]

67. Sparks MA, Makhanova NA, Griffiths RC, Snouwaert JN, Koller BH, Coffman TM. (2013) Thromboxane receptors in smooth muscle promote hypertension, vascular remodeling, and sudden death. Hypertension, 61 (1): 166-73. [PMID:23150508]

68. Sprague PW, Heikes JE, Gougoutas JZ, Malley MF, Harris DN, Greenberg R. (1985) Synthesis and in vitro pharmacology of 7-oxabicyclo[2.2.1]heptane analogues of thromboxane A2/PGH2. J Med Chem, 28 (11): 1580-90. [PMID:4067988]

69. Swanson ML, Lei ZM, Swanson PH, Rao CV, Narumiya S, Hirata M. (1992) The expression of thromboxane A2 synthase and thromboxane A2 receptor gene in human uterus. Biol Reprod, 47 (1): 105-17. [PMID:1386258]

70. Swayne GT, Maguire J, Dolan J, Raval P, Dane G, Greener M, Owen DA. (1988) Evidence for homogeneity of thromboxane A2 receptor using structurally different antagonists. Eur J Pharmacol, 152 (3): 311-9. [PMID:2975605]

71. Takahashi N, Takeuchi K, Abe T, Sugawara A, Abe K. (1996) Immunolocalization of rat thromboxane receptor in the kidney. Endocrinology, 137 (11): 5170-3. [PMID:8895394]

72. Takayama K, Yuhki K, Ono K, Fujino T, Hara A, Yamada T, Kuriyama S, Karibe H, Okada Y, Takahata O et al.. (2005) Thromboxane A2 and prostaglandin F2alpha mediate inflammatory tachycardia. Nat Med, 11 (5): 562-6. [PMID:15834430]

73. Taketo M, Rochelle JM, Sugimoto Y, Namba T, Honda A, Negishi M, Ichikawa A, Narumiya S, Seldin MF. (1994) Mapping of the genes encoding mouse thromboxane A2 receptor and prostaglandin E receptor subtypes EP2 and EP3. Genomics, 19 (3): 585-8. [PMID:7910583]

74. Theis JG, Dellweg H, Perzborn E, Gross R. (1992) Binding characteristics of the new thromboxane A2/prostaglandin H2 receptor antagonist [3H]BAY U 3405 to washed human platelets and platelet membranes. Biochem Pharmacol, 44 (3): 495-503. [PMID:1387312]

75. Thomas DW, Mannon RB, Mannon PJ, Latour A, Oliver JA, Hoffman M, Smithies O, Koller BH, Coffman TM. (1998) Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2. J Clin Invest, 102 (11): 1994-2001. [PMID:9835625]

76. Thomas DW, Rocha PN, Nataraj C, Robinson LA, Spurney RF, Koller BH, Coffman TM. (2003) Proinflammatory actions of thromboxane receptors to enhance cellular immune responses. J Immunol, 171 (12): 6389-95. [PMID:14662837]

77. Ushikubi F, Aiba Y, Nakamura K, Namba T, Hirata M, Mazda O, Katsura Y, Narumiya S. (1993) Thromboxane A2 receptor is highly expressed in mouse immature thymocytes and mediates DNA fragmentation and apoptosis. J Exp Med, 178 (5): 1825-30. [PMID:8228829]

78. Valentin JP, Bessac AM, Maffre M, John GW. (1996) Nitric oxide regulation of TP receptor-mediated pulmonary vasoconstriction in the anesthetized, open-chest rat. Eur J Pharmacol, 317: 335-342. [PMID:8997619]

79. Vermylen J, Deckmyn H. (1992) Thromboxane synthase inhibitors and receptor antagonists. Cardiovasc Drugs Ther, 6 (1): 29-33. [PMID:1533533]

80. Wacker MJ, Tyburski JB, Ammar CP, Adams MC, Orr JA. (2005) Detection of thromboxane A(2) receptor mRNA in rabbit nodose ganglion neurons. Neurosci Lett, 386 (2): 121-6. [PMID:15992996]

81. Walch L, de Montpreville V, Brink C, Norel X. (2001) Prostanoid EP(1)- and TP-receptors involved in the contraction of human pulmonary veins. Br J Pharmacol, 134 (8): 1671-8. [PMID:11739243]

82. Walsh MT, Kinsella BT. (2000) Regulation of the human prostanoid TPalpha and TPbeta receptor isoforms mediated through activation of the EP(1) and IP receptors. Br J Pharmacol, 131 (3): 601-9. [PMID:11015313]

83. Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, Maruyama T, Kondo K, Ushikubi F, Narumiya S et al.. (1999) Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res, 59 (20): 5093-6. [PMID:10537280]

84. West JD, Voss BM, Pavliv L, de Caestecker M, Hemnes AR, Carrier EJ. (2016) Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload. Pulm Circ, 6 (2): 211-23. [PMID:27252848]

85. Wilson RJ, Giblin GM, Roomans S, Rhodes SA, Cartwright KA, Shield VJ, Brown J, Wise A, Chowdhury J, Pritchard S et al.. (2006) GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist. Br J Pharmacol, 148 (3): 326-39. [PMID:16604093]

86. Wilson SJ, Dowling JK, Zhao L, Carnish E, Smyth EM. (2007) Regulation of thromboxane receptor trafficking through the prostacyclin receptor in vascular smooth muscle cells: role of receptor heterodimerization. Arterioscler Thromb Vasc Biol, 27 (2): 290-6. [PMID:17110599]

87. Wilson SJ, McGinley K, Huang AJ, Smyth EM. (2007) Heterodimerization of the alpha and beta isoforms of the human thromboxane receptor enhances isoprostane signaling. Biochem Biophys Res Commun, 352 (2): 397-403. [PMID:17134677]

88. Wilson SJ, Roche AM, Kostetskaia E, Smyth EM. (2004) Dimerization of the human receptors for prostacyclin and thromboxane facilitates thromboxane receptor-mediated cAMP generation. J Biol Chem, 279 (51): 53036-47. [PMID:15471868]

Contributors

Show »

How to cite this page