RXFP3 | Relaxin family peptide receptors | IUPHAR/BPS Guide to PHARMACOLOGY

RXFP3

Target id: 353

Nomenclature: RXFP3

Family: Relaxin family peptide receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for RXFP3 in GtoImmuPdb

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 469 5p15.1-p14 RXFP3 relaxin family peptide receptor 3 19
Mouse 7 472 15 A1 Rxfp3 relaxin family peptide receptor 3 29
Rat 7 476 2q16 Rxfp3 relaxin family peptide receptor 3
Previous and Unofficial Names
RLN3R1 | RXFPR3 | GPCR135 | relaxin/insulin like family peptide receptor 3
Database Links
Specialist databases
GPCRDB rl3r1_human (Hs), rl3r1_mouse (Mm), q5y986_rat (Rn)
Other databases
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands
relaxin-3 {Sp: Human}
relaxin {Sp: Human}
Comments: Relaxin-3 is a potent endogenous agonist for RXFP3. Unlike other relaxins, the relaxin-3 (B) chain has some bioactivity. Relaxin is a biased agonist at RXFP3. Neither relaxin-3 (B) chain or relaxin are known to act on RXFP3 in vivo.
Potency order of endogenous ligands (Human)
relaxin-3 (RLN3, Q8WXF3) > relaxin-3 (B chain) (RLN3, Q8WXF3) > relaxin (RLN2, P04090)  [15]

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Reference
relaxin {Sp: Human} Hs Full agonist 10.0 pKd 32
pKd 10.0 [32]
[125I]relaxin-3 (human) Hs Full agonist 9.5 pKd 15
pKd 9.5 [15]
[125I]relaxin-3-B/INSL5 A chimera Hs Agonist 9.3 pKd 14
pKd 9.3 (Kd 5x10-10 M) [14]
europium-labelled relaxin-3-B/INSL5 A chimera Hs Full agonist 9.3 pKd 7,25
pKd 9.3 [7,25]
europium-labelled relaxin-3-B/INSL5 A chimera Hs Agonist 8.3 pKd 7
pKd 8.3 (Kd 5x10-9 M) [7]
relaxin-3 {Sp: Human} Hs Full agonist 7.8 – 8.9 pKi 10,25,34
pKi 7.8 – 8.9 [10,25,34]
minimised relaxin-3 analogue 2 Hs Full agonist 7.9 pKi 25
pKi 7.9 [25]
relaxin-3 B chain dimer Hs Full agonist 6.6 pKi 34
pKi 6.6 [34]
minimised relaxin-3 analogue 2 Hs Full agonist 8.4 – 10.4 pEC50 25
pEC50 8.4 – 10.4 [25]
relaxin-3 {Sp: Human} Hs Full agonist 8.3 – 9.9 pEC50 10-11,25,32,34
pEC50 8.3 – 9.9 [10-11,25,32,34]
relaxin {Sp: Human} Hs Full agonist 7.1 – 8.4 pEC50 11,32
pEC50 7.1 – 8.4 [11,32]
relaxin-3 {Sp: Human} Hs Full agonist 9.4 – 9.6 pIC50 6,15
pIC50 9.4 – 9.6 [6,15]
R3/I5 Hs Full agonist 9.3 pIC50 14
pIC50 9.3 [14]
relaxin-3 (B chain) {Sp: Human} Hs Full agonist 6.9 pIC50 15
pIC50 6.9 [15]
Agonist Comments
Relaxin-3 activates RXFP3 but also RXFP4 and RXFP1. Relaxin-3 is highly conserved across species and is believed to be the ancestral relaxin. Affinity and pEC50 values were obtained in COS-7 cells transiently expressing RXFP3 or CHO or HEK293 cells stably expressing RXFP3. Relaxin is a biased agonist at RXFP3, compared to relaxin-3. Europium R3/I5 is used as a labelled ligand as an alternative to 125I labelled ligands in binding studies.
Antagonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Reference
europium-labelled R3(B1-22R) Hs Antagonist 7.6 pKd 8
pKd 7.6 [8]
R3(BΔ23-27)R/I5 chimeric peptide Hs Antagonist 8.5 pKi 7
pKi 8.5 [7]
minimised relaxin-3 analogue 3 Hs Antagonist 7.6 pKi 25
pKi 7.6 [25]
R3-B1-22R Hs Antagonist 7.4 pKi 7
pKi 7.4 (Ki 3.63x10-8 M) [7]
INSL5 {Sp: Human} Hs Antagonist 7.0 pKi 35
pKi 7.0 [35]
R3(BΔ23-27)R/I5 chimeric peptide Hs Antagonist 8.9 – 9.0 pEC50 11
pEC50 8.9 – 9.0 [11]
R3(BΔ23-27)R/I5 chimeric peptide Hs Antagonist 9.2 pIC50 12
pIC50 9.2 (IC50 6.7x10-10 M) [12]
Antagonist Comments
Affinity values were determined in COS-7 cells transiently expressing or CHO or HEK293 cells stably expressing human RXFP3 labelled using [125I]relaxin-3, [125I]R3/I5 or europium-R3/I5. Antagonists produce rightward shifts of the concentration-response curve to relaxin-3 induced inhibition of forskolin stimulated cAMP accumulation in SK-N-MC cells expressing human RXFP3. R3(BΔ23-27)R/I5 also acts as a partial agonist or biased agonist in some systems [11]. Europium labelled R3(B1-22R) is used as an alternative to radiolabelled ligands.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
135PAM1 Hs Positive 6.1 pEC50 1
pEC50 6.1 [1]
Allosteric Modulator Comments
135PAM1 only allosterically modulates responses to the amidated form of relaxin-3 not the native form.
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Adenylate cyclase inhibition
Other - See Comments
Comments:  In addition to adenylyl cyclase inhibition, activation of RXFP3 also causes GTPγS binding, ERK1/2 and p38MAP kinase phosphorylation. In CHO cells Gi2 is the major G protein involved but in HEK293 cells Gi3 GOB and GOA are all involved suggesting that cellular context is important in determining the response observed.
References:  3,6,14-16
Tissue Distribution
Brain, testis, thymus, adrenal gland.
Species:  Human
Technique:  RT-PCR.
References:  15
Hypothalamus, supraoptic nucleus, periaqueductal gray, nucleus incertus, brainstem, olfactory bulb, sensory cortex, amygdala, thalamus, paraventricular nucleus, inferior and superior colliculus.
Species:  Human
Technique:  in situ hybridisation.
References:  15,30
Brain, testis.
Species:  Mouse
Technique:  RT-PCR.
References:  6
High levels of mRNA and protein in amygdala - amygdalo-hippocampal area, basolateral nucleus and medial nucleus; medial division of the bed nucleus of the stria terminalis; oriens and hilar layers of the hippocampal formation; paraventricular hypothalamic nucleus; dorsal cortex of the inferior colliculus: medial inferior olive. High levels of mRNA in peripeduncular nucleus, anterior tegmental nucleus and dorsomedial tegmental area. High levels of protein in anterodorsal thalamic nucleus and superficial gray and zona layers of the superior colliculus
Species:  Mouse
Technique:  In situ hybridisation, [125I] R3/I5 binding
References:  28
Brain, testis.
Species:  Rat
Technique:  RT-PCR.
References:  6
Nucleus incertus, cortex, septum, hippocampus, thalamus, hypothalamus and midbrain. Highest densities in the medial septum, lateral preoptic area, lateral hypothalamus/medial forebrain bundle and ventral hippocampus; additional fibers in olfactory bulb and olfactory and frontal/cingulate cortices, bed nucleus of the stria terminalis, dorsal endopiriform, intergeniculate, and supramammillary nuclei, and the periaqueductal gray and dorsal raphe
Species:  Rat
Technique:  [125I] R3/I5 binding
References:  17
High levels of mRNA and protein in forebrain, olfactory, hippocampus, amygdala, septum, thalamus, hypothalamus, brainstem with particularly high concentrations in the bed nuclei of the stria terminalis, septohypothalamic nuclei, interpedicular nucleus and nucleus incertus
Species:  Rat
Technique:  in situ hybridisation, [125I] R3/I5 binding
References:  27
Olfactory bulb, sensory cortex, amygdala, thalamus, paraventricular nucleus, supraoptic nucleus, inferior and superior colliculus.
Species:  Rat
Technique:  Autoradiography.
References:  14,30
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
ERK1/2 phosphorylation
Species:  Human
Tissue:  CHO or HEK293 cells expressing RXFP3
Response measured:  increased ERK1/2 phosphorylation
References:  11,25,32,34
Inhibition of forskolin stimulated cAMP responses in CHO-K1 cells stably transfected with human RXFP3 receptors.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  cAMP accumulation.
References:  6,14-16
[35S] GTPγS incorporation in CHO-K1 cells stably transfected with human RXFP3 receptors.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  [35S] GTPγS incorporation.
References:  6,15
Reporter gene assay in SK-N-MC/β-gal cells stably transfected with human RXFP3 receptors.
Species:  Human
Tissue:  SK-N-MC cells.
Response measured:  Increased β-galactosidase expression.
References:  14,16
Extracellular acidification rate response of CHO-K1 cells stably expressing human RXFP3 receptors in the cytosensor microphysiometer.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  Increased extracellular acidification rate.
References:  33
Adenylyl cyclase inhibition
Species:  Human
Tissue:  CHO cells expressing RXFP3
Response measured:  Inhibition of forskolin stimulated cAMP accumulation
References:  1,10,12,25,32,34
GTPγS binding
Species:  Human
Tissue:  CHO cells expressing RXFP3
Response measured:  Increased GTPγS binding
References:  35
p38MAPK phosphorylation
Species:  Human
Tissue:  CHO cells expressing RXFP3
Response measured:  Increased p38MAPK phosphorylation
References:  11
Ca2+ mobilisation assay in HEK 293 cells transiently expressing human RXFP3 receptors and G16.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Ca2+ dye Fluo-3 fluorescence.
References:  14,16
Physiological Functions
Sensory processing particularly under stressful conditions.
Species:  Rat
Tissue:  Brain.
References:  30
Behavioural activation and arousal
Species:  Rat
Tissue:  Hippocampus
References:  18
Regulation of stress
Species:  Rat
Tissue:  Nucleus incertus, relaxin-3 neurones and their target RXFP3 in forebrain connections
References:  2,4,13,31
Increased food intake
Species:  Rat
Tissue:  Paraventricular nucleus
References:  5,12,20-21
Regulation of feeding behaviour
Species:  Mouse
Tissue:  Brain
References:  26
Anxiety-and depressive-like behaviours
Species:  Rat
Tissue:  Brain
References:  23
Alcohol self administration and stress-induced relapse
Species:  Rat
Tissue:  Brain/Bed nucleus stria terminalis
References:  24
Physiological Consequences of Altering Gene Expression
Mice with RXFP3 knockout display decrease in anxiety like behaviour in elevated plus maze and dark/light box paradigms
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  9
Mice with RXFP3 knockout display dark phase hypoactivity on voluntary home-cage running wheels
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  9
Clinically-Relevant Mutations and Pathophysiology
Disease:  Hypercholesterolemia
Disease Ontology: DOID:2487
Biologically Significant Variants
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The SNP rs7702361 is associated with hypercholesterolemia and obesity
SNP accession: 
References:  22
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The SNP rs42868 is associated with hypercholesterolemia and diabetes
SNP accession: 
References:  22

References

Show »

1. Alvarez-Jaimes L, Sutton SW, Nepomuceno D, Motley ST, Cik M, Stocking E, Shoblock J, Bonaventure P. (2012) In vitro pharmacological characterization of RXFP3 allosterism: an example of probe dependency. PLoS ONE, 7 (2): e30792. [PMID:22347403]

2. Banerjee A, Shen PJ, Ma S, Bathgate RA, Gundlach AL. (2010) Swim stress excitation of nucleus incertus and rapid induction of relaxin-3 expression via CRF1 activation. Neuropharmacology, 58 (1): 145-55. [PMID:19560474]

3. Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. (2013) Relaxin family peptides and their receptors. Physiol. Rev., 93 (1): 405-80. [PMID:23303914]

4. Calvez J, de Ávila C, Matte LO, Guèvremont G, Gundlach AL, Timofeeva E. (2016) Role of relaxin-3/RXFP3 system in stress-induced binge-like eating in female rats. Neuropharmacology, 102: 207-15. [PMID:26607097]

5. Calvez J, Lenglos C, de Ávila C, Guèvremont G, Timofeeva E. (2015) Differential effects of central administration of relaxin-3 on food intake and hypothalamic neuropeptides in male and female rats. Genes Brain Behav., 14 (7): 550-63. [PMID:26234422]

6. Chen J, Kuei C, Sutton SW, Bonaventure P, Nepomuceno D, Eriste E, Sillard R, Lovenberg TW, Liu C. (2005) Pharmacological characterization of relaxin-3/INSL7 receptors GPCR135 and GPCR142 from different mammalian species. J Pharmacol Exp Ther, 312: 83-95. [PMID:15367576]

7. Haugaard-Kedström LM, Shabanpoor F, Hossain MA, Clark RJ, Ryan PJ, Craik DJ, Gundlach AL, Wade JD, Bathgate RA, Rosengren KJ. (2011) Design, synthesis, and characterization of a single-chain peptide antagonist for the relaxin-3 receptor RXFP3. J. Am. Chem. Soc., 133 (13): 4965-74. [PMID:21384867]

8. Haugaard-Kedström LM, Wong LL, Bathgate RA, Rosengren KJ. (2015) Synthesis and pharmacological characterization of a europium-labelled single-chain antagonist for binding studies of the relaxin-3 receptor RXFP3. Amino Acids, 47 (6): 1267-71. [PMID:25792111]

9. Hosken IT, Sutton SW, Smith CM, Gundlach AL. (2015) Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: Implications for role of relaxin-3/RXFP3 signalling in sustained arousal. Behav. Brain Res., 278: 167-75. [PMID:25257104]

10. Hossain MA, Rosengren KJ, Haugaard-Jönsson LM, Zhang S, Layfield S, Ferraro T, Daly NL, Tregear GW, Wade JD, Bathgate RA. (2008) The A-chain of human relaxin family peptides has distinct roles in the binding and activation of the different relaxin family peptide receptors. J. Biol. Chem., 283 (25): 17287-97. [PMID:18434306]

11. Kocan M, Sarwar M, Hossain MA, Wade JD, Summers RJ. (2014) Signalling profiles of H3 relaxin, H2 relaxin and R3(BΔ23-27)R/I5 acting at the relaxin family peptide receptor 3 (RXFP3). Br. J. Pharmacol., 171 (11): 2827-41. [PMID:24641548]

12. Kuei C, Sutton S, Bonaventure P, Pudiak C, Shelton J, Zhu J, Nepomuceno D, Wu J, Chen J, Kamme F et al.. (2007) R3(BDelta23 27)R/I5 chimeric peptide, a selective antagonist for GPCR135 and GPCR142 over relaxin receptor LGR7: in vitro and in vivo characterization. J. Biol. Chem., 282 (35): 25425-35. [PMID:17606621]

13. Lenglos C, Mitra A, Guèvremont G, Timofeeva E. (2013) Sex differences in the effects of chronic stress and food restriction on body weight gain and brain expression of CRF and relaxin-3 in rats. Genes Brain Behav., 12 (4): 370-87. [PMID:23425370]

14. Liu C, Chen J, Kuei C, Sutton S, Nepomuceno D, Bonaventure P, Lovenberg TW. (2005) Relaxin-3/insulin-like peptide 5 chimeric peptide, a selective ligand for G protein-coupled receptor (GPCR)135 and GPCR142 over leucine-rich repeat-containing G protein-coupled receptor 7. Mol Pharmacol, 67: 231-240. [PMID:15465925]

15. Liu C, Eriste E, Sutton S, Chen J, Roland B, Kuei C, Farmer N, Jörnvall H, Sillard R, Lovenberg TW. (2003) Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. J Biol Chem, 278: 50754-50764. [PMID:14522968]

16. Liu C, Kuei C, Sutton S, Chen J, Bonaventure P, Wu J, Nepomuceno D, Kamme F, Tran DT, Zhu J, Wilkinson T, Bathgate R, Eriste E, Sillard R, Lovenberg TW. (2005) INSL5 is a high affinity specific agonist for GPCR142 (GPR100). J Biol Chem, 280: 292-300. [PMID:15525639]

17. Ma S, Bonaventure P, Ferraro T, Shen PJ, Burazin TC, Bathgate RA, Liu C, Tregear GW, Sutton SW, Gundlach AL. (2007) Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience, 144 (1): 165-90. [PMID:17071007]

18. Ma S, Olucha-Bordonau FE, Hossain MA, Lin F, Kuei C, Liu C, Wade JD, Sutton SW, Nuñez A, Gundlach AL. (2009) Modulation of hippocampal theta oscillations and spatial memory by relaxin-3 neurons of the nucleus incertus. Learn. Mem., 16 (11): 730-42. [PMID:19880588]

19. Matsumoto M, Kamohara M, Sugimoto T, Hidaka K, Takasaki J, Saito T, Okada M, Yamaguchi T, Furuichi K. (2000) The novel G-protein coupled receptor SALPR shares sequence similarity with somatostatin and angiotensin receptors. Gene, 248: 183-189. [PMID:10806363]

20. McGowan BM, Stanley SA, Smith KL, Minnion JS, Donovan J, Thompson EL, Patterson M, Connolly MM, Abbott CR, Small CJ et al.. (2006) Effects of acute and chronic relaxin-3 on food intake and energy expenditure in rats. Regul. Pept., 136 (1-3): 72-7. [PMID:16764952]

21. McGowan BM, Stanley SA, Smith KL, White NE, Connolly MM, Thompson EL, Gardiner JV, Murphy KG, Ghatei MA, Bloom SR. (2005) Central relaxin-3 administration causes hyperphagia in male Wistar rats. Endocrinology, 146 (8): 3295-300. [PMID:15845619]

22. Munro J, Skrobot O, Sanyoura M, Kay V, Susce MT, Glaser PE, de Leon J, Blakemore AI, Arranz MJ. (2012) Relaxin polymorphisms associated with metabolic disturbance in patients treated with antipsychotics. J. Psychopharmacol. (Oxford), 26 (3): 374-9. [PMID:21693553]

23. Ryan PJ, Büchler E, Shabanpoor F, Hossain MA, Wade JD, Lawrence AJ, Gundlach AL. (2013) Central relaxin-3 receptor (RXFP3) activation decreases anxiety- and depressive-like behaviours in the rat. Behav. Brain Res., 244: 142-51. [PMID:23380674]

24. Ryan PJ, Kastman HE, Krstew EV, Rosengren KJ, Hossain MA, Churilov L, Wade JD, Gundlach AL, Lawrence AJ. (2013) Relaxin-3/RXFP3 system regulates alcohol-seeking. Proc. Natl. Acad. Sci. U.S.A., 110 (51): 20789-94. [PMID:24297931]

25. Shabanpoor F, Akhter Hossain M, Ryan PJ, Belgi A, Layfield S, Kocan M, Zhang S, Samuel CS, Gundlach AL, Bathgate RA et al.. (2012) Minimization of human relaxin-3 leading to high-affinity analogues with increased selectivity for relaxin-family peptide 3 receptor (RXFP3) over RXFP1. J. Med. Chem., 55 (4): 1671-81. [PMID:22257012]

26. Smith CM, Chua BE, Zhang C, Walker AW, Haidar M, Hawkes D, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ et al.. (2014) Central injection of relaxin-3 receptor (RXFP3) antagonist peptides reduces motivated food seeking and consumption in C57BL/6J mice. Behav. Brain Res., 268: 117-26. [PMID:24681162]

27. Smith CM, Ryan PJ, Hosken IT, Ma S, Gundlach AL. (2011) Relaxin-3 systems in the brain--the first 10 years. J. Chem. Neuroanat., 42 (4): 262-75. [PMID:21693186]

28. Smith CM, Shen PJ, Banerjee A, Bonaventure P, Ma S, Bathgate RA, Sutton SW, Gundlach AL. (2010) Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J. Comp. Neurol., 518 (19): 4016-45. [PMID:20737598]

29. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF et al.. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. U.S.A., 99 (26): 16899-903. [PMID:12477932]

30. Sutton SW, Bonaventure P, Kuei C, Roland B, Chen J, Nepomuceno D, Lovenberg TW, Liu C. (2004) Distribution of G-protein-coupled receptor (GPCR)135 binding sites and receptor mRNA in the rat brain suggests a role for relaxin-3 in neuroendocrine and sensory processing. Neuroendocrinology, 80: 298-307. [PMID:15677880]

31. Tanaka M, Iijima N, Miyamoto Y, Fukusumi S, Itoh Y, Ozawa H, Ibata Y. (2005) Neurons expressing relaxin 3/INSL 7 in the nucleus incertus respond to stress. Eur. J. Neurosci., 21 (6): 1659-70. [PMID:15845093]

32. van der Westhuizen ET, Christopoulos A, Sexton PM, Wade JD, Summers RJ. (2010) H2 relaxin is a biased ligand relative to H3 relaxin at the relaxin family peptide receptor 3 (RXFP3). Mol. Pharmacol., 77 (5): 759-72. [PMID:20159943]

33. Van der Westhuizen ET, Sexton PM, Bathgate RA, Summers RJ. (2005) Responses of GPCR135 to human gene 3 (H3) relaxin in CHO-K1 cells determined by microphysiometry. Ann N Y Acad Sci, 1041: 332-337. [PMID:15956730]

34. van der Westhuizen ET, Werry TD, Sexton PM, Summers RJ. (2007) The relaxin family peptide receptor 3 activates extracellular signal-regulated kinase 1/2 through a protein kinase C-dependent mechanism. Mol. Pharmacol., 71 (6): 1618-29. [PMID:17351017]

35. Zhu J, Kuei C, Sutton S, Kamme F, Yu J, Bonaventure P, Atack J, Lovenberg TW, Liu C. (2008) Identification of the domains in RXFP4 (GPCR142) responsible for the high affinity binding and agonistic activity of INSL5 at RXFP4 compared to RXFP3 (GPCR135). Eur. J. Pharmacol., 590 (1-3): 43-52. [PMID:18582868]

Contributors

Show »

How to cite this page

Roger Summers, Michelle Halls, Ross Bathgate, Thomas Dschietzig, Andrew L. Gundlach.
Relaxin family peptide receptors: RXFP3. Last modified on 20/02/2018. Accessed on 18/11/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=353.