BB<sub>2</sub> receptor | Bombesin receptors | IUPHAR/BPS Guide to PHARMACOLOGY

BB2 receptor

Target id: 39

Nomenclature: BB2 receptor

Family: Bombesin receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for BB2 receptor in GtoImmuPdb

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 384 Xp22.2-p22.13 GRPR gastrin releasing peptide receptor 10,65
Mouse 7 384 X F4 Grpr gastrin releasing peptide receptor 5,16,53
Rat 7 384 Xq21 Grpr gastrin releasing peptide receptor 4
Gene and Protein Information Comments
Phylogenetic analysis of the BB2 receptor is described in [3].
Previous and Unofficial Names
BB2 | GRP-R | GRP-preferring bombesin receptor | Gastrin-releasing peptide receptor | gastrin-releasing peptide receptor
Database Links
Specialist databases
GPCRDB grpr_human (Hs), grpr_mouse (Mm), grpr_rat (Rn)
Other databases
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands
gastrin-releasing peptide {Sp: Human} , gastrin-releasing peptide {Sp: Mouse, Rat} , gastrin-releasing peptide {Sp: Pig}
GRP-(18-27) {Sp: Human, Pig} , GRP-(18-27) {Sp: Mouse, Rat}
neuromedin B {Sp: Human, Mouse, Rat, Pig}
Comments: Gastrin-releasing peptide is the endogenous agonist with the greatest potency

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I][Tyr4]bombesin Hs Full agonist 8.2 pKd 6
pKd 8.2 (Kd 6.31x10-9 M) [6]
[Phe13]bombesin Rn Full agonist 9.1 pKi 25,35
pKi 9.1 (Ki 7.7x10-10 M) [25,35]
gastrin-releasing peptide {Sp: Human} Mm Full agonist 8.6 – 8.9 pKi 25
pKi 8.6 – 8.9 (Ki 2.5x10-9 – 1.24x10-9 M) [25]
ranatensin Rn Full agonist 8.7 pKi 25,35
pKi 8.7 (Ki 2x10-9 M) [25,35]
bombesin Mm Full agonist 8.2 – 9.1 pKi 6
pKi 8.2 – 9.1 (Ki 6.8x10-9 – 9x10-10 M) [6]
bombesin Rn Full agonist 8.4 pKi 6
pKi 8.4 (Ki 4.1x10-9 M) [6]
litorin Rn Full agonist 8.2 pKi 25,35
pKi 8.2 (Ki 6x10-9 M) [25,35]
[Phe13]bombesin Hs Full agonist 7.6 – 8.7 pKi 47
pKi 7.6 – 8.7 (Ki 2.8x10-8 – 1.8x10-9 M) [47]
bombesin Hs Full agonist 7.4 – 8.9 pKi 6,47
pKi 7.4 – 8.9 (Ki 4.4x10-8 – 1.4x10-9 M) [6,47]
[D-Phe6,β-Ala11,Phe13,Nle14]bombesin-(6-14) Hs Full agonist 7.8 – 8.0 pKi 47
pKi 7.8 – 8.0 (Ki 1.5x10-8 – 1x10-8 M) [47]
gastrin-releasing peptide {Sp: Human} Rn Full agonist 7.7 pKi 6,35
pKi 7.7 (Ki 1.8x10-8 M) [6,35]
neuromedin C Rn Full agonist 7.7 pKi 25,35
pKi 7.7 (Ki 2x10-8 M) [25,35]
Rhodei-litorin Rn Full agonist 7.5 pKi 25,35
pKi 7.5 (Ki 3.1x10-8 M) [25,35]
gastrin-releasing peptide {Sp: Human} Hs Full agonist 6.3 – 8.2 pKi 6,47
pKi 6.3 – 8.2 (Ki 4.53x10-7 – 6.2x10-9 M) [6,47]
neuromedin B {Sp: Human, Mouse, Rat, Pig} Hs Full agonist 6.4 – 8.1 pKi 6,47
pKi 6.4 – 8.1 (Ki 4.37x10-7 – 7.4x10-9 M) [6,47]
neuromedin B {Sp: Human, Mouse, Rat, Pig} Mm Full agonist 6.6 – 7.4 pKi 6
pKi 6.6 – 7.4 (Ki 2.3x10-7 – 4.2x10-8 M) [6]
phyllolitorin Rn Full agonist 6.6 pKi 25,35
pKi 6.6 (Ki 2.4x10-7 M) [25,35]
neuromedin B {Sp: Human, Mouse, Rat, Pig} Rn Full agonist 6.6 pKi 47
pKi 6.6 (Ki 2.48x10-7 M) [47]
[Leu8]-phyllolitorin Rn Full agonist 6.4 pKi 25,35
pKi 6.4 (Ki 4.2x10-7 M) [25,35]
[D-Phe6,β-Ala11,Phe13,Nle14]bombesin-(6-14) Hs Full agonist 10.1 – 10.3 pIC50 62
pIC50 10.1 – 10.3 (IC50 8.5x10-11 – 4.8x10-11 M) [62]
bombesin Hs Agonist 9.8 – 10.1 pIC50 62
pIC50 9.8 – 10.1 (IC50 1.7x10-10 – 7x10-11 M) [62]
gastrin-releasing peptide {Sp: Human} Hs Full agonist 9.9 – 10.0 pIC50 17
pIC50 9.9 – 10.0 (IC50 1.2x10-10 – 1.1x10-10 M) [17]
neuromedin C Hs Full agonist 9.9 pIC50 62
pIC50 9.9 (IC50 1.4x10-10 M) [62]
gastrin releasing peptide(14-27) (human) Hs Full agonist 9.7 – 9.8 pIC50 62
pIC50 9.7 – 9.8 (IC50 1.9x10-10 – 1.7x10-10 M) [62]
(D-Ala11]bombesin Hs Full agonist 9.1 – 9.3 pIC50 62
pIC50 9.1 – 9.3 (IC50 7.1x10-10 – 5.4x10-10 M) [62]
ranatensin Rn Full agonist 9.0 pIC50 62
pIC50 9.0 (IC50 1.08x10-9 M) [62]
litorin Hs Agonist 8.6 – 9.3 pIC50 62
pIC50 8.6 – 9.3 (IC50 2.69x10-9 – 5.4x10-10 M) [62]
litorin Rn Full agonist 8.8 pIC50 62
pIC50 8.8 (IC50 1.66x10-9 M) [62]
ranatensin Hs Full agonist 8.5 – 8.6 pIC50 62
pIC50 8.5 – 8.6 (IC50 3.16x10-9 – 2.24x10-9 M) [62]
neuromedin B (1-30) (human) Hs Full agonist 7.7 – 7.8 pIC50 62
pIC50 7.7 – 7.8 (IC50 1.82x10-8 – 1.531x10-8 M) [62]
Rhodei-litorin Rn Full agonist 7.6 pIC50 62
pIC50 7.6 (IC50 2.32x10-8 M) [62]
neuromedin B {Sp: Human, Mouse, Rat, Pig} Hs Full agonist 7.4 – 7.5 pIC50 17,62
pIC50 7.4 – 7.5 (IC50 3.8x10-8 – 3.01x10-8 M) [17,62]
neuromedin C Rn Full agonist 7.3 pIC50 62
pIC50 7.3 (IC50 4.9x10-8 M) [62]
[Leu8]-phyllolitorin Rn Full agonist 6.9 pIC50 62
pIC50 6.9 (IC50 1.2x10-7 M) [62]
Rhodei-litorin Hs Full agonist 6.7 – 7.0 pIC50 62
pIC50 6.7 – 7.0 (IC50 1.9x10-7 – 1.1x10-7 M) [62]
phyllolitorin Rn Full agonist 6.7 pIC50 62
pIC50 6.7 (IC50 1.9x10-7 M) [62]
[Leu8]-phyllolitorin Hs Full agonist 6.3 – 6.4 pIC50 62
pIC50 6.3 – 6.4 (IC50 5.24x10-7 – 3.72x10-7 M) [62]
phyllolitorin Hs Full agonist <5.5 pIC50 62
pIC50 <5.5 (IC50 >3x10-6 M) [62]
MK-5046 Hs Full agonist <5.0 pIC50 40
pIC50 <5.0 (IC50 >1x10-5 M) [40]
[125I]GRP (human) Hs Full agonist - -
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I][D-Tyr6]bombesin-(6-13)-methyl ester Mm Antagonist 9.3 pKd 34
pKd 9.3 (Kd 5.3x10-10 M) [34]
[125I][D-Tyr6]bombesin-(6-13)-methyl ester Rn Antagonist 9.0 pKd 34
pKd 9.0 (Kd 1.1x10-9 M) [34]
[D-Phe6, Leu13, Cpa14,ψ13-14]bombesin-(6-14) Hs Antagonist 9.8 pKi 17
pKi 9.8 [17]
PD 176252 Hs Antagonist 9.0 pKi 2
pKi 9.0 (Ki 1x10-9 M) [2]
[D-Phe6]bombesin(6-13)propylamide Rn Antagonist 8.2 pKi 25
pKi 8.2 (Ki 6x10-9 M) [25]
[Leu14, ψ 13-14)]bombesin Hs Antagonist 8.1 pKi 6
pKi 8.1 (Ki 7.7x10-9 M) [6]
[D-Phe6]bombesin(6-13)methyl ester Rn Antagonist 8.0 pKi 25
pKi 8.0 (Ki 1x10-8 M) [25]
PD 168368 Hs Antagonist 7.5 – 7.8 pKi 47
pKi 7.5 – 7.8 (Ki 3x10-8 – 1.5x10-8 M) [47]
[D-Phe6, Leu13, Cpa14,ψ13-14]bombesin-(6-14) Rn Antagonist 7.4 pKi 25
pKi 7.4 (Ki 4.2x10-8 M) [25]
D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Nal-NH2 Hs Antagonist 6.7 – 6.8 pKi 47
pKi 6.7 – 6.8 (Ki 2.16x10-7 – 1.7x10-7 M) [47]
D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Nal-NH2 Rn Antagonist <5.0 pKi 25
pKi <5.0 (Ki >1x10-5 M) [25]
[D-Phe6]bombesin(6-13)methyl ester Hs Antagonist <5.0 pKi 47
pKi <5.0 (Ki >1x10-5 M) [47]
[D-Phe12]bombesin Rn Antagonist 5.0 pKi 25
pKi 5.0 (Ki 1x10-5 M) [25]
[D-Pro4,D-Trp7,9,10]substance P (4-11) Rn Antagonist <5.0 pKi 25
pKi <5.0 (Ki >1x10-5 M) [25]
[D-Arg1,D-Trp7,9,Leu11]substance P Rn Antagonist 4.9 pKi 25
pKi 4.9 (Ki 1.13x10-5 M) [25]
[(3-Ph-Pr6), His7,D-Ala11,D-Pro13,ψ13-14),Phe14]bombesin-(6-14) Mm Antagonist 12.0 pIC50 30
pIC50 12.0 (IC50 1x10-12 M) [30]
JMV641 Mm Antagonist 9.3 pIC50 60
pIC50 9.3 (IC50 4.6x10-10 M) [60]
[(3-Ph-Pr6), His7,D-Ala11,D-Pro13,ψ13-14),Phe14]bombesin-(6-14) Hs Antagonist 9.2 pIC50 17,30
pIC50 9.2 [17,30]
[D-Phe6]bombesin(6-13)propylamide Hs Antagonist 8.6 – 9.4 pIC50 17
pIC50 8.6 – 9.4 (IC50 2.63x10-9 – 3.9x10-10 M) [17]
JMV594 Mm Antagonist 8.9 pIC50 33,60
pIC50 8.9 [33,60]
[D-Phe6, Leu13, Cpa14,ψ13-14]bombesin-(6-14) Hs Antagonist 8.9 – 8.9 pIC50 17
pIC50 8.9 – 8.9 (IC50 1.35x10-9 – 1.23x10-9 M) [17]
[D-Tpi6, Leu13 ψ(CH2NH)-Leu14]bombesin-(6-14) Hs Antagonist 8.8 – 8.9 pIC50 17
pIC50 8.9 [17]
pIC50 8.8 – 8.9 (IC50 1.58x10-9 – 1.32x10-9 M) [17]
[D-Phe6]bombesin(6-13)methyl ester Hs Antagonist 8.4 – 9.1 pIC50 17
pIC50 8.4 – 9.1 (IC50 3.98x10-9 – 8.9x10-10 M) [17]
Ac-GRP-(20-26)-methylester Hs Antagonist 8.7 pIC50 17
pIC50 8.7 [17]
Ac-GRP-(20-26)-methylester Mm Antagonist 8.4 pIC50 22
pIC50 8.4 [22]
[Leu14, ψ 13-14)]bombesin Hs Antagonist 8.1 – 8.1 pIC50 17
pIC50 8.1 – 8.1 (IC50 8.12x10-9 – 7.7x10-9 M) [17]
[D-Tpi6, Leu13 ψ(CH2NH)-Leu14]bombesin-(6-14) Mm Antagonist 8.0 pIC50 44
pIC50 8.0 [44]
PD 176252 Hs Antagonist 6.7 – 6.8 pIC50 17
pIC50 6.7 – 6.8 (IC50 2.13x10-7 – 1.7x10-7 M) [17]
pIC50 6.7 – 6.8 (IC50 2.13x10-7 – 1.7x10-7 M) [17]
kuwanon H Mm Antagonist 6.5 pIC50 39
pIC50 6.5 [39]
[D-Arg1,D-Trp7,9,Leu11]substance P Hs Antagonist 5.8 – 6.1 pIC50 17
pIC50 5.8 – 6.1 (IC50 1.78x10-6 – 7.94x10-7 M) [17]
PD 168368 Hs Antagonist 5.8 – 5.9 pIC50 17
pIC50 5.8 – 5.9 (IC50 1.738x10-6 – 1.172x10-6 M) [17]
D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Nal-NH2 Hs Antagonist 5.3 – 5.6 pIC50 17
pIC50 5.3 – 5.6 (IC50 4.57x10-6 – 2.46x10-6 M) [17]
pIC50 5.3 – 5.6 (IC50 4.57x10-6 – 2.46x10-6 M) [17]
D-Nal,Cys,Tyr,D-Trp,Orn,Val,Cys,Nal-NH2 Hs Antagonist 5.0 – 5.5 pIC50 17
pIC50 5.0 – 5.5 (IC50 1x10-5 – 3.47x10-6 M) [17]
[D-Pro4,D-Trp7,9,10]substance P (4-11) Hs Antagonist 5.0 – 5.4 pIC50 17
pIC50 5.0 – 5.4 (IC50 1x10-5 – 3.8x10-6 M) [17]
bantag-1 Hs Antagonist 5.0 – 5.4 pIC50 19,40
pIC50 5.0 – 5.4 (IC50 1x10-5 – 4.4x10-6 M) [19,40]
View species-specific antagonist tables
Antagonist Comments
A number of studies show significant species variation in antagonist activity with some analogues functioning as partial agonists/ full agonists in some species [64].
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Phospholipase A2 stimulation
Phospholipase D stimulation
Comments:  Receptor activation also results in stimulation of Na/H antiport, activation of numerous tyrosine kinases and transactivation of the EGFR receptor in various tumors.
References:  14,32,41,46,49,54
Secondary Transduction Mechanisms
Transducer Effector/Response
G protein (identity unknown) Adenylate cyclase stimulation
Phospholipase A2 stimulation
Phospholipase D stimulation
References:  7,11,15
Tissue Distribution
Highly expressed in pancreas. Also expressed in stomach, adrenal cortex and brain.
Species:  Human
Technique:  Ribonuclease protection assay, northern blot
References:  10
Brain (hypothalamus), pancreatic acinar cells, and fibroblasts.
Species:  Mouse
Technique:  Northern Blot, Sequencing analysis
References:  5
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Calcium-dependant chloride currents in Xenopus oocytes injected with RNA for the human BB2 receptor could be measured in response to GRP and blocked by the BB2-specific inhibitor [D-phe]BN(6-13).
Species:  Human
Tissue:  Xenopus oocytes.
Response measured:  Production of chloride currents, blocked by a specific BB2 antagonist.
References:  10
Measurement of CREB (cAMP response element binding protein) phosphorylation and transactivation in the HuTu b80 duodenal cancer cell line.
Species:  Human
Tissue:  HuTu 80 cells.
Response measured:  CREB phosphorylation.
References:  43
Measurement of Prostaglandin synthase 2 (PGS-2) mRNA and protein in Swiss 3T3 cells containing native BB2 receptors.
Species:  Mouse
Tissue:  Swiss 3T3 cells.
Response measured:  Induction of PGS-2 expression.
References:  21
Measurement of phospholipase C activation- HUMAN, RAT and MOUSE.
Species:  Human
Tissue:  HuTu 80 cells (human),Swiss 3t3 cells (mouse), AR42J cells (rat).
Response measured:  [3H]inositol phosphate formation.
References:  17,34,39,60,62
Measurement of tyrosine kinase activity (formation p125FAK, p-paxillin)- HUMAN, RAT and MOUSE.
Species:  Human
Tissue:  HuTu 80 cells,Swiss 3t3 cells, lung cancer cells, AR42J cells.
Response measured:  Phosphorylation of FAK (tyrosine 125) and paxillin.
References:  31,45,68
Physiological Functions
Hypothermia.
Species:  Rat
Tissue:  In vivo.
References:  8,59,61
GRP was found to be an anti-convulsant in seizure-prone DBA/2 mice. This may be due to increased GABAergic function in the hippocampus.
Species:  Mouse
Tissue:  In vivo.
References:  1
Increase in extracellular GABA levels in the rat hippocampus.
Species:  Rat
Tissue:  In vivo.
References:  1
Receptor activation suppresses food intake by increasing postingestive negative feedback, not by decreasing the palatability of the food.
Species:  Rat
Tissue:  in vivo.
References:  27,55
GRP is a neurotransmitter regulating pancreatic secretion- PIG and DOG
Species:  Pig
Tissue:  In vivo.
References:  23-24,26
BB2 receptor activation in lumbosacral spinal cord is essential for ejaculations in males.
Species:  Rat
Tissue:  In vivo.
References:  28,48
GRP is the modulatory neurotransmitter of the descending phase of the peristaltic reflex.
Species:  Rat
Tissue:  Colon.
References:  18
GRP regulates gastric acid secretion/gastrin release through BB2 receptor on antral G cells and D cells.
Species:  Mouse
Tissue:  Isolated perfused stomach.
References:  50-51
CNS BB2 receptor activation affects GI function (suppresses gastric acid/pepsin secretion, gastrin/histamine release, increases bicarbonate/mucous release and stimulates vagally mediated contractions). These effects are also observed in dogs.
Species:  Rat
Tissue:  In vivo.
References:  36,56-58
BB2 receptor activation affects lymphoid and neutrophil function (inhibits lymphocyte chemotaxis, leukocyte cytotoxicity and leukocyte chemoattractant activity).
Species:  Mouse
Tissue:  Isolated lymphocytes and neutrophils.
References:  12-13,37-38
Physiological Consequences of Altering Gene Expression
BB2 receptor knockout mice fail to suppress glucose intake following bombesin and gastrin-releasing peptide administration. The knockout mice ate more food at each meal, although total daily food consumption was the same as the wild-type mice. This suggests the involvement of the BB2 receptor in a meal-related satiety signal.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  29
In a social preference test, female BB2 receptor knockout mice showed a reduced preference towards the socially dominant male mice. However, in a similar test using anaesthetized males as the target the knockouts showed increased investigatory behaviour. It is suggested these behavioural changes may be due to altered GABAergic function in the BB2 knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  67
BB2 receptor knockout mice show no gross abnormalities, however they do not suppress glucose intake upon bombesin administration, as wild-type mice do.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  20
BB2 receptor knockout mice show poor tumour differentiation, suggesting the BB2 receptor has a role in regulating tumour morphology.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  9
BB2 receptor knockout mice show decreased inhibition of the principal neurons by the interneurons, enhanced long-term potentiation and greater and more persistent long-term fear memory. This suggests that the GRP signaling pathway serves as an inhibitory feedback constraint on learned fear.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  52
BB2 receptor knockout mice exhibit altered social behavior.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  66-67
BB2 receptor knockout mice altered insulin secretion by activation of the autonomic nerves.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  42
Intracerebroventricular administration of gastrin-releasing peptide (GRP) causes hypothermia in wild-type mice, which is not seen in BB2 receptor knockout mice. This suggests this receptor subtype is involved in body temperature regulation. The BB2 receptor knockout mice also showed increased locomotor activity during the dark period and abnormal social behaviour.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  63
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Grprtm1Jfb Grprtm1Jfb/Y
involves: 129X1/SvJ * C57BL/6J
MGI:95836  MP:0005449 abnormal food intake PMID: 9501238 
Grprtm1Wada Grprtm1Wada/Y
involves: 129P2/OlaHsd * C57BL/6J
MGI:95836  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 9345264 
Grprtm1Wada Grprtm1Wada/Y
involves: 129P2/OlaHsd * C57BL/6J
MGI:95836  MP:0001360 abnormal social investigation PMID: 9345264 
Grprtm1Wada Grprtm1Wada/Y
involves: 129P2/OlaHsd * C57BL/6J
MGI:95836  MP:0001399 hyperactivity PMID: 9345264 
Grprtm1Jfb Grprtm1Jfb/Grprtm1Jfb
involves: 129X1/SvJ * C57BL/6J
MGI:95836  MP:0002169 no abnormal phenotype detected PMID: 9501238 
Biologically Significant Variant Comments
It is predicted that glycosylation of aa 20 may occur in humans and that glycosylation of aa 5, 20 and 24 may occur in both rat and mouse.

References

Show »

1. Andrews N, Davis B, Gonzalez MI, Oles R, Singh L, McKnight AT. (2000) Effect of gastrin-releasing peptide on rat hippocampal extracellular GABA levels and seizures in the audiogenic seizure-prone DBA/2 mouse. Brain Res, 859: 386-389. [PMID:10719092]

2. Ashwood V, Brownhill V, Higginbottom M, Horwell DC, Hughes J, Lewthwaite RA, McKnight AT, Pinnock RD, Pritchard MC, Suman-Chauhan N, Webb C, Williams SC. (1998) PD 176252--the first high affinity non-peptide gastrin-releasing peptide (BB2) receptor antagonist. Bioorg Med Chem Lett., 8: 2589-2594. [PMID:9873586]

3. Baldwin GS, Patel O, Shulkes A. (2007) Phylogenetic analysis of the sequences of gastrin-releasing peptide and its receptors: Biological implications. Regul Pept,: -. [PMID:17395282]

4. Battey J, Wada E. (1991) Two distinct bombesin receptor subtypes in postnatal rat central nervous system. Trends in Neurosciences, 14 (12): 524-528. [PMID:1726343]

5. Battey JF, Way JM, Corjay MH, Shapira H, Kusano K, Harkins R, Wu JM, Slattery T, Mann E, Feldman RI. (1991) Molecular cloning of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells. Proc. Natl. Acad. Sci. U.S.A., 88: 395-399. [PMID:1671171]

6. Benya RV, Kusui T, Pradhan TK, Battey JF, Jensen RT. (1995) Expression and characterization of cloned human bombesin receptors. Mol Pharmacol., 47: 10-20. [PMID:7838118]

7. Briscoe CP, Plevin R, Wakelam MJ. (1994) Rapid desensitization and resensitization of bombesin-stimulated phospholipase D activity in Swiss 3T3 cells. Biochem. J., 298 ( Pt 1): 61-7. [PMID:8129732]

8. Brown M, Taché Y, Rivier J, Pittman Q. (1981) Peptides and regulation of body temperature. Adv. Biochem. Psychopharmacol., 28: 397-407. [PMID:6111181]

9. Carroll RE, Matkowskyj KA, Tretiakova MS, Battey JF, Benya RV. (2000) Gastrin-releasing peptide is a mitogen and a morphogen in murine colon cancer. Cell Growth Differ., 11: 385-393. [PMID:10939592]

10. Corjay MH, Dobrzanski DJ, Way JM, Viallet J, Shapira H, Worland P, Sausville EA, Battey JF. (1991) Two distinct bombesin receptor subtypes are expressed and functional in human lung carcinoma cells. J. Biol. Chem., 266: 18771-18779. [PMID:1655761]

11. Currie S, Smith GL, Crichton CA, Jackson CG, Hallam C, Wakelam MJ. (1992) Bombesin stimulates the rapid activation of phospholipase A2-catalyzed phosphatidylcholine hydrolysis in Swiss 3T3 cells. J. Biol. Chem., 267 (9): 6056-62. [PMID:1532578]

12. Czepielewski RS, Porto BN, Rizzo LB, Roesler R, Abujamra AL, Pinto LG, Schwartsmann G, Cunha Fde Q, Bonorino C. (2012) Gastrin-releasing peptide receptor (GRPR) mediates chemotaxis in neutrophils. Proc. Natl. Acad. Sci. U.S.A., 109 (2): 547-52. [PMID:22203955]

13. Del Rio M, De la Fuente M. (1994) Chemoattractant capacity of bombesin, gastrin-releasing peptide and neuromedin C is mediated through PKC activation in murine peritoneal leukocytes. Regul. Pept., 49 (3): 185-93. [PMID:8140272]

14. Di Florio A, Sancho V, Moreno P, Delle Fave G, Jensen RT. (2013) Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor. Biochim. Biophys. Acta, 1833 (3): 573-82. [PMID:23220008]

15. Garcia LJ, Pradhan TK, Weber HC, Moody TW, Jensen RT. (1997) The gastrin-releasing peptide receptor is differentially coupled to adenylate cyclase and phospholipase C in different tissues. Biochim Biophys Acta, 1356: 343-354. [PMID:9194577]

16. Giladi E, Nagalla SR, Spindel ER. (1993) Molecular cloning and characterization of receptors for the mammalian bombesin-like peptides. J. Mol. Neurosci., 4: 41-54. [PMID:8391296]

17. González N, Mantey SA, Pradhan TK, Sancho V, Moody TW, Coy DH, Jensen RT. (2009) Characterization of putative GRP- and NMB-receptor antagonist's interaction with human receptors. Peptides, 30 (8): 1473-86. [PMID:19463875]

18. Grider JR. (2004) Gastrin-releasing peptide is a modulatory neurotransmitter of the descending phase of the peristaltic reflex. Am J Physiol Gastrointest Liver Physiol, 287: G1109-G1115. [PMID:15297260]

19. Guan XM, Chen H, Dobbelaar PH, Dong Y, Fong TM, Gagen K, Gorski J, He S, Howard AD, Jian T et al. (2010) Regulation of energy homeostasis by bombesin receptor subtype-3: selective receptor agonists for the treatment of obesity. Cell Metabolism, 11 (2): 101-112. [PMID:20096642]

20. Hampton LL, Ladenheim EE, Akeson M, Way JM, Weber HC, Sutliff VE, Jensen RT, Wine LJ, Arnheiter H, Battey JF. (1998) Loss of bombesin-induced feeding suppression in gastrin-releasing peptide receptor-deficient mice. Proc Natl Acad Sci U S A, 95: 3188-3192. [PMID:9501238]

21. Hecht JR, Duque J, Reddy ST, Herschman HR, Walsh JH, Slice LW. (1997) Gastrin-releasing peptide-induced expression of prostaglandin synthase-2 in Swiss 3T3 cells. Prostaglandins, 54: 757-768. [PMID:9491206]

22. Heimbrook DC, Saari WS, Balishin NL, Friedman A, Moore KS, Reimen MW, Kiefer DM, Rotberg NS, Wallen JW, Oliff A. (1989) Carboxyl-terminal modification of a gastrin releasing peptide derivativegenerates potent antagonists. J Biol Chem., 264: 11258-11262. [PMID:2544588]

23. Holst JJ, Knuhtsen S, Nielsen OV. (1989) Role of gastrin-releasing peptide in neural control of pancreatic exocrine secretion. Pancreas, 4 (5): 581-6. [PMID:2813328]

24. Horstmann O, Nustede R, Schmidt W, Stöckmann F, Becker H. (1999) On the role of gastrin-releasing peptide in meal-stimulated exocrine pancreatic secretion. Pancreas, 19 (2): 126-32. [PMID:10438158]

25. Katsuno T, Pradhan TK, Ryan RR, Mantey SA, Hou W, Donohue PJ, Akeson MA, Spindel ER, Battey JF, Coy DH, Jensen RT. (1999) Pharmacology and cell biology of the bombesin receptor subtype 4 (BB4-R). Biochemistry, 38: 7307-7320. [PMID:10353842]

26. Knuhtsen S, Holst JJ, Jensen SL, Knigge U, Nielsen OV. (1985) Gastrin-releasing peptide: effect on exocrine secretion and release from isolated perfused porcine pancreas. Am. J. Physiol., 248 (3 Pt 1): G281-6. [PMID:3976887]

27. Knuhtsen S, Holst JJ, Schwartz TW, Jensen SL, Nielsen OV. (1987) The effect of gastrin-releasing peptide on the endocrine pancreas. Regul. Pept., 17 (5): 269-76. [PMID:2885899]

28. Kozyrev N, Lehman MN, Coolen LM. (2012) Activation of gastrin-releasing peptide receptors in the lumbosacral spinal cord is required for ejaculation in male rats. J Sex Med, 9 (5): 1303-18. [PMID:22429708]

29. Ladenheim EE, Hampton LL, Whitney AC, White WO, Battey JF, Moran TH. (2002) Disruptions in feeding and body weight control in gastrin-releasing peptide receptor deficient mice. Journal of Endocrinology, 174: 273-281. [PMID:12176666]

30. Leban JJ, Kull FC Jr, Landavazo A, Stockstill B, McDermed JD. (1993) Development of potent gastrin-releasing peptide antagonists having aD-Pro-psi(CH2NH)-Phe-NH2 C terminus. Proc Natl Acad Sci U S A., 90: 1922-1926. [PMID:8446610]

31. Leyton J, Garcia-Marin LJ, Tapia JA, Jensen RT, Moody TW. (2001) Bombesin and gastrin releasing peptide increase tyrosine phosphorylation of focal adhesion kinase and paxillin in non-small cell lung cancer cells. Cancer Lett., 162 (1): 87-95. [PMID:11121866]

32. Liu X, Carlisle DL, Swick MC, Gaither-Davis A, Grandis JR, Siegfried JM. (2007) Gastrin-releasing peptide activates Akt through the epidermal growth factor receptor pathway and abrogates the effect of gefitinib. Exp. Cell Res., 313 (7): 1361-72. [PMID:17349623]

33. Llinares M, Devin C, Chaloin O, Azay J, Noel-Artis AM, Bernad N, Fehrentz JA, Martinez J. (1999) Syntheses and biological activities of potent bombesin receptor antagonists. J Pept Res., 53: 275-283. [PMID:10231715]

34. Mantey S, Frucht H, Coy DH, Jensen RT. (1993) Characterization of bombesin receptors using a novel, potent, radiolabeled antagonist that distinguishes bombesin receptor subtypes. Mol Pharmacol., 43: 762-774. [PMID:7684815]

35. Mantey SA, Weber HC, Sainz E, Akeson M, Ryan RR, Pradhan TK, Searles RP, Spindel ER, Battey JF, Coy DH, Jensen RT. (1997) Discovery of a high affinity radioligand for the human orphan receptor, bombesin receptor subtype 3, which demonstrates that it has a uniquepharmacology compared with other mammalian bombesin receptors. J Biol Chem., 272: 26062-26071. [PMID:9325344]

36. Martinez V, Taché Y. (2000) Bombesin and the brain-gut axis. Peptides, 21 (11): 1617-25. [PMID:11090915]

37. Medina S, Del Rio M, Ferrández MD, Hernanz A, De la Fuente M. (1998) Changes with age in the modulation of natural killer activity of murine leukocytes by gastrin-releasing peptide, neuropeptide Y and sulfated cholecystokinin octapeptide. Neuropeptides, 32: 549-555. [PMID:9920453]

38. Medina S, Del Rio M, Manuel Victor V, Hernanz A, De la Fuente M. (1998) Changes with ageing in the modulation of murine lymphocyte chemotaxis by CCK-8S, GRP and NPY. Mech Ageing Dev, 102: 249-261. [PMID:9720656]

39. Mihara S, Hara M, Nakamura M, Sakurawi K, Tokura K, Fujimoto M, Fukai T, Nomura T. (1995) Non-peptide bombesin receptor antagonists, kuwanon G and H, isolated frommulberry. Biochem Biophys Res Commun., 213: 594-599. [PMID:7646517]

40. Moreno P, Mantey SA, Nuche-Berenguer B, Reitman ML, Gonzalez N, , Coy DH, Jensen RT. (2013) Comparative Pharmacology of Bombesin Receptor Subtype-3, Nonpeptide Agonist MK-5046, a Universal Peptide Agonist, and Peptide Antagonist Bantag-1 for Human Bombesin Receptors. Pharmacol Exp Therap, 347 (1): 100-116. [PMID:23892571]

41. Nishino H, Tsunoda Y, Owyang C. (1998) Mammalian bombesin receptors are coupled to multiple signal transduction pathways in pancreatic acini. Am J Physiol., 274: G525-G534. [PMID:9530154]

42. Persson K, Pacini G, Sundler F, Ahren B. (2002) Islet function phenotype in gastrin-releasing peptide receptor gene-deficient mice. Endocrinology, 143: 3717-3726. [PMID:12239081]

43. Qu X, Xiao D, Weber HC. (2002) Human gastrin-releasing peptide receptor mediates sustained CREB phosphorylation and transactivation in HuTu 80 duodenal cancer cells. FEBS Lett., 527: 109-113. [PMID:12220644]

44. Radulovic S, Cai RZ, Serfozo P, Groot K, Redding TW, Pinski J, Schally AV. (1991) Biological effects and receptor binding affinities of new pseudononapeptide bombesin/GRP receptor antagonists with N-terminal D-Trp or D-Tpi. Int. J. Pept. Protein Res., 38 (6): 593-600. [PMID:1726427]

45. Rodríguez-Fernández JL, Rozengurt E. (1996) Bombesin, bradykinin, vasopressin, and phorbol esters rapidly and transiently activate Src family tyrosine kinases in Swiss 3T3 cells. Dissociation from tyrosine phosphorylation of p125 focal adhesion kinase. J. Biol. Chem., 271 (44): 27895-901. [PMID:8910389]

46. Rozengurt E. (1998) V. Gastrointestinal peptide signaling through tyrosine phosphorylation of focal adhesion proteins. Am. J. Physiol., 275 (2 Pt 1): G177-82. [PMID:9688642]

47. Ryan R, Katsuno T, Mantey SA, Pradhan TK, Weber HC, Coy DH, Battey JF, Jensen RT. (1999) Comparative pharmacology of the nonpeptide neuromedin B receptor antagonist PD168368. J Pharmacol Exp Ther., 290: 1202-1211. [PMID:10454496]

48. Sakamoto H. (2011) Gastrin-releasing peptide system in the spinal cord mediates masculine sexual function. Anat Sci Int, 86 (1): 19-29. [PMID:21104362]

49. Schofl C, Rossig L, Leitolf H, Mader T, von zur Muhlen A, Brabant G. (1996) Generation of repetitive Ca2+ transients by bombesin requires intracellularrelease and influx of Ca2+ through voltage-dependent and voltage independent channels in single HIT cells. Cell Calcium., 19: 485-493. [PMID:8842515]

50. Schubert ML. (2002) Gastric secretion. Curr. Opin. Gastroenterol., 18 (6): 639-49. [PMID:17033342]

51. Schubert ML, Hightower J, Coy DH, Makhlouf GM. (1991) Regulation of acid secretion by bombesin/GRP neurons of the gastric fundus. Am. J. Physiol., 260 (1 Pt 1): G156-60. [PMID:1987804]

52. Shumyatsky GP, Tsvetkov E, Malleret G, Vronskaya S, Hatton M, Hampton L, Battey JF, Dulac C, Kandel ER, Bolshakov VY. (2002) Identification of a Signaling Network in Lateral Nucleus of Amygdala Important for Inhibiting Memory Specifically Related to Learned Fear. Cell, 111: 905-918. [PMID:12526815]

53. Spindel ER, Giladi E, Brehm P, Goodman RH, Segerson TP. (1990) Cloning and functional characterization of a complementary DNA encoding the murine fibroblast bombesin/gastrin-releasing peptide receptor. Mol. Endocrinol., 4: 1956-1963. [PMID:1707129]

54. Stevens EB, Shah BS, Pinnock RD, Lee K. (1999) Bombesin receptors inhibit G protein-coupled inwardly rectifying K+ channels expressed in Xenopus oocytes through a protein kinase C-dependent pathway. Mol Pharmacol., 55: 1020-1027. [PMID:10347243]

55. Stratford TR, Gibbs J, Smith GP. (1995) Microstructural analysis of licking behavior following peripheral administration of bombesin or gastrin-releasing peptide. Peptides, 16: 903-909. [PMID:7479333]

56. Taché Y. (1982) Bombesin: central nervous system action to increase gastric mucus in rats. Gastroenterology, 83 (1 Pt 1): 75-80. [PMID:7075946]

57. Taché Y, Garrick T, Raybould H. (1990) Central nervous system action of peptides to influence gastrointestinal motor function. Gastroenterology, 98 (2): 517-28. [PMID:2104814]

58. Taché Y, Marki W, Rivier J, Vale W, Brown M. (1981) Central nervous system inhibition of gastric secretion in the rat by gastrin-releasing peptide, a mammalian bombesin. Gastroenterology, 81 (2): 298-302. [PMID:7239137]

59. Taché Y, Pittman Q, Brown M. (1980) Bombesin-induced poikilothermy in rats. Brain Res., 188 (2): 525-30. [PMID:7370772]

60. Tokita K, Katsuno T, Hocart SJ, Coy DH, Llinares M, Martinez J, Jensen RT. (2001) Molecular basis for selectivity of high affinity peptide antagonists for the gastrin-releasing peptide receptor. J Biol Chem., 276: 36652-36663. [PMID:11463790]

61. Tsushima H, Mori M, Fujiwara N, Moriyama A. (2003) Pharmacological characteristics of bombesin receptor mediating hypothermia in the central nervous system of rats. Brain Res., 969: 88-94. [PMID:12676368]

62. Uehara H, González N, Sancho V, Mantey SA, Nuche-Berenguer B, Pradhan T, Coy DH, Jensen RT. (2011) Pharmacology and selectivity of various natural and synthetic bombesin related peptide agonists for human and rat bombesin receptors differs. Peptides, 32 (8): 1685-99. [PMID:21729729]

63. Wada E, Watase K, Yamada K, Ogura H, Yamano M, Inomata Y, Eguchi J, Yamamoto K, Sunday ME, Maeno H, Mikoshiba K, Ohki-Hamazaki H, Wada K. (1997) Generation and Characterization of Mice Lacking Gastrin-Releasing Peptide Receptor. Biochemical and Biophysical Research Communications, 239: 28-33. [PMID:9345264]

64. Wang LH, Coy DH, Taylor JE, Jiang NY, Moreau JP, Huang SC, Frucht H, Haffar BM, Jensen RT. (1990) des-Met carboxyl-terminally modified analogues of bombesin function as potent bombesin receptor antagonists, partial agonists, or agonists. J Biol Chem., 265: 15695-15703. [PMID:1697594]

65. Xiao D, Wang J, Hampton LL, Weber HC. (2001) The human gastrin-releasing peptide receptor gene structure, its tissue expression and promoter. Gene, 264: 95-103. [PMID:11245983]

66. Yamada K, Wada E, Wada K. (2000) Bombesin-like peptides: studies on food intake and social behaviour with receptor knock-out mice. Ann. Med., 32 (8): 519-29. [PMID:11127929]

67. Yamada K, Wada E, Wada K. (2001) Female gastrin-releasing peptide receptor (GRP-R)-deficient mice exhibit altered social preference for male conspecifics: implications for GRP/GRP-R modulation of GABAergic function. Brain Res., 894: 281-287. [PMID:11251202]

68. Zachary I, Gil J, Lehmann W, Sinnett-Smith J, Rozengurt E. (1991) Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells. Proc. Natl. Acad. Sci. U.S.A., 88 (11): 4577-81. [PMID:1647010]

Contributors

Show »

How to cite this page

Jim Battey, Richard V. Benya, Robert T. Jensen.
Bombesin receptors: BB2 receptor. Last modified on 19/02/2018. Accessed on 15/11/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=39.