CT receptor | Calcitonin receptors | IUPHAR/BPS Guide to PHARMACOLOGY

CT receptor

Target id: 43

Nomenclature: CT receptor

Family: Calcitonin receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for CT receptor in GtoImmuPdb

Quaternary Structure: Complexes
AMY1 receptor
AMY2 receptor
AMY3 receptor
Gene and Protein Information
class B G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 490 7q21.3 CALCR calcitonin receptor 28
Mouse 7 515 6 A1 Calcr calcitonin receptor 19,41
Rat 7 516 4q13 Calcr calcitonin receptor
Previous and Unofficial Names
CTRI1- | CTR2 | C1A/C1B | CT-R | calcitonin receptor | CTR
Database Links
Specialist databases
GPCRDB calcr_human (Hs), calcr_mouse (Mm), calcr_rat (Rn)
Other databases
CATH/Gene3D
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands
amylin {Sp: Human} , amylin {Sp: Mouse, Rat}
calcitonin {Sp: Human} , calcitonin {Sp: Mouse, Rat}
α-CGRP {Sp: Human}
β-CGRP {Sp: Human} , β-CGRP {Sp: Mouse}
α-CGRP {Sp: Mouse, Rat}
β-CGRP {Sp: Rat}
Comments: Calcitonin and amylin are the principal endogenous agonists.
Potency order of endogenous ligands (Human)
calcitonin (salmon)calcitonin (CALCA, P01258) ≥ amylin (IAPP, P10997), α-CGRP (CALCA, P06881) > adrenomedullin (ADM, P35318), adrenomedullin 2/intermedin (ADM2, Q7Z4H4)

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Reference
calcitonin {Sp: Human} Hs Full agonist 9.0 – 11.2 pEC50 1-2,16,22-23,25
pEC50 9.0 – 11.2 [1-2,16,22-23,25]
calcitonin (salmon) Hs Full agonist 7.6 – 11.1 pEC50 1,8,15,29
pEC50 7.6 – 11.1 [1,8,15,29]
amylin {Sp: Human} Hs Full agonist 8.0 – 9.2 pEC50 14,25,42
pEC50 8.0 – 9.2 [14,25,42]
pramlintide Hs Agonist 8.3 pEC50 14
pEC50 8.3 (EC50 5.495x10-9 M) [14]
Description: Measuring ligand-induced cAMP in COS and KEK293 cells.
amylin {Sp: Mouse, Rat} Hs Full agonist 7.0 – 9.5 pEC50 2,16,42
pEC50 7.0 – 9.5 [2,16,42]
α-CGRP {Sp: Human} Hs Full agonist 6.2 – 8.4 pEC50 16,21,23,42
pEC50 6.2 – 8.4 [16,21,23,42]
β-CGRP {Sp: Human} Hs Full agonist 7.2 pEC50 16
pEC50 7.2 [16]
adrenomedullin {Sp: Human} Hs Full agonist 6.7 – 7.7 pEC50 16,22
pEC50 6.7 – 7.7 [16,22]
adrenomedullin 2/intermedin {Sp: Human} Hs Full agonist 6.5 pEC50 16
pEC50 6.5 [16]
Agonist Comments
Small molecule agonists of the calcitonin receptor have also been reported, which act via the juxtamembrane region of the receptor [11].

This receptor interacts with RAMPs to form several subtypes of high affinity amylin receptor [30] (see receptor comments below) which also have significant affinity for CGRP [36]. The variability in potency values reported is likely to reflect cell background such as the presence of endogenous RAMPs. It is difficult to ascertain the contribution of such factors to the reported values.

Human amylin is rarely used because of its propensity to aggregate.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
CT-(8-32) (salmon) Hs Antagonist 9.0 pKd 18
pKd 9.0 [18]
CT-(8-32) (salmon) Hs Antagonist 8.2 pKi 16
pKi 8.2 [16]
AC187 Hs Antagonist 7.2 pKi 16
pKi 7.2 [16]
Primary Transduction Mechanisms
Transducer Effector/Response
Gs family Adenylate cyclase stimulation
Comments:  The insert positive human calcitonin receptor (hCT(b)) has altered signalling capacity. Inhibition of bone resorption by CT has been shown to be PKA dependent.
References:  12,16,29
Secondary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Comments:  The insert positive human calcitonin receptor (hCT(b)) has altered signalling capacity. CT appears to stimulate this pathway in pituitary folliculo-stellate cells and hepatocytes.
References:  12,20,27,39
Tissue Distribution
Brain: lateral and medial preoptic area, dorso-medial aspect of the suprachiasmic nucleus, paraventricular nucleus of the hypothalamus, arcuate nucleus, nucleus accumbens, medial nucleus of the amygdala, locus coeruleus > raphe nucleus, olfactory bulb >> pituitary gland.
Species:  Rat
Technique:  in situ hybridisation.
References:  34
Brain: Most abundant in the nucleus accumbens, lateral arcuate nucleus, lateral substantia nigra, bed nucleus of the stria terminalis, locus coeruleus, area postrema, nucleus of the solitary tract, and some of the nuclei of the reticular formation.
Species:  Rat
Technique:  Immunohistochemistry.
References:  3
Testes.
Species:  Rat
Technique:  Radioligand binding.
References:  5-6
Stomach, duodenum, jejunum, kidney, bone.
Species:  Rat
Technique:  Radioligand binding.
References:  37
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of cAMP levels in COS-7 cells transfected with the CT receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  cAMP accumulation.
References:  16,29
Physiological Functions
Calcitonin is a potent inhibitor of bone resorption acting directly on osteoclasts.
Species:  Mouse
Tissue:  Bone.
References:  13
Calcitonin inhibits food intake when injected into hypothalamic areas known to be rich in calcitonin receptors.
Species:  Human
Tissue:  In vivo.
References:  4
Protection against hypercalcaemia.
Species:  None
Tissue:  in vivo.
References:  12
Physiological Consequences of Altering Gene Expression
Global deletion of exons 6 and 7 of calcr results in embryonic death prior to initiation of skeletogenesis. calcr+/-mice have a high bone mass phenotype due to increased bone formation.
Species:  Mouse
Tissue: 
Technique:  Knockout
References:  9
A global calcr-deletion model using the Cre-loxP system in which >94% of calcr is deleted displayed mildly increased bone formation under normal conditions. When challenged, however, in calcitriol (1,25(OH)2D3)-induced hypercalcaemia, serum total calcium was greatly increased in the mutant mice, consistent with a regulatory role for calcitonin on bone primarily under conditions of calcium stress.
Species:  Mouse
Tissue: 
Technique:  Knockout
References:  10
Maintenance of muscle stem cells in a quiescent state.
Species:  Mouse
Tissue:  Muscle
Technique:  knockout
References:  40
Protection of the maternal skeleton during lactation by inhibition of osteocytes.
Species:  Mouse
Tissue:  Osteocytes
Technique:  knockout
References:  7
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Calcrtm1Rda|Tg(CMV-cre)1Cgn Calcrtm1Rda/Calcrtm1Rda,Tg(CMV-cre)1Cgn/0
B6.Cg-Calcr Tg(CMV-cre)1Cgn
MGI:101950  MGI:2176179  MP:0008271 abnormal bone ossification PMID: 18627265 
Calcrtm1Rda|Tg(CMV-cre)1Cgn Calcrtm1Rda/Calcrtm1Rda,Tg(CMV-cre)1Cgn/0
B6.Cg-Calcr Tg(CMV-cre)1Cgn
MGI:101950  MGI:2176179  MP:0000130 abnormal cancellous bone morphology PMID: 18627265 
Calcrtm1Rda|Tg(CMV-cre)1Cgn Calcrtm1Rda/Calcrtm1Rda,Tg(CMV-cre)1Cgn/0
B6.Cg-Calcr Tg(CMV-cre)1Cgn
MGI:101950  MGI:2176179  MP:0009345 abnormal cancellous bone thickness PMID: 18627265 
Calcrtm1Rda|Tg(CMV-cre)1Cgn Calcrtm1Rda/Calcrtm1Rda,Tg(CMV-cre)1Cgn/0
B6.Cg-Calcr Tg(CMV-cre)1Cgn
MGI:101950  MGI:2176179  MP:0001562 abnormal circulating calcium level PMID: 18627265 
Calcrtm1Rda|Tg(CMV-cre)1Cgn Calcrtm1Rda/Calcrtm1Rda,Tg(CMV-cre)1Cgn/0
B6.Cg-Calcr Tg(CMV-cre)1Cgn
MGI:101950  MGI:2176179  MP:0005418 abnormal circulating hormone level PMID: 18627265 
Calcrtm1Rda|Tg(CMV-cre)1Cgn Calcrtm1Rda/Calcrtm1Rda,Tg(CMV-cre)1Cgn/0
B6.Cg-Calcr Tg(CMV-cre)1Cgn
MGI:101950  MGI:2176179  MP:0001541 abnormal osteoclast physiology PMID: 18627265 
Calcr+|Calcrtm1Dgal Calcrtm1Dgal/Calcr+
Not Specified
MGI:101950  MP:0000057 abnormal osteogenesis PMID: 14970190 
Calcr+|Calcrtm1Dgal|Iapp+|Iapptm1Sgm Calcrtm1Dgal/Calcr+,Iapptm1Sgm/Iapp+
involves: 129P2/OlaHsd
MGI:101950  MGI:96382  MP:0000057 abnormal osteogenesis PMID: 14970190 
Calcrtm1Dgal Calcrtm1Dgal/Calcrtm1Dgal
Not Specified
MGI:101950  MP:0006207 embryonic lethality during organogenesis PMID: 12236227 
Calcr+|Calcrtm1Dgal Calcrtm1Dgal/Calcr+
Not Specified
MGI:101950  MP:0005605 increased bone mass PMID: 14970190 
Calcr+|Calcrtm1Dgal|Iapp+|Iapptm1Sgm Calcrtm1Dgal/Calcr+,Iapptm1Sgm/Iapp+
involves: 129P2/OlaHsd
MGI:101950  MGI:96382  MP:0005605 increased bone mass PMID: 14970190 
Calcr+|Calcrtm1Dgal Calcrtm1Dgal/Calcr+
Not Specified
MGI:101950  MP:0010120 increased bone mineral density PMID: 14970190 
Calcr+|Calcrtm1Dgal|Iapp+|Iapptm1Sgm Calcrtm1Dgal/Calcr+,Iapptm1Sgm/Iapp+
involves: 129P2/OlaHsd
MGI:101950  MGI:96382  MP:0004984 increased osteoclast cell number PMID: 14970190 
Calcrtm1Dgen Calcrtm1Dgen/Calcrtm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:101950  MP:0002169 no abnormal phenotype detected
Calcrtm1Rda|Tg(Acp5-cre)4Rda Calcrtm1Rda/Calcrtm1Rda,Tg(Acp5-cre)4Rda/0
B6.Cg-Calcr Tg(Acp5-cre)4Rda
MGI:101950  MGI:3053806  MP:0002080 prenatal lethality PMID: 18627265 
Calcrtm1Rda|Tg(CMV-cre)1Cgn Calcrtm1Rda/Calcrtm1Rda,Tg(CMV-cre)1Cgn/0
B6.Cg-Calcr Tg(CMV-cre)1Cgn
MGI:101950  MGI:2176179  MP:0003109 short femur PMID: 18627265 
Biologically Significant Variants
Type:  Splice variant
Species:  Human
Description:  The human CT(b) (formerly CTR1 or CTRI1+) receptor is of identical sequence to the human CT(a) receptor but contains a 16 amino acid insert in the first intracellular loop. The binding properties of this receptor are similar to the human CT(a) receptor but it is poorly internalised and has altered G-protein coupling. The interaction of this receptor with RAMPs may also be subtly different. Although generally less abundant than the human CT(a) receptor, this splice variant is significantly expressed in the ovary, placenta, bone marrow and lung.
References:  15,36
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A naturally occurring variant of the human calcitonin receptor is a T to C base mutation which encodes a leucine447 to proline change. No effect on ligand binding or receptor function has been observed in vitro but the polymorphism is associated with decreased fracture risk in post-menopausal women. The prevalence of the polymorphism differs between ethnic groups.
References:  24,26,35,38
Type:  Splice variant
Species:  Rat
Description:  Rat CT(ECL1+) (First extracellular loop insert). Rat calcitonin receptor that contains a 37 amino acid insert in the first extracellular loop. The insert negative form of the receptor is known as rat CT(a). Similar receptors are found in mouse. The insert reduces affinity for some calcitonin peptides.
References:  33,36
Type:  Splice variant
Species:  Human
Description:  Variant of the human calcitonin receptor which lacks 47 amino acids at the N-terminus, including a potential glycosylation site and the predicted signal sequence. This has reduced affinity for most peptides apart from sCT. However, when combined with RAMP1 or RAMP3, the affinity for CGRP is either maintained (RAMP3) or increased (RAMP1), changing the selectivity of the resulting receptors.
References:  1,32
General Comments
The CT receptor binds to receptor activity modifying proteins (RAMPs) to form high affinity amylin receptors[36], reviewed in [17,30].
CT and RAMP1 make up the AMY1 receptor.
CT and RAMP2 make up the AMY2 receptor.
CT and RAMP3 make up the AMY3 receptor.

As [125I]-calcitonin (salmon) binds with high affinity to calcitonin and amylin receptors, data using this radioligand should be treated with caution.

The presence of CT receptor mRNA does not explain the phenotype of the receptor that is expressed. The expression of RAMP accessory proteins must also be considered.

Calcitonin receptor splice variants may be differentially expressed [12,31].

References

Show »

1. Albrandt K, Brady EM, Moore CX, Mull E, Sierzega ME, Beaumont K. (1995) Molecular cloning and functional expression of a third isoform of the human calcitonin receptor and partial characterization of the calcitonin receptor gene. Endocrinology., 136: 5377-5384. [PMID:7588285]

2. Armour SL, Foord S, Kenakin T, Chen WJ. (1999) Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor. J Pharmacol Toxicol Methods., 42: 217-224. [PMID:11033437]

3. Becskei C, Riediger T, Zund D, Wookey P, Lutz TA. (2004) Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res, 1030: 221-233. [PMID:15571671]

4. Chait A, Suaudeau C, De Beaurepaire R. (1995) Extensive brain mapping of calcitonin-induced anorexia. Brain Res Bull, 36: 467-472. [PMID:7712209]

5. Chausmer A, Stuart C, Stevens M. (1980) Identification of testicular cell plasma membrane receptors for calcitonin. J Lab Clin Med, 96: 933-938. [PMID:6252270]

6. Chausmer AB, Stevens MD, Severn C. (1982) Autoradiographic evidence for a calcitonin receptor on testicular Leydig cells. Science, 216: 735-736. [PMID:6281881]

7. Clarke MV, Russell PK, Findlay DM, Sastra S, Anderson PH, Skinner JP, Atkins GJ, Zajac JD, Davey RA. (2015) A Role for the Calcitonin Receptor to Limit Bone Loss During Lactation in Female Mice by Inhibiting Osteocytic Osteolysis. Endocrinology, 156 (9): 3203-14. [PMID:26135836]

8. Cohen DP, Nussenzveig DR, Gershengorn MC. (1996) Iodocalcitonin binds to human calcitonin receptors with higher affinity than calcitonin. Endocrinology., 137: 4507-4510. [PMID:8828514]

9. Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre-Medhin S, Galson DL, Zajac JD, Karsenty G. (2004) Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol, 164: 509-514. [PMID:14970190]

10. Davey RA, Turner A, McManus JF, Chiu WS, Tjahyono F, Moore AJ, Atkins GJ, Anderson PH, Ma C, Glatt V, Maclean HE, Vincent C, Bouxsein M, Morris HA, Findlay DM, Zajac JD. (2008) The Calcitonin Receptor Plays a Physiological Role to Protect Against Hypercalcemia in Mice. J Bone Miner Res, 8: 1182-1193. [PMID:18627265]

11. Dong M, Cox RF, Miller LJ. (2009) Juxtamembranous region of the amino terminus of the family B G protein-coupled calcitonin receptor plays a critical role in small-molecule agonist action. J. Biol. Chem., 284 (33): 21839-47. [PMID:19447889]

12. Felsenfeld AJ, Levine BS. (2015) Calcitonin, the forgotten hormone: does it deserve to be forgotten?. Clin Kidney J, 8 (2): 180-7. [PMID:25815174]

13. Galvin RJ, Bryan P, Venugopalan M, Smith DP, Thomas JE. (1998) Calcitonin responsiveness and receptor expression in porcine and murine osteoclasts: a comparative study. Bone, 23: 233-240. [PMID:9737345]

14. Gingell JJ, Burns ER, Hay DL. (2014) Activity of pramlintide, rat and human amylin but not Aβ1-42 at human amylin receptors. Endocrinology, 155 (1): 21-6. [PMID:24169554]

15. Gorn AH, Rudolph SM, Flannery MR, Morton CC, Weremowicz S, Wang TZ, Krane SM, Goldring SR. (1995) Expression of two human skeletal calcitonin receptor isoforms cloned from a giant cell tumor of bone. The first intracellular domain modulates ligand binding and signal transduction. J Clin Invest., 95: 2680-2691. [PMID:7769107]

16. Hay DL, Christopoulos G, Christopoulos A, Poyner DR, Sexton PM. (2005) Pharmacological discrimination of calcitonin receptor: receptor activity-modifying protein complexes. Mol Pharmacol., 67: 1655-1665. [PMID:15692146]

17. Hay DL, Poyner DR, Sexton PM. (2006) GPCR modulation by RAMPs. Pharmacol Ther, 109: 173-197. [PMID:16111761]

18. Hilton JM, Dowton M, Houssami S, Sexton PM. (2000) Identification of key components in the irreversibility of salmon calcitonin binding to calcitonin receptors. J Endocrinol., 166: 213-226. [PMID:10856900]

19. Hoshiya H, Meguro M, Kashiwagi A, Okita C, Oshimura M. (2003) Calcr, a brain-specific imprinted mouse calcitonin receptor gene in the imprinted cluster of the proximal region of chromosome 6. J Hum Genet., 48: 208-211. [PMID:12730726]

20. Kiriyama Y, Tsuchiya H, Murakami T, Satoh K, Tokumitsu Y. (2001) Calcitonin induces IL-6 production via both PKA and PKC pathways in the pituitary folliculo-stellate cell line. Endocrinology., 142: 3563-3569. [PMID:11459804]

21. Kuwasako K, Cao YN, Nagoshi Y, Tsuruda T, Kitamura K, Eto T. (2004) Characterization of the human calcitonin gene-related peptide receptor subtypes associated with receptor activity-modifying proteins. Mol Pharmacol., 65: 207-213. [PMID:14722252]

22. Kuwasako K, Kitamura K, Nagoshi Y, Eto T. (2003) Novel calcitonin-(8-32)-sensitive adrenomedullin receptors derived from co-expression of calcitonin receptor with receptor activity-modifying proteins. Biochem Biophys Res Commun., 301: 460-464. [PMID:12565884]

23. Leuthauser K, Gujer R, Aldecoa A, McKinney RA, Muff R, Fischer JA, Born W. (2000) Receptor-activity-modifying protein 1 forms heterodimers with two G-protein-coupled receptors to define ligand recognition. Biochem J., 351: 347-351. [PMID:11023820]

24. Masi L, Becherini L, Gennari L, Colli E, Mansani R, Falchetti A, Cepollaro C, Gonnelli S, Tanini A, Brandi ML. (1998) Allelic variants of human calcitonin receptor: distribution and association with bone mass in postmenopausal Italian women. Biochem Biophys Res Commun., 245: 622-626. [PMID:9571205]

25. Muff R, Buhlmann N, Fischer JA, Born W. (1999) An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3. Endocrinology., 140: 2924-2927. [PMID:10342886]

26. Nakamura M, Zhang ZQ, Shan L, Hisa T, Sasaki M, Tsukino R, Yokoi T, Kaname A, Kakudo K. (1997) Allelic variants of human calcitonin receptor in the Japanese population. Hum Genet., 99: 38-41. [PMID:9003491]

27. Offermanns S, Iida-Klein A, Segre GV, Simon MI. (1996) G alpha q family members couple parathyroid hormone (PTH)/PTH-related peptide and calcitonin receptors to phospholipase C in COS-7 cells. Mol Endocrinol., 10: 566-574. [PMID:8732687]

28. Perez Jurado LA, Li X, Francke U. (1995) The human calcitonin receptor gene (CALCR) at 7q21.3 is outside the deletion associated with the Williams syndrome. Cytogenet Cell Genet., 70: 246-249. [PMID:7789182]

29. Pham V, Wade JD, Purdue BW, Sexton PM. (2004) Spatial proximity between a photolabile residue in position 19 of salmon calcitonin and the amino terminus of the human calcitonin receptor. J Biol Chem., 279: 6720-6729. [PMID:14623894]

30. Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, Muff R, Fischer JA, Foord SM. (2002) International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev., 54: 233-246. [PMID:12037140]

31. Purdue BW, Tilakaratne N, Sexton PM. (2002) Molecular pharmacology of the calcitonin receptor. Receptors Channels., 8: 243-255. [PMID:12529940]

32. Qi T, Dong M, Watkins HA, Wootten D, Miller LJ, Hay DL. (2013) Receptor activity-modifying protein-dependent impairment of calcitonin receptor splice variant Δ(1-47)hCT((a)) function. Br. J. Pharmacol., 168 (3): 644-57. [PMID:22946511]

33. Sexton PM, Houssami S, Hilton JM, O'Keeffe LM, Center RJ, Gillespie MT, Darcy P, Findlay DM. (1993) Identification of brain isoforms of the rat calcitonin receptor. Mol Endocrinol., 7: 815-821. [PMID:8395656]

34. Sheward WJ, Lutz EM, Harmar AJ. (1994) The expression of the calcitonin receptor gene in the brain and pituitary gland of the rat. Neurosci Lett, 181: 31-34. [PMID:7898764]

35. Taboulet J, Frenkian M, Frendo JL, Feingold N, Jullienne A, de Vernejoul MC. (1998) Calcitonin receptor polymorphism is associated with a decreased fracture risk in post-menopausal women. Hum Mol Genet., 7: 2129-2133. [PMID:9817931]

36. Tilakaratne N, Christopoulos G, Zumpe ET, Foord SM, Sexton PM. (2000) Amylin receptor phenotypes derived from human calcitonin receptor/RAMP coexpression exhibit pharmacological differences dependent on receptor isoform and host cell environment. J Pharmacol Exp Ther., 294: 61-72. [PMID:10871296]

37. Warshawsky H, Goltzman D, Rouleau MF, Bergeron JJ. (1980) Direct in vivo demonstration by radioautography of specific binding sites for calcitonin in skeletal and renal tissues of the rat. J Cell Biol, 85: 682-694. [PMID:7391137]

38. Wolfe LA 3rd, Fling ME, Xue Z, Armour S, Kerner SA, Way J, Rimele T, Cox RF. (2003) In vitro characterization of a human calcitonin receptor gene polymorphism. Mutat Res., 522: 93-105. [PMID:12517415]

39. Yamaguchi M. (1991) Stimulatory effect of calcitonin on Ca2+ inflow in isolated rat hepatocytes. Mol Cell Endocrinol., 75: 65-70. [PMID:1646739]

40. Yamaguchi M, Watanabe Y, Ohtani T, Uezumi A, Mikami N, Nakamura M, Sato T, Ikawa M, Hoshino M, Tsuchida K et al.. (2015) Calcitonin Receptor Signaling Inhibits Muscle Stem Cells from Escaping the Quiescent State and the Niche. Cell Rep, 13 (2): 302-14. [PMID:26440893]

41. Yamin M, Gorn AH, Flannery MR, Jenkins NA, Gilbert DJ, Copeland NG, Tapp DR, Krane SM, Goldring SR. (1994) Cloning and characterization of a mouse brain calcitonin receptor complementary deoxyribonucleic acid and mapping of the calcitonin receptor gene. Endocrinology., 135: 2635-2643. [PMID:7988453]

42. Zimmermann U, Fluehmann B, Born W, Fischer JA, Muff R. (1997) Coexistence of novel amylin-binding sites with calcitonin receptors in human breast carcinoma MCF-7 cells. J Endocrinol., 155: 423-431. [PMID:9487987]

Contributors

Show »

How to cite this page

Debbie Hay, David R. Poyner.
Calcitonin receptors: CT receptor. Last modified on 19/02/2018. Accessed on 15/11/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=43.