Top ▲

Kv1.3

Click here for help

Immunopharmacology Ligand target has curated data in GtoImmuPdb

Target id: 540

Nomenclature: Kv1.3

Family: Voltage-gated potassium channels (Kv)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 0 575 1p13.3 KCNA3 potassium voltage-gated channel subfamily A member 3 3,22,27
Mouse 6 0 528 3 46.59 cM Kcna3 potassium voltage-gated channel, shaker-related subfamily, member 3 11
Rat 6 0 525 2q34 Kcna3 potassium voltage-gated channel subfamily A member 3 17,68
Previous and Unofficial Names Click here for help
HGK5 | HLK3 | hPCN3 | MBK3 | MK3 | RCK3 | potassium voltage-gated channel subfamily A member 3 | RGK5 | potassium channel, voltage gated shaker related subfamily A, member 3 | potassium voltage-gated channel
Database Links Click here for help
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
Kv1.1 14,37
Kv1.2 14,37
Kv1.4 14,37
Kv1.5 75
Kv1.6 37
Auxiliary Subunits
Name References
Kvβ2 7,50
Other Associated Proteins
Name References
SAP97 7,31
β1 integrin 7,41
ZIP 7
MMP23 59
Functional Characteristics Click here for help
KV
Ion Selectivity and Conductance Click here for help
Species:  Human
Rank order:  K+ [18.0 - 9.0 (median: 13.0) pS] > Rb+ [10.0 pS] > NH4+ [1.3 pS] > Cs+ [0.26 pS]
References:  9
Species:  Human
Macroscopic current rectification:  Delayed Rectifier K+ current
References:  9
Voltage Dependence Click here for help
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -33.0 2.6 7 T cells Rat
Inactivation  - -
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -14.1 - 17 T cells Rat
Inactivation  -33.0 612.0 17
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -30.0 - 27-28 Xenopus laevis oocyte Mouse
Inactivation  - 55.0 – 250.0 27
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -25.0 - 67 L929 Rat
Inactivation  -44.0 - 67

Download all structure-activity data for this target as a CSV file go icon to follow link

Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
Vm24 Peptide Primary target of this compound Immunopharmacology Ligand Hs - 11.5 – 12.3 pKd - - 29
pKd 12.3 (Kd 5x10-13 M) [29]
Description: Measured in a patch clamp assay using synthetically produced peptide.
pKd 11.5 (Kd 2.9x10-12 M) [29]
Description: Measured in a patch clamp assay using endogenous peptide.
noxiustoxin Peptide Click here for species-specific activity table Mm - 9.0 pKd - - 28
pKd 9.0 (Kd 1x10-9 M) [28]
charybdotoxin Peptide Click here for species-specific activity table Hs - 7.5 – 9.7 pKd - - 3,26,61
pKd 7.5 – 9.7 [3,26,61]
charybdotoxin Peptide Click here for species-specific activity table Rn - 8.6 pKd - - 28
pKd 8.6 [28]
correolide Small molecule or natural product Hs Pore blocker 8.0 pKd - - 20
pKd 8.0 [20]
tetraethylammonium Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm - 2.0 pKd - - 28
pKd 2.0 (Kd 1x10-2 M) [28]
5-(4-phenoxybutoxy)psoralen Small molecule or natural product Mm - 8.7 pEC50 - - 64
pEC50 8.7 [64]
OSK1-K16-D20 Peptide Mm - 11.5 pIC50 - - 53
pIC50 11.5 [53]
ShK Toxin Peptide Click here for species-specific activity table Rn - 9.9 – 12.0 pIC50 - - 35,52,57
pIC50 9.9 – 12.0 [35,52,57]
HsTX1[R14A] Peptide Primary target of this compound Immunopharmacology Ligand Hs - 10.6 pIC50 - - 70
pIC50 10.6 (IC50 2.7x10-11 M) [70]
ShK(L5) Peptide Rn - 10.2 – 10.9 pIC50 - - 5
pIC50 10.2 – 10.9 [5]
margatoxin Peptide Click here for species-specific activity table Hs - 10.0 – 10.3 pIC50 - - 24,26
pIC50 10.0 – 10.3 (IC50 1x10-10 – 5x10-11 M) [24,26]
kaliotoxin Peptide Rn - 9.2 pIC50 - - 28
pIC50 9.2 [28]
correolide Small molecule or natural product Hs - 7.1 pIC50 - - 20
pIC50 7.1 (IC50 8.6x10-8 M) [20]
maurotoxin Peptide N/A - 6.8 pIC50 - - 60
pIC50 6.8 [60]
psora-4 Small molecule or natural product Immunopharmacology Ligand Hs - 6.1 pIC50 - - 30
pIC50 6.1 (IC50 7.24x10-7 M) [30]
Description: Inhibition of human Kv1.3 expressed in CGE22 cells measured by patch clamp assay.
WP1066 Small molecule or natural product Click here for species-specific activity table Hs - 5.5 pIC50 - - 43
pIC50 5.5 (IC50 3.2x10-6 M) [43]
View species-specific channel blocker tables
Channel Blocker Comments
No differences in activity of blockers reported between mouse, rat and human Kv1.3.

Kv1.3 is blocked by a large number of other scorpion and sea anemone toxins including HsTX1 (12 ρM), OSK1 (14 ρM), Pi2 (50 ρM), ShK-Dap22 (23 - 110 ρM), agiotoxin-2 (200 ρM), and BgK (39 nM)- data in brackets are IC50 values. This is in addition to the classical K+ channel blockers such as 4-AP (195 μM), TEA (10 mM) and the small molecules Psora-4 (3 nM), PAC (149 nM), UK-78282 (200 nM), and verapamil (6 μM). For extensive reviews of these and other blockers, see [12].

PEG-HsTX1[R14A] blocks Kv1.3 with an IC50 of 36 nM which is a 1300-fold loss in affinity compared to the non-PEGylated peptide [70].
Immunopharmacology Comments
Kv1.3 is involved in T cell proliferation, activation and cytokine secretion, most significantly in effector memory T lymphocytes (TEM cells) compared to naive and central memory T cells. TEM cells are major drivers of inflammation in a number of autoimmune diseases, including multiple sclerosis and rheumatoid arthritis, so pharmacological manipulation of Kv1.3 activity may be of clinical utility in immunomodulation [1,7,12,26].
Cell Type Associations
Immuno Cell Type:  Macrophages & monocytes
Cell Ontology Term:   macrophage (CL:0000235)
Comment:  Kv1.3 plays a role in macrophage function vis-a-vis proliferation and iNOS expression.
References:  21,72
Immuno Cell Type:  Dendritic cells
Cell Ontology Term:   dendritic cell (CL:0000451)
Comment:  Kv1.3 plays a role in DC function vis-a-vis expression of costimulatory molecules and cytokines, and chemotaxis.
References:  21,72
Immuno Cell Type:  T cells
Comment:  Kv1.3 blockade causes inhibition of T cell proliferation and cytokine secretion, particularly in CCR7-effector memory T cells.
References:  21,72
Tissue Distribution Click here for help
T- and B- lymphocytes, alveolar macrophages, monocyte derived macrophages, prostate epithelium, platelets, cerebral cortical grey matter
Species:  Human
Technique:  Immunohistochemistry, RT-PCR, Electrophysiology, RNA : GNF / SymAtlas
References:  7,14-15,45,47-48,54,77
Olfactory bulb, peritoneal and bone marrow derived macrophages, osteoclasts
Species:  Mouse
Technique:  Northern Blot, Immunohistochemistry, Electrophysiology
References:  2,19,74,79
Brain synaptic membranes, olfactory bulb, hippocampal microglia, cultured microglia, osteoclasts, cultured oligodendrocyte progenitor cells, platelets, choroid plexus, testis
Species:  Rat
Technique:  Immunohistochemistry, Northern Blot, RT-PCR, Electrophysiology
References:  2,13,18,23,33-34,36,40,48,65
Tissue Distribution Comments
Two mouse knock-out studies report effects on adipocytes [44,78].
Functional Assays Click here for help
Kv1.3 clone expressed in L929 cells
Species:  Mouse
Tissue:  L929 cells
Response measured:  K+ current by patch clamp
References:  5,28,53,64
Kv1.3 clone expression
Species:  Human
Tissue:  CHO or HEK293 cells
Response measured:  K+ current by patch clamp
References:  33,52
Patch clamp of T-lymphocytes
Species:  Rat
Tissue:  Isolated T-cells
Response measured:  K+ current by patch clamp
References:  6
Patch clamp of T-lymphocytes
Species:  Human
Tissue:  Isolated T-cells
Response measured:  K+ current by patch clamp
References:  3,7,9,15,22,41,76
Kv1.3 clone expression
Species:  Rat
Tissue:  Xenopus laevis Oocytes
Response measured:  K+ current by patch clamp
References:  17,35,68
125I-charybdotoxin or 125I-HgTX1 (A19Y / Y37F) binding assay
Species:  Human
Tissue:  T-lymphocytes
Response measured:  Displacement of 125I-charybdotoxin or 125I-HgTX1 (A19Y / Y37F)
References:  51,55,62
[3H] Dihydrocorreolide or [(3H)]-trans-NPCO-DSC binding assay in HEK293 cells expressing Kv1.3
Species:  Rat
Tissue:  HEK293 cells
Response measured:  Binding or Displacement
References:  32,63
86 Rb+ flux in CHO cells expressing Kv1.3 / T-lymphocytes
Species:  Human
Tissue:  CHO cells / T-lymphocytes
Response measured:  Rb+ efflux following depolarisation with high K+
References:  33
Patch clamp of T-lymphocytes
Species:  Mouse
Tissue:  Isolated T-cells
Response measured:  K+ current by patch clamp
References:  42,46,65
Physiological Functions Click here for help
Homomeric Kv1.3 channels in the olfactory bulb neurons carry 60 - 80% of the Kv current in these cells which shows an involvement in signal transduction. Kv1.3 -/- mice have a "Super Smeller" phenotype with a lower threshold for smell detection.
Species:  Mouse
Tissue:  Olfactory neurons, olfactory cortex
References:  8,19
Kv1.3 is involved in rat oligodendrocyte progenitor proliferation and G1/S phase progression.
Species:  Rat
Tissue:  Oligodendrocyte progenitor cells
References:  2,13
Kv1.3 is involved in proliferation, oxidative burst and microglia mediated neuronal killing
Species:  Rat
Tissue:  Cultured rat microglia
References:  23,36,40
Kv1.3 is involved in T-lymphocyte volume regulation and possibly apoptosis.
Species:  Human
Tissue:  Jurkat T-lymphocytes
References:  66,69
Kv1.3 is involved in T-lymphocyte volume regulation and possibly apoptosis.
Species:  Mouse
Tissue:  T-lymphocytes (CTLL-2)
References:  16
Kv1.3 is a voltage gated potassium channel in human T-lymphocytes, and regulates membrane potential and calcium signalling. Kv1.3 blockade results in inhibition of T-cell proliferation and cytokine secretion. It is more important in CCR7-effector memory T-cells than in naive and central memory T-cells.
Species:  Human
Tissue:  T-lymphocytes
References:  7,10,12,15,26,49,76
Kv1.3 is involved in the translocation of the glucose transporter, GLUT4, to the plasma membrane in adipocytes (based on biophysical properties of current, probably heteromultimer of various Kv1 channels and not a homomultimer of Kv1.3). This suggests that it is important in insulin sensitivity.
Species:  Mouse
Tissue:  Mouse adipocytes
References:  8,44,78
In macrophages, Kv1.3 is probably found as a heteromultimer with Kv1.5.
Kv1.3 blockers suppress proliferation of mouse bone marrow derived macrophages.
Species:  Mouse
Tissue:  Macrophages
References:  74-75
Kv1.3 homomeric channels are found in calyx of Held nerve terminals
Species:  Mouse
Tissue:  MNTB neurons
References:  25
Kv1.3 homomeric channels are found in calyx of Held nerve terminals
Species:  Mouse
Tissue:  MNTB neurons
References:  25
Physiological Functions Comments
Studies have also been carried out in macaque monkeys [58] and swine [39].
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0002078 abnormal glucose homeostasis PMID: 14981264 
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0004130 abnormal muscle cell glucose uptake PMID: 12588802 
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0001262 decreased body weight PMID: 12588802 
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0002727 decreased circulating insulin level PMID: 14981264 
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0008965 increased basal metabolism PMID: 12588802 
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0002891 increased insulin sensitivity PMID: 14981264 
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0005659 increased resistance to diet-induced obesity PMID: 12588802 
Kcna3tm1Lys Kcna3tm1Lys/Kcna3tm1Lys
involves: 129/Sv * C57BL/6
MGI:96660  MP:0002169 no abnormal phenotype detected PMID: 12878608 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Autoimmune disease
Synonyms: hypersensitivity reaction disease [Disease Ontology: DOID:0060056]
Disease Ontology: DOID:0060056
OMIM: 109100, 126200, 177900, 222100, 604302
Role: 
Drugs: 
Side effects:  Inhibition of effector memory T-cells could potentially lead to reactivation of viral infections such as CMV.
Therapeutic use:  ShK derivative and PAP-1 are in clinical development
Comments: 
References:  4,6-7,39,73,76
Gene Expression and Pathophysiology Click here for help
Kv1.3 expression is increased in activated effector memory T-cells and class-switched CD27+ memory B-cells. Naive and memory T-cells and IgD+ B-cells in contrast, up-regulate KCa3.1 following activation.
Tissue or cell type:  T-Lymphocytes
Pathophysiology:  Up-regulation of Kv1.3 has no real pathophysiological effect, but allows to selectively target effector memory T-cells.
Species:  Human
Technique: 
References:  7,76-77
SNPs associated with autoimmune pancreatitis
Tissue or cell type:  T-Lymphocytes
Pathophysiology:  Susceptibility to autoimmune pancreatitis
Species:  Human
Technique: 
References:  56
Gene Expression and Pathophysiology Comments
Kv1.3 -/- mouse has no immune phenotype [38].
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  SNP associated with impaired glucose tolerance and lower insulin sensitivity.
Nucleotide change:  1645T>C
Amino acids:  1
SNP accession: 
References:  71
Biologically Significant Variant Comments
A total of 99 SNPs have been identified in human KCNA3. For more information see the entry on GeneCards.
General Comments
Kv1.3 can coassemble with other members of the Kv1 family, in heteromultimers. It cannot, however, co-assemble with members of other Kv families.
Like other members of the family, it has an intronless coding region.

References

Show »

1. A-González N, Castrillo A. (2011) Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Biophys Acta, 1812 (8): 982-94. [PMID:21193033]

2. Arkett SA, Dixon J, Yang JN, Sakai DD, Minkin C, Sims SM. (1994) Mammalian osteoclasts express a transient potassium channel with properties of Kv1.3. Recept Channels, 2 (4): 281-93. [PMID:7536610]

3. Attali B, Romey G, Honoré E, Schmid-Alliana A, Mattéi MG, Lesage F, Ricard P, Barhanin J, Lazdunski M. (1992) Cloning, functional expression, and regulation of two K+ channels in human T lymphocytes. J Biol Chem, 267 (12): 8650-7. [PMID:1373731]

4. Beeton C, Barbaria J, Giraud P, Devaux J, Benoliel AM, Gola M, Sabatier JM, Bernard D, Crest M, Béraud E. (2001) Selective blocking of voltage-gated K+ channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation. J Immunol, 166 (2): 936-44. [PMID:11145670]

5. Beeton C, Pennington MW, Wulff H, Singh S, Nugent D, Crossley G, Khaytin I, Calabresi PA, Chen CY, Gutman GA, Chandy KG. (2005) Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3 channels for therapy of autoimmune diseases. Mol Pharmacol, 67 (4): 1369-81. [PMID:15665253]

6. Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan MD, Chandy KG, Béraud E. (2001) Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci USA, 98 (24): 13942-7. [PMID:11717451]

7. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG. (2006) Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA, 103 (46): 17414-9. [PMID:17088564]

8. Biju KC, Marks DR, Mast TG, Fadool DA. (2008) Deletion of voltage-gated channel affects glomerular refinement and odorant receptor expression in the mouse olfactory system. J Comp Neurol, 506 (2): 161-79. [PMID:18022950]

9. Cahalan MD, Chandy KG, DeCoursey TE, Gupta S. (1985) A voltage-gated potassium channel in human T lymphocytes. J Physiol (Lond.), 358: 197-237. [PMID:2580081]

10. Chandy KG Wulff H Beeton C Calabresi P Gutman GA Pennington M. (2006) Kv1.3 Potassium Channel: Physiology, Pharmacology and Therapeutic Indications. In Voltage-gated Ion Channels as Drug Targets. Edited by Triggle, D (WILEY-VCH Weinheim) 214-272. [ISBN:3-527-31258-7]

11. Chandy KG, Williams CB, Spencer RH, Aguilar BA, Ghanshani S, Tempel BL, Gutman GA. (1990) A family of three mouse potassium channel genes with intronless coding regions. Science, 247 (4945): 973-5. [PMID:2305265]

12. Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD. (2004) K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci, 25 (5): 280-9. [PMID:15120495]

13. Chittajallu R, Chen Y, Wang H, Yuan X, Ghiani CA, Heckman T, McBain CJ, Gallo V. (2002) Regulation of Kv1 subunit expression in oligodendrocyte progenitor cells and their role in G1/S phase progression of the cell cycle. Proc Natl Acad Sci USA, 99 (4): 2350-5. [PMID:11854528]

14. Coleman SK, Newcombe J, Pryke J, Dolly JO. (1999) Subunit composition of Kv1 channels in human CNS. J Neurochem, 73 (2): 849-58. [PMID:10428084]

15. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD. (1984) Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis?. Nature, 307 (5950): 465-8. [PMID:6320007]

16. Deutsch C, Chen LQ. (1993) Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc Natl Acad Sci USA, 90 (21): 10036-40. [PMID:8234253]

17. Douglass J, Osborne PB, Cai YC, Wilkinson M, Christie MJ, Adelman JP. (1990) Characterization and functional expression of a rat genomic DNA clone encoding a lymphocyte potassium channel. J Immunol, 144 (12): 4841-50. [PMID:2351830]

18. Fadool DA, Levitan IB. (1998) Modulation of olfactory bulb neuron potassium current by tyrosine phosphorylation. J Neurosci, 18 (16): 6126-37. [PMID:9698307]

19. Fadool DA, Tucker K, Perkins R, Fasciani G, Thompson RN, Parsons AD, Overton JM, Koni PA, Flavell RA, Kaczmarek LK. (2004) Kv1.3 channel gene-targeted deletion produces "Super-Smeller Mice" with altered glomeruli, interacting scaffolding proteins, and biophysics. Neuron, 41 (3): 389-404. [PMID:14766178]

20. Felix JP, Bugianesi RM, Schmalhofer WA, Borris R, Goetz MA, Hensens OD, Bao JM, Kayser F, Parsons WH, Rupprecht K et al.. (1999) Identification and biochemical characterization of a novel nortriterpene inhibitor of the human lymphocyte voltage-gated potassium channel, Kv1.3. Biochemistry, 38 (16): 4922-30. [PMID:10213593]

21. Feske S, Wulff H, Skolnik EY. (2015) Ion channels in innate and adaptive immunity. Annu Rev Immunol, 33: 291-353. [PMID:25861976]

22. Folander K, Douglass J, Swanson R. (1994) Confirmation of the assignment of the gene encoding Kv1.3, a voltage-gated potassium channel (KCNA3) to the proximal short arm of human chromosome 1. Genomics, 23 (1): 295-6. [PMID:7829094]

23. Fordyce CB, Jagasia R, Zhu X, Schlichter LC. (2005) Microglia Kv1.3 channels contribute to their ability to kill neurons. J Neurosci, 25 (31): 7139-49. [PMID:16079396]

24. Garcia-Calvo M, Leonard RJ, Novick J, Stevens SP, Schmalhofer W, Kaczorowski GJ, Garcia ML. (1993) Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem, 268 (25): 18866-74. [PMID:8360176]

25. Gazula VR, Strumbos JG, Mei X, Chen H, Rahner C, Kaczmarek LK. (2010) Localization of Kv1.3 channels in presynaptic terminals of brainstem auditory neurons. J Comp Neurol, 518 (16): 3205-20. [PMID:20575068]

26. Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG. (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem, 275 (47): 37137-49. [PMID:10961988]

27. Grissmer S, Dethlefs B, Wasmuth JJ, Goldin AL, Gutman GA, Cahalan MD, Chandy KG. (1990) Expression and chromosomal localization of a lymphocyte K+ channel gene. Proc Natl Acad Sci USA, 87 (23): 9411-5. [PMID:2251283]

28. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG. (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol, 45 (6): 1227-34. [PMID:7517498]

29. Gurrola GB, Hernández-López RA, Rodríguez de la Vega RC, Varga Z, Batista CV, Salas-Castillo SP, Panyi G, del Río-Portilla F, Possani LD. (2012) Structure, function, and chemical synthesis of Vaejovis mexicanus peptide 24: a novel potent blocker of Kv1.3 potassium channels of human T lymphocytes. Biochemistry, 51 (19): 4049-61. [PMID:22540187]

30. Haffner CD, Thomson SA, Guo Y, Schaller LT, Boggs S, Dickerson S, Gobel J, Gillie D, Condreay JP. (2010) N-{3-[(1,1-dioxido-1,2-benzothiazol-3-yl)(phenyl)amino]propyl}benzamide analogs as potent Kv1.3 inhibitors. Part 1. Bioorg Med Chem Lett, 20 (23): 6983-8. [PMID:20971642]

31. Hanada T, Lin L, Chandy KG, Oh SS, Chishti AH. (1997) Human homologue of the Drosophila discs large tumor suppressor binds to p56lck tyrosine kinase and Shaker type Kv1.3 potassium channel in T lymphocytes. J Biol Chem, 272 (43): 26899-904. [PMID:9341123]

32. Hanner M, Schmalhofer WA, Green B, Bordallo C, Liu J, Slaughter RS, Kaczorowski GJ, Garcia ML. (1999) Binding of correolide to K(v)1 family potassium channels. Mapping the domains of high affinity interaction. J Biol Chem, 274 (36): 25237-44. [PMID:10464244]

33. Helms LM, Felix JP, Bugianesi RM, Garcia ML, Stevens S, Leonard RJ, Knaus HG, Koch R, Wanner SG, Kaczorowski GJ et al.. (1997) Margatoxin binds to a homomultimer of K(V)1.3 channels in Jurkat cells. Comparison with K(V)1.3 expressed in CHO cells. Biochemistry, 36 (12): 3737-44. [PMID:9132027]

34. Jacob A, Hurley IR, Goodwin LO, Cooper GW, Benoff S. (2000) Molecular characterization of a voltage-gated potassium channel expressed in rat testis. Mol Hum Reprod, 6 (4): 303-13. [PMID:10729311]

35. Kalman K, Pennington MW, Lanigan MD, Nguyen A, Rauer H, Mahnir V, Paschetto K, Kem WR, Grissmer S, Gutman GA et al.. (1998) ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem, 273 (49): 32697-707. [PMID:9830012]

36. Khanna R, Roy L, Zhu X, Schlichter LC. (2001) K+ channels and the microglial respiratory burst. Am J Physiol, Cell Physiol, 280 (4): C796-806. [PMID:11245596]

37. Koch RO, Wanner SG, Koschak A, Hanner M, Schwarzer C, Kaczorowski GJ, Slaughter RS, Garcia ML, Knaus HG. (1997) Complex subunit assembly of neuronal voltage-gated K+ channels. Basis for high-affinity toxin interactions and pharmacology. J Biol Chem, 272 (44): 27577-81. [PMID:9346893]

38. Koni PA, Khanna R, Chang MC, Tang MD, Kaczmarek LK, Schlichter LC, Flavella RA. (2003) Compensatory anion currents in Kv1.3 channel-deficient thymocytes. J Biol Chem, 278 (41): 39443-51. [PMID:12878608]

39. Koo GC, Blake JT, Talento A, Nguyen M, Lin S, Sirotina A, Shah K, Mulvany K, Hora Jr D, Cunningham P et al.. (1997) Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J Immunol, 158 (11): 5120-8. [PMID:9164927]

40. Kotecha SA, Schlichter LC. (1999) A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation. J Neurosci, 19 (24): 10680-93. [PMID:10594052]

41. Levite M, Cahalon L, Peretz A, Hershkoviz R, Sobko A, Ariel A, Desai R, Attali B, Lider O. (2000) Extracellular K(+) and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and beta1 integrins. J Exp Med, 191 (7): 1167-76. [PMID:10748234]

42. Lewis RS, Cahalan MD. (1988) Subset-specific expression of potassium channels in developing murine T lymphocytes. Science, 239 (4841 Pt 1): 771-5. [PMID:2448877]

43. Li M, Yu H. (2021) Identification of WP1066, an inhibitor of JAK2 and STAT3, as a KV 1.3 potassium channel blocker. Br J Pharmacol, 178 (13): 2617-2631. [PMID:33689167]

44. Li Y, Wang P, Xu J, Desir GV. (2006) Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+-dependent mechanism. Am J Physiol, Cell Physiol, 290 (2): C345-51. [PMID:16403947]

45. Liang CZ, Guo QK, Hao ZY, Yang S, Wang DB, Wu LX, Liu C, Wang KX, Zhang XJ. (2006) K channel expression in prostate epithelium and its implications in men with chronic prostatitis. BJU Int, 97 (1): 190-2. [PMID:16336354]

46. Liu QH, Fleischmann BK, Hondowicz B, Maier CC, Turka LA, Yui K, Kotlikoff MI, Wells AD, Freedman BD. (2002) Modulation of Kv channel expression and function by TCR and costimulatory signals during peripheral CD4(+) lymphocyte differentiation. J Exp Med, 196 (7): 897-909. [PMID:12370252]

47. Mackenzie AB, Chirakkal H, North RA. (2003) Kv1.3 potassium channels in human alveolar macrophages. Am J Physiol Lung Cell Mol Physiol, 285 (4): L862-8. [PMID:12909584]

48. Maruyama Y. (1987) A patch-clamp study of mammalian platelets and their voltage-gated potassium current. J Physiol (Lond.), 391: 467-85. [PMID:2451010]

49. Matteson DR, Deutsch C. (1984) K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature, 307 (5950): 468-71. [PMID:6320008]

50. McCormack K, McCormack T, Tanouye M, Rudy B, Stühmer W. (1995) Alternative splicing of the human Shaker K+ channel beta 1 gene and functional expression of the beta 2 gene product. FEBS Lett, 370 (1-2): 32-6. [PMID:7649300]

51. Michne WF, Guiles JW, Treasurywala AM, Castonguay LA, Weigelt CA, Oconnor B, Volberg WA, Grant AM, Chadwick CC, Krafte DS et al.. (1995) Novel inhibitors of potassium ion channels on human T lymphocytes. J Med Chem, 38 (11): 1877-83. [PMID:7540207]

52. Middleton RE, Sanchez M, Linde AR, Bugianesi RM, Dai G, Felix JP, Koprak SL, Staruch MJ, Bruguera M, Cox R et al.. (2003) Substitution of a single residue in Stichodactyla helianthus peptide, ShK-Dap22, reveals a novel pharmacological profile. Biochemistry, 42 (46): 13698-707. [PMID:14622016]

53. Mouhat S, Visan V, Ananthakrishnan S, Wulff H, Andreotti N, Grissmer S, Darbon H, De Waard M, Sabatier JM. (2005) K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. Biochem J, 385 (Pt 1): 95-104. [PMID:15588251]

54. Nelson DJ, Jow B, Jow F. (1990) Whole-cell currents in macrophages: I. Human monocyte-derived macrophages. J Membr Biol, 117 (1): 29-44. [PMID:2402007]

55. Nguyen A, Kath JC, Hanson DC, Biggers MS, Canniff PC, Donovan CB, Mather RJ, Bruns MJ, Rauer H, Aiyar J et al.. (1996) Novel nonpeptide agents potently block the C-type inactivated conformation of Kv1.3 and suppress T cell activation. Mol Pharmacol, 50 (6): 1672-9. [PMID:8967992]

56. Ota M, Ito T, Umemura T, Katsuyama Y, Yoshizawa K, Hamano H, Kawa S. (2011) Polymorphism in the KCNA3 gene is associated with susceptibility to autoimmune pancreatitis in the Japanese population. Dis Markers, 31 (4): 223-9. [PMID:22045429]

57. Pennington MW, Byrnes ME, Zaydenberg I, Khaytin I, de Chastonay J, Krafte DS, Hill R, Mahnir VM, Volberg WA, Gorczyca W. (1995) Chemical synthesis and characterization of ShK toxin: a potent potassium channel inhibitor from a sea anemone. Int J Pept Protein Res, 46 (5): 354-8. [PMID:8567178]

58. Pereira LE, Villinger F, Wulff H, Sankaranarayanan A, Raman G, Ansari AA. (2007) Pharmacokinetics, toxicity, and functional studies of the selective Kv1.3 channel blocker 5-(4-phenoxybutoxy)psoralen in rhesus macaques. Exp Biol Med (Maywood), 232 (10): 1338-54. [PMID:17959847]

59. Rangaraju S, Khoo KK, Feng ZP, Crossley G, Nugent D, Khaytin I, Chi V, Pham C, Calabresi P, Pennington MW et al.. (2010) Potassium channel modulation by a toxin domain in matrix metalloprotease 23. J Biol Chem, 285 (12): 9124-36. [PMID:19965868]

60. Rochat H, Kharrat R, Sabatier JM, Mansuelle P, Crest M, Martin-Eauclaire MF, Sampieri F, Oughideni R, Mabrouk K, Jacquet G et al.. (1998) Maurotoxin, a four disulfide bridges scorpion toxin acting on K+ channels. Toxicon, 36 (11): 1609-11. [PMID:9792177]

61. Sands SB, Lewis RS, Cahalan MD. (1989) Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes. J Gen Physiol, 93 (6): 1061-74. [PMID:2475579]

62. Schmalhofer WA, Bao J, McManus OB, Green B, Matyskiela M, Wunderler D, Bugianesi RM, Felix JP, Hanner M, Linde-Arias AR, Ponte CG, Velasco L, Koo G, Staruch MJ, Miao S, Parsons WH, Rupprecht K, Slaughter RS, Kaczorowski GJ, Garcia ML. (2002) Identification of a new class of inhibitors of the voltage-gated potassium channel, Kv1.3, with immunosuppressant properties. Biochemistry, 41 (24): 7781-94. [PMID:12056910]

63. Schmalhofer WA, Slaughter RS, Matyskiela M, Felix JP, Tang YS, Rupprecht K, Kaczorowski GJ, Garcia ML. (2003) Di-substituted cyclohexyl derivatives bind to two identical sites with positive cooperativity on the voltage-gated potassium channel, K(v)1.3. Biochemistry, 42 (16): 4733-43. [PMID:12705837]

64. Schmitz A, Sankaranarayanan A, Azam P, Schmidt-Lassen K, Homerick D, Hänsel W, Wulff H. (2005) Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol, 68 (5): 1254-70. [PMID:16099841]

65. Speake T, Kibble JD, Brown PD. (2004) Kv1.1 and Kv1.3 channels contribute to the delayed-rectifying K+ conductance in rat choroid plexus epithelial cells. Am J Physiol, Cell Physiol, 286 (3): C611-20. [PMID:14602579]

66. Storey NM, Gómez-Angelats M, Bortner CD, Armstrong DL, Cidlowski JA. (2003) Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J Biol Chem, 278 (35): 33319-26. [PMID:12807917]

67. Stühmer W, Ruppersberg JP, Schröter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O. (1989) Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J, 8 (11): 3235-44. [PMID:2555158]

68. Swanson R, Marshall J, Smith JS, Williams JB, Boyle MB, Folander K, Luneau CJ, Antanavage J, Oliva C, Buhrow SA. (1990) Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain. Neuron, 4 (6): 929-39. [PMID:2361015]

69. Szabò I, Gulbins E, Apfel H, Zhang X, Barth P, Busch AE, Schlottmann K, Pongs O, Lang F. (1996) Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J Biol Chem, 271 (34): 20465-9. [PMID:8702786]

70. Tanner MR, Tajhya RB, Huq R, Gehrmann EJ, Rodarte KE, Atik MA, Norton RS, Pennington MW, Beeton C. (2017) Prolonged immunomodulation in inflammatory arthritis using the selective Kv1.3 channel blocker HsTX1[R14A] and its PEGylated analog. Clin Immunol, 180: 45-57. [PMID:28389388]

71. Tschritter O, Machicao F, Stefan N, Schäfer S, Weigert C, Staiger H, Spieth C, Häring HU, Fritsche A. (2006) A new variant in the human Kv1.3 gene is associated with low insulin sensitivity and impaired glucose tolerance. J Clin Endocrinol Metab, 91 (2): 654-8. [PMID:16317062]

72. Vaeth M, Feske S. (2018) Ion channelopathies of the immune system. Curr Opin Immunol, 52: 39-50. [PMID:29635109]

73. Valverde P, Kawai T, Taubman MA. (2004) Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease. J Bone Miner Res, 19 (1): 155-64. [PMID:14753747]

74. Vicente R, Escalada A, Coma M, Fuster G, Sánchez-Tilló E, López-Iglesias C, Soler C, Solsona C, Celada A, Felipe A. (2003) Differential voltage-dependent K+ channel responses during proliferation and activation in macrophages. J Biol Chem, 278 (47): 46307-20. [PMID:12923194]

75. Vicente R, Escalada A, Villalonga N, Texidó L, Roura-Ferrer M, Martín-Satué M, López-Iglesias C, Soler C, Solsona C, Tamkun MM et al.. (2006) Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J Biol Chem, 281 (49): 37675-85. [PMID:17038323]

76. Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG. (2003) The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest, 111 (11): 1703-13. [PMID:12782673]

77. Wulff H, Knaus HG, Pennington M, Chandy KG. (2004) K+ channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. J Immunol, 173 (2): 776-86. [PMID:15240664]

78. Xu J, Wang P, Li Y, Li G, Kaczmarek LK, Wu Y, Koni PA, Flavell RA, Desir GV. (2004) The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc Natl Acad Sci USA, 101 (9): 3112-7. [PMID:14981264]

79. Ypey DL, Clapham DE. (1984) Development of a delayed outward-rectifying K+ conductance in cultured mouse peritoneal macrophages. Proc Natl Acad Sci USA, 81 (10): 3083-7. [PMID:6328495]

Contributors

Show »

How to cite this page