Kv7.1

Target id: 560

Nomenclature: Kv7.1

Family: Voltage-gated potassium channels

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for Kv7.1 in GtoImmuPdb

Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 1 676 11p15.5 KCNQ1 potassium voltage-gated channel subfamily Q member 1 46,51
Mouse 6 1 668 7 F5 Kcnq1 potassium voltage-gated channel, subfamily Q, member 1 3
Rat 6 1 669 1q41 Kcnq1 potassium voltage-gated channel subfamily Q member 1 20
Previous and Unofficial Names
JLNS1 | IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1 | RWS1 | Romano-Ward syndrome 1 | KCNA8  | KCNA9 | LQT1 | slow delayed rectifier | potassium channel, voltage gated KQT-like subfamily Q, member 1 | potassium channel, voltage-gated KQT-like subfamily Q, member 1 | potassium voltage-gated channel
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Associated Proteins
Heteromeric Pore-forming Subunits
Name References
Not determined
Auxiliary Subunits
Name References
KCNE5, minK-related peptide 4 (MiRP4) 2
KCNE4, minK-related peptide 3 (MiRP3) 14
KCNE3, minK-related peptide 2 (MiRP2) 37
KCNE1 (minK/IsK) 3
KCNE2, minK-related peptide 1 (MiRP1) 49
Other Associated Proteins
Name References
Yotiao 26
Protein kinase A 26
Protein phosphatase 1 26
Calmodulin 15
adenylyl cyclase 9 43
Phosphodiesterase PDE4D3 24
Associated Protein Comments
Yotiao – targets Protein kinase A, phosphodiesterase PDE4D3, adenylate cyclase AC9 and protein phosphatase 1 to KCNQ1 [9,24,26,43]. Calmodulin-is tethered to the KCNQ1 proximal C-terminus and is important for channel folding and gating [42].

Gating: allosteric gating, where KCNQ1 voltage sensors move independently. KCNQ1 can open after zero to four voltage sensor movements [31]; KCNE1 alters the voltage sensor movement [4,28,32]; PIP2 stabilizes the channel in the open state [8,13,25].

Modulation: The scaffolding A-kinase anchoring protein (AKAP) so-called yotiao or AKAP9 brings the IKS channel complex together with protein kinase PKA, protein phosphatase PP1, phosphodiesterase PDE4D3 and adenylate cyclase AC9 to achieve upregulation following β-adrenergic stimulation [24,26,43].
Functional Characteristics
cardiac IK5
Ion Selectivity and Conductance
Species:  Human
Rank order:  K+ > Rb+ > Cs+ > Na+
References:  48
Species:  Human
Single channel conductance (pS):  1.8, 3.2
References:  33,47
Ion Selectivity and Conductance Comments
  • cation selectivity rank order is K+ > Rb+ > Cs+ > Na+ (IKs KCNQ1) [41,48,52].
  • heteromeric KvLQT1/minK channels expressed in Xenopus oocytes show a threefold larger conductance (5.8 pS) [33,47].
  • long latencies prior to channel opening, long-lived subconductance levels [47].
Voltage Dependence
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  9.0 360.0 – 8500.0 23 Ventricular myocytes Human
Inactivation  - -
Comments  Native IKs; tau at +50 mV
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -23.0 70.0 – 900.0 44 Xenopus laevis oocyte Human
Inactivation  -18.0 13.0 44
Comments  KCNQ1 alone; tau @ +20 mV
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  8.0 0.68 – 8.0 36 Xenopus laevis oocyte Human
Inactivation  - -
Comments  KCNQ1+KCNE1; tau @ +40 mV

Download all structure-activity data for this target as a CSV file

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
niflumic acid Hs Positive - - 1x10-4 - 7
Conc range: 1x10-4 M [7]
mefenamic acid Hs - - - 1x10-4 - 1
Conc range: 1x10-4 M [1]
ML277 Hs Activation 6.6 pEC50 - - 27
pEC50 6.6 (EC50 2.6x10-7 M) [27]
R-L3 Hs - 6.0 pEC50 1x10-6 - 35
pEC50 6.0 Conc range: 1x10-6 M [35]
zinc pyrithione Hs - 5.0 pEC50 1x10-5 - 50
pEC50 5.0 Conc range: 1x10-5 M [50]
Activator Comments
ML277 activates KCNQ1 selectively versus KCNQ2-5, and does not activate IKS [27].
Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
linopirdine Mm - 4.4 pIC50 - - 30
pIC50 4.4 (IC50 4.2x10-5 M) [30]
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
XE991 Hs Antagonist 6.1 pKd - - 45
pKd 6.1 (Kd 7.8x10-7 M) [45]
IKs124 Hs - 8.1 pIC50 - - 16
pIC50 8.1 [16]
L735821 Hs - 6.8 – 7.5 pIC50 - - 38,40
pIC50 6.8 – 7.5 [38,40]
HMR-1556 Hs Antagonist 7.1 pIC50 - - 12
pIC50 7.1 [12]
azimilide Mm - 5.3 pIC50 - - 6
pIC50 5.3 [6]
(3R,4S)-293B Hs Antagonist 4.8 – 5.0 pIC50 - - 12,39
pIC50 4.8 – 5.0 (IC50 1.64x10-5 – 1x10-5 M) [12,39]
3S,4R-293B Hs Antagonist 4.5 pIC50 - - 39
pIC50 4.5 (IC50 3.01x10-5 M) [39]
View species-specific channel blocker tables
Channel Blocker Comments
Block is for KCNQ1+KCNE1 channels; block of KCNQ1 alone is ~10-x more potent for XE991, ~10-x less potent for 293B or azimilide
Tissue Distribution
Heart = pancreas > kidney > lung = placenta
Species:  Human
Technique:  Northern Blot
References:  46
Heart, pancreas, intestine, stomach, kidney, lung, liver, thymus
Species:  Mouse
Technique:  In situ hybridisation
References:  11
Vascular smooth muscle cells
Species:  Rat
Technique:  Real time qPCR, immunohistochemistry
References:  42
Functional Assays
Cardiac action potentials
Species:  Rat
Tissue:  embryonic or neonatal hearts
Response measured:  prolonged action potentials
References: 
Contractions of portal vein
Species:  Mouse
Tissue: 
Response measured:  Increased contractility following exposure of KCNQ1 blocker
References:  8,42
Physiological Functions
Repolarization of cardiac action potentials
Species:  Human
Tissue:  atrial, ventriclular
References:  3,36
When KCNQ1 coassembles with KCNE3, it forms a constitutively open channel that strongly resembles intestinal cAMP-stimulated potassium channel involved in chloride secretion
Species:  Human
Tissue:  intestine (crypt cells)
References:  37
Luminal secretion of K+ into endolymphatic space of inner ear
Species:  Mouse
Tissue:  Apical surface of vestibular dark cells of inner ear
References:  29,34
KCNQ1 channels are regulators of the vascular smooth cell tone in veins and arteries
Species:  Rat
Tissue: 
References:  8,42
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004308 abnormal basilar membrane PMID: 15891643 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004140 abnormal chief cell morphology PMID: 11120752 
Kcnq1vtg-3J Kcnq1vtg-3J/Kcnq1vtg-3J
C57BL/6J-Kcnq1/J
MGI:108083  MP:0000031 abnormal cochlea morphology
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0003308 abnormal cochlear sensory epithelium morphology PMID: 11226272 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004249 abnormal crista ampullaris morphology PMID: 15891643 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0004409 abnormal crista ampullaris neuroepithelium morphology PMID: 11226272 
Kcnq1vtg-3J Kcnq1vtg-3J/Kcnq1vtg-3J
C57BL/6J-Kcnq1/J
MGI:108083  MP:0001406 abnormal gait
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0003892 abnormal gastric gland PMID: 11120752 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0005209 abnormal gastric mucosa morphology PMID: 11120752 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004139 abnormal gastric parietal cell morphology PMID: 11120752 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0010508 abnormal heart electrocardiography waveform feature PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0010508 abnormal heart electrocardiography waveform feature PMID: 11226272 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0002729 abnormal inner ear canal morphology PMID: 11226272 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0000026 abnormal inner ear morphology PMID: 11226272 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0000035 abnormal membranous labyrinth PMID: 15498462 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004138 abnormal mucous neck cell morphology PMID: 11120752 
Kcnq1vtg-3J Kcnq1vtg-3J/Kcnq1vtg-3J
C57BL/6J-Kcnq1/J
MGI:108083  MP:0002894 abnormal otolith morphology
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0002894 abnormal otolith morphology PMID: 15891643 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0006089 abnormal saccule morphology PMID: 11226272 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0002428 abnormal semicircular canal PMID: 11120752 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0000048 abnormal stria vascularis PMID: 15891643 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0003149 abnormal tectorial membrane morphology PMID: 15891643 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0010505 abnormal T wave PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0006090 abnormal utricle morphology PMID: 11226272 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004427 abnormal vestibular labyrinth PMID: 15891643 
Kcnq1vtg-3J Kcnq1vtg-3J/Kcnq1vtg-3J
C57BL/6J-Kcnq1/J
MGI:108083  MP:0000034 abnormal vestibule morphology
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0000034 abnormal vestibule morphology PMID: 11120752 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0004763 absent brainstem auditory evoked potential PMID: 15498462 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004763 absent brainstem auditory evoked potential PMID: 15891643 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004405 absent cochlear hair cells PMID: 11120752  15891643 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0004737 absent distortion product otoacoustic emissions PMID: 15498462 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004301 absent organ of Corti supporting cells PMID: 11120752  15891643 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0006358 absent pinna reflex PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0006358 absent pinna reflex PMID: 11226272 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004325 absent vestibular hair cells PMID: 15891643 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004518 absent vestibular hair cell stereocilia PMID: 15891643 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0001395 bi-directional circling PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0001395 bi-directional circling PMID: 11226272 
Kcnq1vtg-4J Kcnq1vtg-4J/Kcnq1vtg-4J
B6.NOD-Kcnq1/J
MGI:108083  MP:0001395 bi-directional circling
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0001625 cardiac hypertrophy PMID: 11226272 
Kcnq1vtg-2J Kcnq1vtg-2J/Kcnq1vtg-2J
C3H/HeJ
MGI:108083  MP:0001394 circling
Kcnq1vtg-3J Kcnq1vtg-3J/Kcnq1vtg-3J
C57BL/6J-Kcnq1/J
MGI:108083  MP:0001394 circling
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0001394 circling PMID: 11120752  15891643 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0002857 cochlear ganglion degeneration PMID: 15891643 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0004398 cochlear inner hair cell degeneration PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0004398 cochlear inner hair cell degeneration PMID: 11226272 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0004404 cochlear outer hair cell degeneration PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0004404 cochlear outer hair cell degeneration PMID: 11226272 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0006024 collapsed Reissner membrane PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0006024 collapsed Reissner membrane PMID: 11226272 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0006024 collapsed Reissner membrane PMID: 11120752  15891643 
Kcnq1vtg-2J Kcnq1vtg-2J/Kcnq1vtg-2J
C3H/HeJ
MGI:108083  MP:0001967 deafness
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0001967 deafness PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0001967 deafness PMID: 11226272 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0001967 deafness PMID: 15891643 
Kcnq1vtg-4J Kcnq1vtg-4J/Kcnq1vtg-4J
B6.NOD-Kcnq1/J
MGI:108083  MP:0001967 deafness
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0001262 decreased body weight PMID: 15498462 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0003145 detached otolithic membrane PMID: 11120752  15891643 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0003883 enlarged stomach PMID: 11120752 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0001410 head bobbing PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0001410 head bobbing PMID: 11226272 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0001410 head bobbing PMID: 11120752  15891643 
Kcnq1vtg-2J Kcnq1vtg-2J/Kcnq1vtg-2J
C3H/HeJ
MGI:108083  MP:0005307 head tossing
Kcnq1vtg-3J Kcnq1vtg-3J/Kcnq1vtg-3J
C57BL/6J-Kcnq1/J
MGI:108083  MP:0005307 head tossing
Kcnq1vtg-4J Kcnq1vtg-4J/Kcnq1vtg-4J
B6.NOD-Kcnq1/J
MGI:108083  MP:0005307 head tossing
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0001399 hyperactivity PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0001399 hyperactivity PMID: 11226272 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0001399 hyperactivity PMID: 11120752  15891643 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0008001 hypochlorhydria PMID: 11120752 
Kcnq1vtg-3J Kcnq1vtg-3J/Kcnq1vtg-3J
C57BL/6J-Kcnq1/J
MGI:108083  MP:0001525 impaired balance
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0001405 impaired coordination PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0001523 impaired righting response PMID: 11226272 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0001522 impaired swimming PMID: 15498462 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004731 increased circulating gastrin level PMID: 11120752 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0002833 increased heart weight PMID: 11226272 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0008006 increased stomach pH PMID: 11120752 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0005211 increased thickness of gastric mucosa PMID: 11120752 
Kcnq1tm4Kpfe Kcnq1tm4Kpfe/Kcnq1tm4Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0002169 no abnormal phenotype detected PMID: 15498462 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0000043 organ of Corti degeneration PMID: 11120752  15891643 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0003896 prolonged PR interval PMID: 11226272 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0010392 prolonged QRS complex duration PMID: 11226272 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0003233 prolonged QT interval PMID: 15498462 
Kcnq1tm3Kpfe Kcnq1tm3Kpfe/Kcnq1tm3Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0003233 prolonged QT interval PMID: 15498462 
Kcnq1+|Kcnq1tm3Kpfe Kcnq1tm3Kpfe/Kcnq1+
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0003233 prolonged QT interval PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0003233 prolonged QT interval PMID: 11226272 
Kcnq1vtg-3J Kcnq1vtg-3J/Kcnq1vtg-3J
C57BL/6J-Kcnq1/J
MGI:108083  MP:0010323 retropulsion
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0008308 small scala media PMID: 11120752  15891643 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0001411 spinning PMID: 15891643 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0001408 stereotypic behavior PMID: 11120752 
Kcnq1tm2Kpfe Kcnq1tm2Kpfe/Kcnq1tm2Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6 * FVB/N
MGI:108083  MP:0006330 syndromic hearing impairment PMID: 15498462 
Kcnq1tm1Kpfe Kcnq1tm1Kpfe/Kcnq1tm1Kpfe
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:108083  MP:0006330 syndromic hearing impairment PMID: 11226272 
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004364 thin stria vascularis PMID: 15891643 
Kcnq1vtg-3J Kcnq1vtg-3J/Kcnq1vtg-3J
C57BL/6J-Kcnq1/J
MGI:108083  MP:0000745 tremors
Kcnq1tm1Apf Kcnq1tm1Apf/Kcnq1tm1Apf
involves: 129P2/OlaHsd * C57BL/6
MGI:108083  MP:0004334 utricular macular degeneration PMID: 15891643 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Atrial fibrillation, familial, 3; ATFB3
Synonyms: Familial atrial fibrillation [Orphanet: ORPHA334] [Disease Ontology: DOID:0050650]
Disease Ontology: DOID:0050650
OMIM: 607554
Orphanet: ORPHA334
Disease:  Jervell and Lange-Nielsen syndrome 1; JLNS1
Synonyms: Jervell and Lange-Nielsen syndrome [Orphanet: ORPHA90647]
Jervell-Lange Nielsen syndrome [Disease Ontology: DOID:2842]
Disease Ontology: DOID:2842
OMIM: 220400
Orphanet: ORPHA90647
Disease:  Long QT syndrome 1; LQT1
Synonyms: Long QT syndrome [Disease Ontology: DOID:2843]
Romano-Ward syndrome [Orphanet: ORPHA101016]
Disease Ontology: DOID:2843
OMIM: 192500
Orphanet: ORPHA101016
Role: 
Drugs: 
Therapeutic use:  Activators are being explored as potential therapy for LQTS
Comments: 
References:  19
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Deletion Human TCGdel 46
Disease:  Short QT syndrome 2; SQT2
Synonyms: Familial short QT syndrome [Orphanet: ORPHA51083]
OMIM: 609621
Orphanet: ORPHA51083
Role: 
References:  5,17
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human S140G 10
Missense Human V141M 17
Missense Human V307L 919G>C 5
Clinically-Relevant Mutations and Pathophysiology Comments
For a summary of missense mutations associated with Long QT syndrome, please see the OMIM entry for the gene and the reference Wang et al. 1996 [46].
Gene Expression and Pathophysiology
Imprinting: early developmental expression is maternal in origin. Maternal repression of Kcnq1 in mouse is controlled by DNA methylation originating in the oocyte
Tissue or cell type:  multiple
Pathophysiology:  deletion of multiple genes in Beckwith-Wiedemann syndrome (overgrowth disorder with increased risk of pediatric tumours); pathology probably unrelated to deletion of KCNQ1
Species:  Mouse
Technique: 
References:  21-22
Biologically Significant Variants
Type:  Splice variant
Species:  Human
Description:  Isoform 1
Amino acids:  676
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform 2
Amino acids:  549
Nucleotide accession: 
Protein accession: 
References:  18
Biologically Significant Variant Comments
Variant 1 encodes the predominant isoform 1. Variant 2 differs in the 5' UTR and CDS,compared to variant 1. Isoform 2 has a shorter and distinct N-terminus compared to isoform 1 and causes dominant-negative suppression of KCNQ1 channel function.

References

Show »

1. Abbott GW, Butler MH, Bendahhou S, Dalakas MC, Ptacek LJ, Goldstein SA. (2001) MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell, 104 (2): 217-31. [PMID:11207363]

2. Angelo K, Jespersen T, Grunnet M, Nielsen MS, Klaerke DA, Olesen SP. (2002) KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current. Biophys. J., 83 (4): 1997-2006. [PMID:12324418]

3. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature, 384 (6604): 78-80. [PMID:8900282]

4. Barro-Soria R, Rebolledo S, Liin SI, Perez ME, Sampson KJ, Kass RS, Larsson HP. (2014) KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps. Nat Commun, 5: 3750. [PMID:24769622]

5. Bellocq C, van Ginneken AC, Bezzina CR, Alders M, Escande D, Mannens MM, Baró I, Wilde AA. (2004) Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation, 109 (20): 2394-7. [PMID:15159330]

6. Busch AE, Busch GL, Ford E, Suessbrich H, Lang HJ, Greger R, Kunzelmann K, Attali B, Stühmer W. (1997) The role of the IsK protein in the specific pharmacological properties of the IKs channel complex. Br. J. Pharmacol., 122 (2): 187-9. [PMID:9313924]

7. Busch AE, Herzer T, Wagner CA, Schmidt F, Raber G, Waldegger S, Lang F. (1994) Positive regulation by chloride channel blockers of IsK channels expressed in Xenopus oocytes. Mol. Pharmacol., 46 (4): 750-3. [PMID:7969055]

8. Chadha PS, Zunke F, Davis AJ, Jepps TA, Linders JT, Schwake M, Towart R, Greenwood IA. (2012) Pharmacological dissection of K(v)7.1 channels in systemic and pulmonary arteries. Br. J. Pharmacol., 166 (4): 1377-87. [PMID:22251082]

9. Chen L, Kurokawa J, Kass RS. (2005) Phosphorylation of the A-kinase-anchoring protein Yotiao contributes to protein kinase A regulation of a heart potassium channel. J. Biol. Chem., 280 (36): 31347-52. [PMID:16002409]

10. Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY, Jin HW, Sun H, Su XY, Zhuang QN, Yang YQ, Li YB, Liu Y, Xu HJ, Li XF, Ma N, Mou CP, Chen Z, Barhanin J, Huang W. (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science, 299 (5604): 251-4. [PMID:12522251]

11. Demolombe S, Franco D, de Boer P, Kuperschmidt S, Roden D, Pereon Y, Jarry A, Moorman AF, Escande D. (2001) Differential expression of KvLQT1 and its regulator IsK in mouse epithelia. Am. J. Physiol., Cell Physiol., 280 (2): C359-72. [PMID:11208532]

12. Dong MQ, Lau CP, Gao Z, Tseng GN, Li GR. (2006) Characterization of recombinant human cardiac KCNQ1/KCNE1 channels (I (Ks)) stably expressed in HEK 293 cells. J. Membr. Biol., 210 (3): 183-92. [PMID:16909339]

13. Gamper N, Shapiro MS. (2007) Regulation of ion transport proteins by membrane phosphoinositides. Nat. Rev. Neurosci., 8 (12): 921-34. [PMID:17971783]

14. Grunnet M, Jespersen T, Rasmussen HB, Ljungstrøm T, Jorgensen NK, Olesen SP, Klaerke DA. (2002) KCNE4 is an inhibitory subunit to the KCNQ1 channel. J. Physiol. (Lond.), 542 (Pt 1): 119-30. [PMID:12096056]

15. Haitin Y, Attali B. (2008) The C-terminus of Kv7 channels: a multifunctional module. J. Physiol. (Lond.), 586 (7): 1803-10. [PMID:18218681]

16. Heitzmann D, Grahammer F, von Hahn T, Schmitt-Gräff A, Romeo E, Nitschke R, Gerlach U, Lang HJ, Verrey F, Barhanin J, Warth R. (2004) Heteromeric KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal cells. J. Physiol. (Lond.), 561 (Pt 2): 547-57. [PMID:15579540]

17. Hong K, Piper DR, Diaz-Valdecantos A, Brugada J, Oliva A, Burashnikov E, Santos-de-Soto J, Grueso-Montero J, Diaz-Enfante E, Brugada P, Sachse F, Sanguinetti MC, Brugada R. (2005) De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc. Res., 68 (3): 433-40. [PMID:16109388]

18. Jiang M, Tseng-Crank J, Tseng GN. (1997) Suppression of slow delayed rectifier current by a truncated isoform of KvLQT1 cloned from normal human heart. J. Biol. Chem., 272 (39): 24109-12. [PMID:9305853]

19. Keating MT, Sanguinetti MC. (2001) Molecular and cellular mechanisms of cardiac arrhythmias. Cell, 104 (4): 569-80. [PMID:11239413]

20. Kunzelmann K, Hübner M, Schreiber R, Levy-Holzman R, Garty H, Bleich M, Warth R, Slavik M, von Hahn T, Greger R. (2001) Cloning and function of the rat colonic epithelial K+ channel KVLQT1. J. Membr. Biol., 179 (2): 155-64. [PMID:11220365]

21. Lee MP, Hu RJ, Johnson LA, Feinberg AP. (1997) Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nat. Genet., 15 (2): 181-5. [PMID:9020845]

22. Lewis A, Green K, Dawson C, Redrup L, Huynh KD, Lee JT, Hemberger M, Reik W. (2006) Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Development, 133 (21): 4203-10. [PMID:17021040]

23. Li GR, Feng J, Yue L, Carrier M, Nattel S. (1996) Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ. Res., 78 (4): 689-96. [PMID:8635226]

24. Li Y, Chen L, Kass RS, Dessauer CW. (2012) The A-kinase anchoring protein Yotiao facilitates complex formation between adenylyl cyclase type 9 and the IKs potassium channel in heart. J. Biol. Chem., 287 (35): 29815-24. [PMID:22778270]

25. Loussouarn G, Park KH, Bellocq C, Baró I, Charpentier F, Escande D. (2003) Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels. EMBO J., 22 (20): 5412-21. [PMID:14532114]

26. Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks AR, Kass RS. (2002) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science, 295 (5554): 496-9. [PMID:11799244]

27. Mattmann ME, Yu H, Lin Z, Xu K, Huang X, Long S, Wu M, McManus OB, Engers DW, Le UM et al.. (2012) Identification of (R)-N-(4-(4-methoxyphenyl)thiazol-2-yl)-1-tosylpiperidine-2-carboxamide, ML277, as a novel, potent and selective K(v)7.1 (KCNQ1) potassium channel activator. Bioorg. Med. Chem. Lett., 22 (18): 5936-41. [PMID:22910039]

28. Nakajo K, Kubo Y. (2014) Steric hindrance between S4 and S5 of the KCNQ1/KCNE1 channel hampers pore opening. Nat Commun, 5: 4100. [PMID:24920132]

29. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Fauré S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P. (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat. Genet., 15 (2): 186-9. [PMID:9020846]

30. Ohya S, Sergeant GP, Greenwood IA, Horowitz B. (2003) Molecular variants of KCNQ channels expressed in murine portal vein myocytes: a role in delayed rectifier current. Circ. Res., 92 (9): 1016-23. [PMID:12690036]

31. Osteen JD, Barro-Soria R, Robey S, Sampson KJ, Kass RS, Larsson HP. (2012) Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels. Proc. Natl. Acad. Sci. U.S.A., 109 (18): 7103-8. [PMID:22509038]

32. Osteen JD, Gonzalez C, Sampson KJ, Iyer V, Rebolledo S, Larsson HP, Kass RS. (2010) KCNE1 alters the voltage sensor movements necessary to open the KCNQ1 channel gate. Proc. Natl. Acad. Sci. U.S.A., 107 (52): 22710-5. [PMID:21149716]

33. Pusch M. (1998) Increase of the single-channel conductance of KvLQT1 potassium channels induced by the association with minK. Pflugers Arch., 437 (1): 172-4. [PMID:9817805]

34. Rivas A, Francis HW. (2005) Inner ear abnormalities in a Kcnq1 (Kvlqt1) knockout mouse: a model of Jervell and Lange-Nielsen syndrome. Otol. Neurotol., 26 (3): 415-24. [PMID:15891643]

35. Salata JJ, Jurkiewicz NK, Wang J, Evans BE, Orme HT, Sanguinetti MC. (1998) A novel benzodiazepine that activates cardiac slow delayed rectifier K+ currents. Mol. Pharmacol., 54 (1): 220-30. [PMID:9658209]

36. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT. (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature, 384 (6604): 80-3. [PMID:8900283]

37. Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R, Jentsch TJ. (2000) A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature, 403 (6766): 196-9. [PMID:10646604]

38. Seebohm G, Chen J, Strutz N, Culberson C, Lerche C, Sanguinetti MC. (2003) Molecular determinants of KCNQ1 channel block by a benzodiazepine. Mol. Pharmacol., 64 (1): 70-7. [PMID:12815162]

39. Seebohm G, Lerche C, Pusch M, Steinmeyer K, Brüggemann A, Busch AE. (2001) A kinetic study on the stereospecific inhibition of KCNQ1 and I(Ks) by the chromanol 293B. Br. J. Pharmacol., 134 (8): 1647-54. [PMID:11739240]

40. Selnick HG, Liverton NJ, Baldwin JJ, Butcher JW, Claremon DA, Elliott JM, Freidinger RM, King SA, Libby BE, McIntyre CJ, Pribush DA, Remy DC, Smith GR, Tebben AJ, Jurkiewicz NK, Lynch JJ, Salata JJ, Sanguinetti MC, Siegl PK, Slaughter DE, Vyas K. (1997) Class III antiarrhythmic activity in vivo by selective blockade of the slowly activating cardiac delayed rectifier potassium current IKs by (R)-2-(2,4-trifluoromethyl)-N-[2-oxo-5-phenyl-1-(2,2,2-trifluoroethyl)- 2, 3-dihydro-1H-benzo[e][1,4]diazepin-3-yl]acetamide. J. Med. Chem., 40 (24): 3865-8. [PMID:9397166]

41. Sesti F, Goldstein SA. (1998) Single-channel characteristics of wild-type IKs channels and channels formed with two minK mutants that cause long QT syndrome. J. Gen. Physiol., 112 (6): 651-63. [PMID:9834138]

42. Stott JB, Jepps TA, Greenwood IA. (2014) K(V)7 potassium channels: a new therapeutic target in smooth muscle disorders. Drug Discov. Today, 19 (4): 413-24. [PMID:24333708]

43. Terrenoire C, Houslay MD, Baillie GS, Kass RS. (2009) The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J. Biol. Chem., 284 (14): 9140-6. [PMID:19218243]

44. Tristani-Firouzi M, Sanguinetti MC. (1998) Voltage-dependent inactivation of the human K+ channel KvLQT1 is eliminated by association with minimal K+ channel (minK) subunits. J. Physiol. (Lond.), 510 ( Pt 1): 37-45. [PMID:9625865]

45. Wang HS, Brown BS, McKinnon D, Cohen IS. (2000) Molecular basis for differential sensitivity of KCNQ and I(Ks) channels to the cognitive enhancer XE991. Mol. Pharmacol., 57 (6): 1218-23. [PMID:10825393]

46. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT. (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet., 12 (1): 17-23. [PMID:8528244]

47. Werry D, Eldstrom J, Wang Z, Fedida D. (2013) Single-channel basis for the slow activation of the repolarizing cardiac potassium current, I(Ks). Proc. Natl. Acad. Sci. U.S.A., 110 (11): E996-1005. [PMID:23431135]

48. Wollnik B, Schroeder BC, Kubisch C, Esperer HD, Wieacker P, Jentsch TJ. (1997) Pathophysiological mechanisms of dominant and recessive KVLQT1 K+ channel mutations found in inherited cardiac arrhythmias. Hum. Mol. Genet., 6 (11): 1943-9. [PMID:9302275]

49. Wu DM, Jiang M, Zhang M, Liu XS, Korolkova YV, Tseng GN. (2006) KCNE2 is colocalized with KCNQ1 and KCNE1 in cardiac myocytes and may function as a negative modulator of I(Ks) current amplitude in the heart. Heart rhythm : the official journal of the Heart Rhythm Society, 3 (12): 1469-80. [PMID:17161791]

50. Xiong Q, Sun H, Li M. (2007) Zinc pyrithione-mediated activation of voltage-gated KCNQ potassium channels rescues epileptogenic mutants. Nat. Chem. Biol., 3 (5): 287-96. [PMID:17435769]

51. Yang WP, Levesque PC, Little WA, Conder ML, Ramakrishnan P, Neubauer MG, Blanar MA. (1998) Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy. J. Biol. Chem., 273 (31): 19419-23. [PMID:9677360]

52. Yang Y, Sigworth FJ. (1998) Single-channel properties of IKs potassium channels. J. Gen. Physiol., 112 (6): 665-78. [PMID:9834139]

Contributors

Show »

How to cite this page

Bernard Attali, K. George Chandy, Stephan Grissmer, George A. Gutman, Michel Lazdunski, David Mckinnon, Luis A. Pardo, Gail A. Robertson, Bernardo Rudy, Michael C. Sanguinetti, Walter Stühmer, Xiaoliang Wang.
Voltage-gated potassium channels: Kv7.1. Last modified on 27/06/2016. Accessed on 15/08/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=560.