Nav1.5

Target id: 582

Nomenclature: Nav1.5

Family: Voltage-gated sodium channels

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for Nav1.5 in GtoImmuPdb

Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 24 4 2016 3p21 SCN5A sodium voltage-gated channel alpha subunit 5
Mouse 24 4 2020 9 F3-F4 Scn5a sodium channel, voltage-gated, type V, alpha
Rat 24 4 2019 8q32 Scn5a sodium voltage-gated channel alpha subunit 5 14,34
Previous and Unofficial Names
cardiac sodium channel | Skm2 | SkMII | sodium channel protein type 5 | sodium channel, voltage-gated, type V, alpha subunit | sodium channel, voltage gated, type V alpha subunit | sodium channel
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Associated Proteins
Heteromeric Pore-forming Subunits
Name References
Not determined
Auxiliary Subunits
Name References
β4 9,17,25
β3 9-10,15,17
β2 9,17,60
β1 4,9,15,17,23,61
Other Associated Proteins
Name References
Not determined
Associated Protein Comments
Subunit associations are based on co-localization, co-expression in heterologous cells, and co-immunoprecipitation. No biochemical data on Nav1.5 purified from cardiac tissue are available.
Functional Characteristics
Activation V0.5 = -26 mV. Fast inactivation (τ = 1 ms for peak sodium current).
Ion Selectivity and Conductance Comments
Single channel conductance for Nav1.5 is ~20 pS and is not reported to be depended on species [1956,2884,2885]
Voltage Dependence
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -41.0 - 59 HEK 293 cells Rat
Inactivation  -89.0 - 59
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -44.0 - 44 HEK 293 cells Human
Inactivation  -87.0 - 44
Comments  Cs fluoride as major intracellular solute
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  25.9 - 24 HEK-293, tsA-201 Rat
Inactivation  60.4 - 24
Comments  Cs aspartate as the major intracellular solute.

Download all structure-activity data for this target as a CSV file

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
aconitine Hs Partial agonist - - 3x10-5 - 1x10-4 -140.0 29,58
Conc range: 3x10-5 - 1x10-4 M [29,58]
Holding voltage: -140.0 mV
batrachotoxin Rn Full agonist 7.6 pKd - Physiological 45
pKd 7.6 (Kd 2.51x10-8 M) [45]
Holding voltage: Physiological
veratridine Rn Partial agonist 6.3 pEC50 - -30.0 52
pEC50 6.3 (EC50 5.01x10-7 M) [52]
Holding voltage: -30.0 mV
View species-specific activator tables
Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
GNE-131 Hs Inhibition 7.0 pIC50 - - 11
pIC50 7.0 (IC50 1.1x10-7 M) [11]
Description: IC50s were generated on a PatchXpress automated voltage-clamp platform, with the membrane potential maintained at a voltage yielding full inactivation of the channel.
GS-458967 Hs Inhibition 6.9 pIC50 - - 5,16
pIC50 6.9 (IC50 1.3x10-7 M) [5,16]
eleclazine Hs Inhibition - - - - 2
[2]
Gating inhibitors
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
α-scorpion toxin 2 Rn Slows inactivation 7.7 pKd - Physiological 35
pKd 7.7 Inhibitor of fast activation [35]
Holding voltage: Physiological
jingzhaotoxin-III Hs Voltage-dependent inhibition 6.5 pKi - -80.0 36
pKi 6.5 [36]
Holding voltage: -80.0 mV
Description: Whole-cell voltage clamp of human embryonic kidney cells (HEK293) transfected with human Nav1.5.
protoxin II Hs Voltage-dependent inhibition 6.5 pKi - -80.0 26
pKi 6.5 [26]
Holding voltage: -80.0 mV
Description: Whole-cell voltage clamp of human Nav1.5 channels expressed in human embryonic kidney cells (HEK293).
Conditions: Holding potential of -80 mV.
ATX-II Hs Slows inactivation 7.3 pEC50 - -80.0 32
pEC50 7.3 Inhibitor of fast activation [32]
Holding voltage: -80.0 mV
AFT-II Hs Slows inactivation 7.2 pEC50 - -80.0 32
pEC50 7.2 Inhibitor of fast activation [32]
Holding voltage: -80.0 mV
Bc-III Hs Slows inactivation 6.5 pEC50 - -80.0 32
pEC50 6.5 Inhibitor of fast activation [32]
Holding voltage: -80.0 mV
View species-specific gating inhibitor tables
Gating Inhibitor Comments
μ-conotoxin SmIIIA toxin has much higher affinity for tetrodotoxin-sensitive Nav channels, including Nav1.1, Nav1.2, Nav1.3, and Nav1.4.
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
saxitoxin Rn Pore blocker 7.4 pKd - -80.0 8,59
pKd 7.4 [8,59]
Holding voltage: -80.0 mV
tetrodotoxin Rn Pore blocker 5.8 pKd - -80.0 8,59
pKd 5.8 (Kd 1.52x10-6 M) [8,59]
Holding voltage: -80.0 mV
lidocaine Hs Pore blocker 4.8 pKd - -70.0 – -55.0 31
pKd 4.8 [31]
Holding voltage: -70.0 – -55.0 mV
μ-conotoxin SmIIIA Rn Pore blocker 5.5 pKi - -80.0 57
pKi 5.5 [57]
Holding voltage: -80.0 mV
Description: Two-microelectrode of Xenopus oocytes expression rat Nav1.5.
Conditions: Holding potential of -80mV
amiodarone Rn Pore blocker 5.7 pIC50 - Physiological 47
pIC50 5.7 [47]
Holding voltage: Physiological
bupivacaine Hs Pore blocker 4.2 – 5.7 pIC50 - - 43
pIC50 5.7 (IC50 2.18x10-6 M) Blockade of inactivated channel [43]
pIC50 4.2 (IC50 6.95x10-5 M) Open-channel block [43]
quinidine Rn Pore blocker 4.4 – 5.0 pIC50 - Physiological 13,46
pIC50 4.4 – 5.0 [13,46]
Holding voltage: Physiological
lidocaine Rn Pore blocker 4.2 pIC50 - Physiological 13
pIC50 4.2 [13]
Holding voltage: Physiological
ropivacaine Hs Pore blocker 3.5 – 4.6 pIC50 - - 43
pIC50 4.6 (IC50 2.73x10-5 M) Blockade of inactivated channel [43]
pIC50 3.5 (IC50 3.222x10-4 M) Open-channel block [43]
View species-specific channel blocker tables
Tissue Distribution
Heart.
Species:  Mouse
Technique:  Immunohistochemistry
References:  17-18
Developing skeletal muscle.
Species:  Rat
Technique:  Northern Blot
References:  14
Heart (intercalated disks in ventricular myocytes).
Species:  Rat
Technique:  Immunohistochemistry
References:  7
Physiological Functions
Action potential generation and conduction.
Species:  Human
Tissue:  Heart
References:  38,55
Action potential generation and conduction.
Species:  Mouse
Tissue:  Heart
References:  18,34
Physiological Consequences of Altering Gene Expression
The SCN5A -/+ mouse shows a phenotype resembling Lenègre's disease, including age-related lengthening of the P-wave and PR- and QRS-interval duration.
Species:  Mouse
Tissue:  Heart
Technique:  Various
References:  38
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0002972 abnormal cardiac muscle contractility PMID: 11972032 
Scn5atm1Pec Scn5atm1Pec/Scn5atm1Pec
involves: Swiss
MGI:98251  MP:0001544 abnormal cardiovascular system physiology PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0001629 abnormal heart rate PMID: 11972032 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0005294 abnormal heart ventricle morphology PMID: 11972032 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 11972032 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 15809371 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 16403066 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 17145985 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0004215 abnormal myocardial fiber physiology PMID: 11972032 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0004215 abnormal myocardial fiber physiology PMID: 16403066 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0004215 abnormal myocardial fiber physiology PMID: 17145985 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0006142 abnormal sinoatrial node conduction PMID: 17145985 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0004067 abnormal trabecula carnea morphology PMID: 11972032 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0010505 abnormal T wave PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0003141 cardiac fibrosis PMID: 15809371 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0001698 decreased embryo size PMID: 11972032 
Scn5atm1Clhh Scn5atm1Clhh/Scn5atm1Clhh
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0001698 decreased embryo size PMID: 16403066 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0005333 decreased heart rate PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0005333 decreased heart rate PMID: 15809371 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0005333 decreased heart rate PMID: 17145985 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0004567 decreased myocardial fiber number PMID: 11972032 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0006207 embryonic lethality during organogenesis PMID: 11972032 
Scn5atm1Pec Scn5atm1Pec/Scn5atm1Pec
involves: Swiss
MGI:98251  MP:0006207 embryonic lethality during organogenesis PMID: 11533705 
Scn5atm1Clhh Scn5atm1Clhh/Scn5atm1Clhh
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0006207 embryonic lethality during organogenesis PMID: 16403066 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 16403066 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0001636 irregular heartbeat PMID: 11533705 
Scn5atm1Clhh Scn5atm1Clhh/Scn5atm1Clhh
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0001636 irregular heartbeat PMID: 16403066 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0001636 irregular heartbeat PMID: 16403066 
Scn5atm1Clhh Scn5atm1Clhh/Scn5atm1Clhh
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0001651 necrosis PMID: 16403066 
Scn5atm1(SCN5A)Rdn Scn5atm1(SCN5A)Rdn/Scn5atm1(SCN5A)Rdn
involves: 129S6/SvEvTac
MGI:98251  MP:0002169 no abnormal phenotype detected PMID: 17083109 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0002082 postnatal lethality PMID: 16403066 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0002083 premature death PMID: 11533705 
Scn5atm1Care Scn5atm1Care/Scn5atm1Care
FVB.129P2-Scn5a
MGI:98251  MP:0002080 prenatal lethality PMID: 17145985 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0003896 prolonged PR interval PMID: 11972032 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0003896 prolonged PR interval PMID: 15809371 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0003896 prolonged PR interval PMID: 17145985 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0004071 prolonged P wave PMID: 11972032 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0004071 prolonged P wave PMID: 15809371 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0010392 prolonged QRS complex duration PMID: 15809371 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0010392 prolonged QRS complex duration PMID: 17145985 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0003233 prolonged QT interval PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0003233 prolonged QT interval PMID: 15809371 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0003233 prolonged QT interval PMID: 17145985 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0002064 seizures PMID: 16403066 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0008950 ventricular tachycardia PMID: 11972032 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0008950 ventricular tachycardia PMID: 16403066 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Atrial fibrillation, familial, 10; ATFB10
Synonyms: Familial atrial fibrillation [Orphanet: ORPHA334] [Disease Ontology: DOID:0050650]
Disease Ontology: DOID:0050650
OMIM: 614022
Orphanet: ORPHA334
Disease:  Atrial stand still
Synonyms: Atrial cardiomyopathy with heart block
OMIM: 108770
Orphanet: ORPHA1344
Disease:  Brugada syndrome 1; BRGDA1
Synonyms: Brugada syndrome [Orphanet: ORPHA130] [Disease Ontology: DOID:0050451]
Disease Ontology: DOID:0050451
OMIM: 601144
Orphanet: ORPHA130
Role: 
Drugs: 
References:  6,12,28
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human R367H 50
Missense Human A735V 50
Missense Human E1053K 27
Missense Human R1193Q 50,53
Missense Human R1232W 6
Missense Human G1262S 48
Missense Human R1512W 37
Missense Human T1620M 6
Missense Human Y1795H 33
Missense Human A1924T 37
Nonsense Human W1421X 30
Disease:  Cardiomyopathy, dilated, 1E; CMD1E
Synonyms: Dilated cardiomyopathy [Disease Ontology: DOID:12930]
Familial isolated dilated cardiomyopathy [Orphanet: ORPHA154]
Disease Ontology: DOID:12930
OMIM: 601154
Orphanet: ORPHA154
Disease:  Long QT syndrome 3; LQT3
Synonyms: Long QT syndrome [Disease Ontology: DOID:2843]
Romano-Ward syndrome [Orphanet: ORPHA101016]
Disease Ontology: DOID:2843
OMIM: 603830
Orphanet: ORPHA101016
Role: 
Drugs: 
References:  39-40,55
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
In-frame deletion Human K1505-P1506-Q1507 Impairs fast activation 55
Missense Human S941N 42
Missense Human A997S 1
Missense Human N1325S Impairs fast activation and negatively shifts activation. 54
Missense Human R1623Q 21
Missense Human R1664H Positively shifts activation and inactivation. 54
Missense Human E1784K 19,56
Missense Human Y1795C 33
Missense Human R1826H 1
Disease:  Progressive familial heart block, type IA; PFHB1A
Synonyms: Familial progressive cardiac conduction defect [Orphanet: ORPHA871]
OMIM: 113900
Orphanet: ORPHA871
Role: 
References:  38
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Frameshift: Deletion Human 5280delG A one nucleotide deletion causes a frameshift and premature stop codon leading to a truncated protein 41
Missense Human G298S 51
Missense Human D1595N 51
Splice site Human IVS22+2 T>C Causes skipping of exon 22. 41
Disease:  Sick sinus syndrome 1, autosomal recessive; SSS1
Synonyms: Familial sick sinus syndrome [Orphanet: ORPHA166282]
Sick sinus syndrome [Disease Ontology: DOID:13884]
Sick sinus syndrome, congenital [OMIM: 608567]
Sinus bradycardia syndrome, familial [OMIM: 608567]
Sinus node disease, familial, autosomal recessive [OMIM: 608567]
Sinus rhythm, congenital absence of [OMIM: 608567]
Disease Ontology: DOID:13884
OMIM: 608567
Orphanet: ORPHA166282
Role: 
Comments: 
References:  40
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human E161K 49
Missense Human T187I 22
Missense Human L212P 20
Missense Human T220I 3
Missense Human P1298L 3
Missense Human G1408R 3
Missense Human R1632H 3
Missense Human E1784K 3
Disease:  Sudden infant death syndrome
Disease Ontology: DOID:9007
OMIM: 272120
Disease:  Ventricular fibrillation during myocardial infarction, susceptibility to
Synonyms: Idiopathic ventricular fibrillation, not Brugada type
OMIM: 603829
Orphanet: ORPHA228140
Biologically Significant Variants
Type:  Splice variant
Species:  Human
Description:  Isoform b
Amino acids:  2015
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform e
Amino acids:  1983
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform f
Amino acids:  1962
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform a
Amino acids:  2016
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform d
Amino acids:  1998
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform c
Amino acids:  2016
Nucleotide accession: 
Protein accession: 

References

Show »

1. Ackerman MJ, Siu BL, Sturner WQ, Tester DJ, Valdivia CR, Makielski JC, Towbin JA. (2001) Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA, 286 (18): 2264-9. [PMID:11710892]

2. Belardinelli L, Rajamani S, Zeng D. (2015) Compound and methods for treating long qt syndrome. Patent number: US20150038489 A1. Assignee: Gilead Sciences, Inc.. Priority date: 01/08/2013. Publication date: 05/02/2015.

3. Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ, Rhodes TH, George Jr AL. (2003) Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J. Clin. Invest., 112 (7): 1019-28. [PMID:14523039]

4. Biskup C, Zimmer T, Benndorf K. (2004) FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera. Nat. Biotechnol., 22 (2): 220-4. [PMID:14730318]

5. Bossu A, Houtman MJC, Meijborg VMF, Varkevisser R, Beekman HDM, Dunnink A, de Bakker JMT, Mollova N, Rajamani S, Belardinelli L et al.. (2018) Selective late sodium current inhibitor GS-458967 suppresses Torsades de Pointes by mostly affecting perpetuation but not initiation of the arrhythmia. Br. J. Pharmacol., 175 (12): 2470-2482. [PMID:29582428]

6. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, Potenza D, Moya A, Borggrefe M, Breithardt G, Ortiz-Lopez R, Wang Z, Antzelevitch C, O'Brien RE, Schulze-Bahr E, Keating MT, Towbin JA, Wang Q. (1998) Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature, 392 (6673): 293-6. [PMID:9521325]

7. Cohen SA. (1996) Immunocytochemical localization of rH1 sodium channel in adult rat heart atria and ventricle. Presence in terminal intercalated disks. Circulation, 94 (12): 3083-6. [PMID:8989112]

8. Cribbs LL, Satin J, Fozzard HA, Rogart RB. (1990) Functional expression of the rat heart I Na+ channel isoform. Demonstration of properties characteristic of native cardiac Na+ channels. FEBS Lett., 275 (1-2): 195-200. [PMID:2175715]

9. Dhar Malhotra J, Chen C, Rivolta I, Abriel H, Malhotra R, Mattei LN, Brosius FC, Kass RS, Isom LL. (2001) Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation, 103 (9): 1303-10. [PMID:11238277]

10. Fahmi AI, Patel M, Stevens EB, Fowden AL, John JE, Lee K, Pinnock R, Morgan K, Jackson AP, Vandenberg JI. (2001) The sodium channel beta-subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart. J. Physiol. (Lond.), 537 (Pt 3): 693-700. [PMID:11744748]

11. Focken T, Chowdhury S, Zenova A, Grimwood ME, Chabot C, Sheng T, Hemeon I, Decker SM, Wilson M, Bichler P et al.. (2018) Design of Conformationally Constrained Acyl Sulfonamide Isosteres: Identification of N-([1,2,4]Triazolo[4,3- a]pyridin-3-yl)methane-sulfonamides as Potent and Selective hNaV1.7 Inhibitors for the Treatment of Pain. J. Med. Chem., 61 (11): 4810-4831. [PMID:29737846]

12. Hedley PL, Jørgensen P, Schlamowitz S, Moolman-Smook J, Kanters JK, Corfield VA, Christiansen M. (2009) The genetic basis of Brugada syndrome: a mutation update. Hum. Mutat., 30 (9): 1256-66. [PMID:19606473]

13. Hill RJ, Duff HJ, Sheldon RS. (1989) Class I antiarrhythmic drug receptor: biochemical evidence for state-dependent interaction with quinidine and lidocaine. Mol. Pharmacol., 36 (1): 150-9. [PMID:2546048]

14. Kallen RG, Sheng ZH, Yang J, Chen LQ, Rogart RB, Barchi RL. (1990) Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron, 4 (2): 233-42. [PMID:2155010]

15. Ko SH, Lenkowski PW, Lee HC, Mounsey JP, Patel MK. (2005) Modulation of Na(v)1.5 by beta1-- and beta3-subunit co-expression in mammalian cells. Pflugers Arch., 449 (4): 403-12. [PMID:15455233]

16. Koltun DO, Parkhill EQ, Elzein E, Kobayashi T, Notte GT, Kalla R, Jiang RH, Li X, Perry TD, Avila B et al.. (2016) Discovery of triazolopyridine GS-458967, a late sodium current inhibitor (Late INai) of the cardiac NaV 1.5 channel with improved efficacy and potency relative to ranolazine. Bioorg. Med. Chem. Lett., 26 (13): 3202-3206. [PMID:27080178]

17. Maier SK, Westenbroek RE, McCormick KA, Curtis R, Scheuer T, Catterall WA. (2004) Distinct subcellular localization of different sodium channel alpha and beta subunits in single ventricular myocytes from mouse heart. Circulation, 109 (11): 1421-7. [PMID:15007009]

18. Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA. (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc. Natl. Acad. Sci. U.S.A., 99 (6): 4073-8. [PMID:11891345]

19. Makita N, Behr E, Shimizu W, Horie M, Sunami A, Crotti L, Schulze-Bahr E, Fukuhara S, Mochizuki N, Makiyama T, Itoh H, Christiansen M, McKeown P, Miyamoto K, Kamakura S, Tsutsui H, Schwartz PJ, George AL, Roden DM. (2008) The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J. Clin. Invest., 118 (6): 2219-29. [PMID:18451998]

20. Makita N, Sasaki K, Groenewegen WA, Yokota T, Yokoshiki H, Murakami T, Tsutsui H. (2005) Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm, 2 (10): 1128-34. [PMID:16188595]

21. Makita N, Shirai N, Nagashima M, Matsuoka R, Yamada Y, Tohse N, Kitabatake A. (1998) A de novo missense mutation of human cardiac Na+ channel exhibiting novel molecular mechanisms of long QT syndrome. FEBS Lett., 423 (1): 5-9. [PMID:9506831]

22. Makiyama T, Akao M, Tsuji K, Doi T, Ohno S, Takenaka K, Kobori A, Ninomiya T, Yoshida H, Takano M et al.. (2005) High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. J. Am. Coll. Cardiol., 46 (11): 2100-6. [PMID:16325048]

23. Malhotra JD, Thyagarajan V, Chen C, Isom LL. (2004) Tyrosine-phosphorylated and nonphosphorylated sodium channel beta1 subunits are differentially localized in cardiac myocytes. J. Biol. Chem., 279 (39): 40748-54. [PMID:15272007]

24. Mantegazza M, Yu FH, Catterall WA, Scheuer T. (2001) Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proc. Natl. Acad. Sci. U.S.A., 98 (26): 15348-53. [PMID:11742069]

25. Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A, Ye B, Valdivia C, Ueda K, Canizales-Quinteros S, Tusié-Luna MT, Makielski JC, Ackerman MJ. (2007) SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation, 116 (2): 134-42. [PMID:17592081]

26. Middleton RE, Warren VA, Kraus RL, Hwang JC, Liu CJ, Dai G, Brochu RM, Kohler MG, Gao YD, Garsky VM et al.. (2002) Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry, 41 (50): 14734-47. [PMID:12475222]

27. Mohler PJ, Rivolta I, Napolitano C, LeMaillet G, Lambert S, Priori SG, Bennett V. (2004) Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc. Natl. Acad. Sci. U.S.A., 101 (50): 17533-8. [PMID:15579534]

28. Márquez MF, Bonny A, Hernández-Castillo E, De Sisti A, Gómez-Flores J, Nava S, Hidden-Lucet F, Iturralde P, Cárdenas M, Tonet J. (2012) Long-term efficacy of low doses of quinidine on malignant arrhythmias in Brugada syndrome with an implantable cardioverter-defibrillator: a case series and literature review. Heart Rhythm, 9 (12): 1995-2000. [PMID:23059185]

29. Nilius B, Boldt W, Benndorf K. (1986) Properties of aconitine-modified sodium channels in single cells of mouse ventricular myocardium. Gen. Physiol. Biophys., 5 (5): 473-84. [PMID:2433183]

30. Niu DM, Hwang B, Hwang HW, Wang NH, Wu JY, Lee PC, Chien JC, Shieh RC, Chen YT. (2006) A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a nonsense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect. J. Med. Genet., 43 (10): 817-21. [PMID:16707561]

31. Nuss HB, Tomaselli GF, Marbán E. (1995) Cardiac sodium channels (hH1) are intrinsically more sensitive to block by lidocaine than are skeletal muscle (mu 1) channels. J. Gen. Physiol., 106 (6): 1193-209. [PMID:8786356]

32. Oliveira JS, Redaelli E, Zaharenko AJ, Cassulini RR, Konno K, Pimenta DC, Freitas JC, Clare JJ, Wanke E. (2004) Binding specificity of sea anemone toxins to Nav 1.1-1.6 sodium channels: unexpected contributions from differences in the IV/S3-S4 outer loop. J. Biol. Chem., 279 (32): 33323-35. [PMID:15169781]

33. Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P, Napolitano C, Priori SG, Kass RS. (2001) Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J. Biol. Chem., 276 (33): 30623-30. [PMID:11410597]

34. Rogart RB, Cribbs LL, Muglia LK, Kephart DD, Kaiser MW. (1989) Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. Proc. Natl. Acad. Sci. U.S.A., 86 (20): 8170-4. [PMID:2554302]

35. Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA. (1996) Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J. Biol. Chem., 271 (27): 15950-62. [PMID:8663157]

36. Rong M, Chen J, Tao H, Wu Y, Jiang P, Lu M, Su H, Chi Y, Cai T, Zhao L et al.. (2011) Molecular basis of the tarantula toxin jingzhaotoxin-III (β-TRTX-Cj1α) interacting with voltage sensors in sodium channel subtype Nav1.5. FASEB J., 25 (9): 3177-85. [PMID:21665957]

37. Rook MB, Bezzina Alshinawi C, Groenewegen WA, van Gelder IC, van Ginneken AC, Jongsma HJ, Mannens MM, Wilde AA. (1999) Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. Cardiovasc. Res., 44 (3): 507-17. [PMID:10690282]

38. Royer A, van Veen TA, Le Bouter S, Marionneau C, Griol-Charhbili V, Léoni AL, Steenman M, van Rijen HV, Demolombe S, Goddard CA, Richer C, Escoubet B, Jarry-Guichard T, Colledge WH, Gros D, de Bakker JM, Grace AA, Escande D, Charpentier F. (2005) Mouse model of SCN5A-linked hereditary Lenègre's disease: age-related conduction slowing and myocardial fibrosis. Circulation, 111 (14): 1738-46. [PMID:15809371]

39. Ruan Y, Liu N, Bloise R, Napolitano C, Priori SG. (2007) Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation, 116 (10): 1137-44. [PMID:17698727]

40. Ruan Y, Liu N, Priori SG. (2009) Sodium channel mutations and arrhythmias. Nat Rev Cardiol, 6 (5): 337-48. [PMID:19377496]

41. Schott JJ, Alshinawi C, Kyndt F, Probst V, Hoorntje TM, Hulsbeek M, Wilde AA, Escande D, Mannens MM, Le Marec H. (1999) Cardiac conduction defects associate with mutations in SCN5A. Nat. Genet., 23 (1): 20-1. [PMID:10471492]

42. Schwartz PJ, Priori SG, Dumaine R, Napolitano C, Antzelevitch C, Stramba-Badiale M, Richard TA, Berti MR, Bloise R. (2000) A molecular link between the sudden infant death syndrome and the long-QT syndrome. N. Engl. J. Med., 343 (4): 262-7. [PMID:10911008]

43. Schwoerer AP, Scheel H, Friederich P. (2015) A Comparative Analysis of Bupivacaine and Ropivacaine Effects on Human Cardiac SCN5A Channels. Anesth. Analg., 120 (6): 1226-34. [PMID:25692452]

44. Sheets MF, Hanck DA. (1999) Gating of skeletal and cardiac muscle sodium channels in mammalian cells. J. Physiol. (Lond.), 514 ( Pt 2): 425-36. [PMID:9852324]

45. Sheldon RS, Cannon NJ, Duff HJ. (1986) Binding of [3H]batrachotoxinin A benzoate to specific sites on rat cardiac sodium channels. Mol. Pharmacol., 30 (6): 617-23. [PMID:2431264]

46. Sheldon RS, Duff HJ, Thakore E, Hill RJ. (1994) Class I antiarrhythmic drugs: allosteric inhibitors of [3H] batrachotoxinin binding to rat cardiac sodium channels. J. Pharmacol. Exp. Ther., 268 (1): 187-94. [PMID:8301556]

47. Sheldon RS, Hill RJ, Cannon NJ, Duff HJ. (1989) Amiodarone: biochemical evidence for binding to a receptor for class I drugs associated with the rat cardiac sodium channel. Circ. Res., 65 (2): 477-82. [PMID:2546697]

48. Shin DJ, Jang Y, Park HY, Lee JE, Yang K, Kim E, Bae Y, Kim J, Kim J, Kim SS, Lee MH, Chahine M, Yoon SK. (2004) Genetic analysis of the cardiac sodium channel gene SCN5A in Koreans with Brugada syndrome. J. Hum. Genet., 49 (10): 573-8. [PMID:15338453]

49. Smits JP, Koopmann TT, Wilders R, Veldkamp MW, Opthof T, Bhuiyan ZA, Mannens MM, Balser JR, Tan HL, Bezzina CR et al.. (2005) A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J. Mol. Cell. Cardiol., 38 (6): 969-81. [PMID:15910881]

50. Vatta M, Dumaine R, Varghese G, Richard TA, Shimizu W, Aihara N, Nademanee K, Brugada R, Brugada J, Veerakul G, Li H, Bowles NE, Brugada P, Antzelevitch C, Towbin JA. (2002) Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum. Mol. Genet., 11 (3): 337-45. [PMID:11823453]

51. Wang DW, Viswanathan PC, Balser JR, George AL, Benson DW. (2002) Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation, 105 (3): 341-6. [PMID:11804990]

52. Wang G, Dugas M, Armah BI, Honerjäger P. (1990) Sodium channel comodification with full activator reveals veratridine reaction dynamics. Mol. Pharmacol., 37 (2): 144-8. [PMID:2154667]

53. Wang Q, Chen S, Chen Q, Wan X, Shen J, Hoeltge GA, Timur AA, Keating MT, Kirsch GE. (2004) The common SCN5A mutation R1193Q causes LQTS-type electrophysiological alterations of the cardiac sodium channel. J. Med. Genet., 41 (5): e66. [PMID:15121794]

54. Wang Q, Shen J, Li Z, Timothy K, Vincent GM, Priori SG, Schwartz PJ, Keating MT. (1995) Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum. Mol. Genet., 4 (9): 1603-7. [PMID:8541846]

55. Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, Moss AJ, Towbin JA, Keating MT. (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell, 80 (5): 805-11. [PMID:7889574]

56. Wei J, Wang DW, Alings M, Fish F, Wathen M, Roden DM, George AL. (1999) Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation, 99 (24): 3165-71. [PMID:10377081]

57. Wilson MJ, Yoshikami D, Azam L, Gajewiak J, Olivera BM, Bulaj G, Zhang MM. (2011) μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc. Natl. Acad. Sci. U.S.A., 108 (25): 10302-7. [PMID:21652775]

58. Wright SN. (2002) Comparison of aconitine-modified human heart (hH1) and rat skeletal (mu1) muscle Na+ channels: an important role for external Na+ ions. J Physiol., 3 (538): 759-771. [PMID:11826163]

59. Zeng D, Kyle JW, Martin RL, Ambler KS, Hanck DA. (1996) Cardiac sodium channels expressed in a peripheral neurotumor-derived cell line, RT4-B8. Am. J. Physiol., 270 (5 Pt 1): C1522-31. [PMID:8967455]

60. Zimmer T, Benndorf K. (2007) The intracellular domain of the beta 2 subunit modulates the gating of cardiac Na v 1.5 channels. Biophys. J., 92 (11): 3885-92. [PMID:17369409]

61. Zimmer T, Biskup C, Bollensdorff C, Benndorf K. (2002) The beta1 subunit but not the beta2 subunit colocalizes with the human heart Na+ channel (hH1) already within the endoplasmic reticulum. J. Membr. Biol., 186 (1): 13-21. [PMID:11891585]

Contributors

Show »

How to cite this page

William A. Catterall, Alan L. Goldin, Stephen G. Waxman.
Voltage-gated sodium channels: Nav1.5. Last modified on 26/06/2018. Accessed on 19/07/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=582.