Top ▲

mevalonate kinase

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 640

Nomenclature: mevalonate kinase

Family: Lanosterol biosynthesis pathway

Gene and Protein Information Click here for help
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human - 396 12q24.11 MVK mevalonate kinase 8
Mouse - 395 5 55.99 cM Mvk mevalonate kinase
Rat - 395 12q16 Mvk mevalonate kinase
Previous and Unofficial Names Click here for help
ATP:mevalonate 5-phosphotransferase | mevalonate 5-phosphotransferase | mevalonate phosphokinase | mevalonic acid kinase | mevalonic kinase | MVA kinase | LRBP | MK | LH receptor mRNA-binding protein
Database Links Click here for help
Alphafold
BRENDA
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Enzyme
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of rat mevalonate kinase in complex with feedback inhibitor farnesyl diphosphate
PDB Id:  2R42
Ligand:  farnesyl diphosphate   This ligand is endogenous
Resolution:  2.4Å
Species:  Rat
References:  7
Enzyme Reaction Click here for help
EC Number: 2.7.1.36 ATP + (R)-mevalonate -> ADP + (R)-5-phosphomevalonate
Substrates and Reaction Kinetics Click here for help
Substrate Sp. Property Value Units Standard property Standard value Assay description Assay conditions Comments Reference
ATP Substrate is endogenous in the given species Rn Kcat 21.9 s-1 wild type purified enzyme; in vitro assay pH 7.5, 34°C Concentration of substrates and cofactors: 0.16 mM NADH, 5 mM MgCl2, 4 mM ATP, 3 mM (RS)-mevalonic acid 3
ATP Substrate is endogenous in the given species Hs Km 7.4x10-5 M pKm 4.1 wild type enzyme, in vitro assay pH 7.0, 30°C 20
ATP Substrate is endogenous in the given species Hs Km 1.784x10-4 M pKm 3.7 recombinant human MVK expressed in E coli; spectrophotometric assay pH 7.5, 30°C Concentration of substrates and cofactors: 10 mM MgCl2, 0.2 mM NADH, saturating concentration of (R,S)-mevalonic acid. Concentration of ATP varied between 0.02-6.0 mM. 7
ATP Substrate is endogenous in the given species Hs Km 4.4x10-4 M pKm 3.4 recombinant enzyme expressed in E coli, purified by affinity chromatography; in vitro assay- spectrophotometric assay pH 7.0 Concentration of substrates and cofactors: 6mM MgCl2, 0.2mM NADH, 2mM (R,S)-mevalonate. Concentration of ATP varied between 0.16-5mM. 9
ATP Substrate is endogenous in the given species Rn Km 9.5x10-4 M pKm 3.0 wild type purified enzyme; in vitro assay pH 7.5, 34°C Concentration of substrates and cofactors: 0.16 mM NADH, 5mM MgCl2, 3 mM (RS)-mevalonate. Concentration of ATP varied between 0.05-1mM 3
ATP Substrate is endogenous in the given species Rn Km 9.53x10-4 M pKm 3.0 recombinant overexpression in E coli and purification, in vitro assay pH 7.5, 25°C Concentration of substrates and cofactors: 0.16 mM NADH, 4 mM ATP, 3 mM (RS)-mevalonate, 5 mM MgCl2 1
ATP Substrate is endogenous in the given species Rn Km 9.53x10-4 M pKm 3.0 wild type purified enzyme; in vitro assay pH 7.2, 25°C Concentration of substrates and cofactors; 3mM (RS)-mevalonate, 0.16mM NADH. Concentration of ATP was varied between 0.1 to 10mM 2
ATP Substrate is endogenous in the given species Rn Km 1.24x10-3 M pKm 2.9 recombinant enzyme, expression and purification in E coli; in vitro assay pH 7.0, 30°C 21
ATP Substrate is endogenous in the given species Rn Km 1.75x10-3 M pKm 2.8 wild type purified enzyme, in vitro assay pH 7.0, 25°C Concentration of substrates and cofactors: 0.5mM NADH, 10mM MgCl2, 1mM (R,S)-mevalonate. Concentrations of ATP varied between 0.1-2mM 24
(RS)-mevalonate Substrate is endogenous in the given species Hs Km 2.4x10-5 M pKm 4.6 recombinant enzyme, in vitro assay pH 7.0, 30°C 20
(RS)-mevalonate Substrate is endogenous in the given species Rn Km 3.5x10-5 M pKm 4.5 recombinant enzyme, overexpression in E coli and purification, in vitro assay pH 7.0, 25°C Concentration of substrates and cofactors: 0.16 mM NADH, 4 mM ATP, 3 mM (RS)-mevalonate, 5 mM MgCl2 1
(RS)-mevalonate Substrate is endogenous in the given species Rn Km 3.5x10-5 M pKm 4.5 purified wild type enzyme; in vitro assay pH 7.5, 34°C Concentration of substrates and cofactors: 0.16 mM NADH, 5mM MgCl2, 4 mM ATP. Concentration of (RS)-mevalonate varied between 0.03-5mM 3
(RS)-mevalonate Substrate is endogenous in the given species Rn Km 3.5x10-5 M pKm 4.5 purified wild type enzyme; in vitro assay pH 7.2, 25°C Concentrations of substrates and cofactors: 4mM ATP, 0.16mM NADH, concentration of (RS)-mevalonate varied between 0.01 to 10 mM 2
(RS)-mevalonate Substrate is endogenous in the given species Hs Km 4.08x10-5 M pKm 4.4 recombinant human MVK expressed in E coli; spectrophotometric assay pH 7.5, 30°C Concentration of substrates and cofactors: 10 mM MgCl2, 0.2 mM NADH, 6mM ATP, concentration of (R,S)-mevalonic acid varied between 0.017- 3.5 mM 7
(RS)-mevalonate Substrate is endogenous in the given species Hs Km 1.5x10-4 M pKm 3.8 recombinant enzyme expressed in E coli, purified by affinity chromatography; in vitro assay- spectrophotometric assay pH 7.0 Concentration of substrates and cofactors: 6mM MgCl2, 0.2mM NADH, 5mM ATP. Concentration of (R,S)-mevalonate varied. 9
(RS)-mevalonate Substrate is endogenous in the given species Rn Km 2.71x10-4 M pKm 3.6 wild type purified enzyme, in vitro assay pH 7.0, 25°C Concentration of substrates and cofactors: 2mM ATP, 0.5mM NADH, 10mM MgCl2. Concentration of (R,S)-mevalonate varied between 30-400µM 24
(RS)-mevalonate Substrate is endogenous in the given species Rn Km 2.88x10-4 M pKm 3.5 recombinant expression and purification in E coli; in vitro assay pH 7.0, 30°C 21
ATP Substrate is endogenous in the given species Hs Vmax 37 µmol/min/mg wild type enzyme, in vitro assay pH 7.0, 30°C 20
ATP Substrate is endogenous in the given species Rn Vmax 38.7 µmol/min/mg wild type purified enzyme; in vitro assay pH 7.5, 34°C Concentration of substrates and cofactors: 0.16 mM NADH, 5 mM MgCl2, 4 mM ATP, 3 mM (RS)-mevalonic acid 3
(RS)-mevalonate Substrate is endogenous in the given species Hs Vmax 13.6 µmol/min/mg 0.3-0.5µg of purified recombinant enzyme; in vitro assay pH 7.0 Concentration of substrates and cofactors: 6mM MgCl2, 0.2mM NADH, 5mM ATP. Concentration of (R,S)-mevalonate varied. 9
(RS)-mevalonate Substrate is endogenous in the given species Hs Vmax 28 µmol/min/mg recombinant human MVK expressed in E coli; spectrophotometric assay pH 7.5, 30° Concentration of substrates and cofactors: 10 mM MgCl2, 0.2 mM NADH, 6mM ATP, concentration of (R,S)-mevalonic acid varied between 0.017- 3.5 mM 7
(RS)-mevalonate Substrate is endogenous in the given species Rn Vmax 29.4 µmol/min/mg Wild type partially purified, in vitro assay, 1.7µg of purified enzyme pH 7.0, 25°C Concentration of substrates and cofactors: 2mM ATP, 0.5mM NADH, 10mM MgCl2. Concentration of (R,S)-mevalonate varied between 30-400µM 24
(RS)-mevalonate Substrate is endogenous in the given species Rn Vmax 30.2 µmol/min/mg recombinant expression and purification in E coli; in vitro assay pH 7.0, 30°C 21
(RS)-mevalonate Substrate is endogenous in the given species Hs Vmax 37 µmol/min/mg recombinant enzyme, in vitro assay pH 7.0, 30°C 20
(RS)-mevalonate Substrate is endogenous in the given species Rn Vmax 38.7 µmol/min/mg purified wild type enzyme; in vitro assay pH 7.5, 34°C Concentration of substrates and cofactors: 0.16 mM NADH, 5 mM MgCl2, 4 mM ATP, 3 mM (RS)-mevalonic acid 3
(RS)-mevalonate Substrate is endogenous in the given species Rn Vmax 38.7 µmol/min/mg recombinant enzyme, overexpression in E coli and purification, in vitro assay pH 7.0, 25°C Concentration of substrates and cofactors: 0.16 mM NADH, 4 mM ATP, 3 mM (RS)-mevalonate, 5 mM MgCl2 1
(RS)-mevalonate Substrate is endogenous in the given species Rn Vmax 38.7 µmol/min/mg purified wild type enzyme; in vitro assay pH 7.2, 25°C Concentration of substrates and cofactors: 0.16 mM NADH, 5 mM MgCl2, 4 mM ATP, 3 mM (RS)-mevalonic acid 2
Cofactors Click here for help
Cofactor Species Comments Reference
Mg2+ Human The reaction catalysed by mevalonate kinase requires a divalent cation. Use of magnesium as a cofactor has also been characterised in rats. 7,11,22

Download all structure-activity data for this target as a CSV file go icon to follow link

Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
farnesyl thiodiphosphate Small molecule or natural product Hs Inhibition 7.5 pKi 26
pKi 7.5 (Ki 2.9x10-8 M) [26]
Description: Spectrophotometric in vitro assay
Conditions: 30°C, pH 7.5. ATP concentration varied from 0.02-5mM, mevalonate concentration varied from 0.02 to 0.6mM
trans,trans-farnesyl diphosphate Small molecule or natural product Ligand is endogenous in the given species Ligand has a PDB structure Hs Feedback inhibition 7.0 – 7.5 pKi 7,9
pKi 7.5 (Ki 3.4x10-8 M) [7]
Description: recombinant wild type enzyme expressed in E coli, in vitro spectrophotometric assay
Conditions: 30°C, pH 7.5; 0.5-11µM (R,S)-mevalonic acid, 6mM ATP
pKi 7.0 (Ki 1.01x10-7 M) [9]
Description: recombinant enzyme expressed in E coli cells. Spectrophotometric assay
Conditions: pH 7.0, 25°C. Concentration of mevalonate fixed and saturating; ATP varied between 0.16-5mM
geranylgeranyl diphosphate Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Feedback inhibition 7.2 pKi 9
pKi 7.2 (Ki 5.9x10-8 M) [9]
Description: recombinant enzyme expressed in E coli cells. Spectrophotometric assay
Conditions: pH 7.0, 25°C. Saturating concentrations of substrates, 0.16-5mM ATP
geranyl diphosphate Small molecule or natural product Ligand is endogenous in the given species Ligand has a PDB structure Hs Feedback inhibition 6.9 pKi 9
pKi 6.9 (Ki 1.16x10-7 M) [9]
Description: recombinant enzyme expressed in E coli cells. Spectrophotometric assay
Conditions: pH 7.0, 25°C, saturating concentrations of substrates, 0.16-5mM ATP
farnesyl thiodiphosphate Small molecule or natural product Rn Inhibition 6.3 pKi 26
pKi 6.3 (Ki 4.73x10-7 M) [26]
Description: Spectrophotometric in vitro assay
Conditions: 30°C, pH 7.5. ATP concentration varied from 0.02-5mM, mevalonate concentration varied from 0.02 to 0.6mM
trans,trans-farnesyl diphosphate Small molecule or natural product Ligand is endogenous in the given species Ligand has a PDB structure Rn Feedback inhibition 5.6 – 6.5 pKi 24,26
pKi 6.5 (Ki 3.48x10-7 M) [26]
Description: spectrophotometric in vitro assay
Conditions: Substrate concentrations: ATP concentration varied from 0.02-5mM, mevalonate concentration vaired from 0.02 to 0.6mM
pKi 5.6 (Ki 2.5x10-6 M) [24]
Description: in vitro, spectrophotometric assay
Conditions: pH 7.0, 25°C. Concentration of FPP varied (2µM and 6µM). MgATP2- concentration varied between 0.2-2mM.
isopentenyl diphosphate Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Feedback inhibition 4.8 pKi 9
pKi 4.8 (Ki 1.6x10-5 M) [9]
Description: recombinant enzyme expressed in E coli cells. Spectrophotometric assay
Conditions: pH 7.0, 25°C. Saturating concentrations of substrates, 0.16-5mM ATP
dimethylallyl diphosphate Small molecule or natural product Ligand is endogenous in the given species Hs Competitive 4.7 pKi 9
pKi 4.7 (Ki 2x10-5 M) [9]
Description: recombinant enzyme expressed in E coli cells. Spectrophotometric assay
Conditions: pH 7.0, 25°C. Saturating concentrations of substrates, 0.16-5mM ATP
farnesol Small molecule or natural product Hs Competitive 4.1 pKi 9
pKi 4.1 (Ki 7.2x10-5 M) [9]
Description: recombinant enzyme expressed in E coli cells. Spectrophotometric assay
Conditions: pH 7.0, 25°C. Saturating concentrations of substrates, 0.16-5mM ATP
dolichol phosphate Small molecule or natural product Hs Competitive 4.1 pKi 9
pKi 4.1 (Ki 8.3x10-5 M) [9]
Description: recombinant enzyme expressed in E coli cells. Spectrophotometric assay
Conditions: pH 7.0, 25°C. Saturating concentrations of substrates, 0.16-5mM ATP
geranyl diphosphate Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Feedback inhibition 5.3 pIC50 22
pIC50 5.3 (IC50 5x10-6 M) [22]
Description: in vitro assay, enzyme expressed in E coli, purified
Conditions: pH 7.0-8.0, 30 ºC. Substrate concentrations: 4mM ATP, 3mM RS-mevalonate, 0.16mM NADH
(RS)-5-diphosphomevalonate Small molecule or natural product Rn Feedback inhibition 3.7 pIC50 22
pIC50 3.7 (IC50 1.8x10-4 M) [22]
Description: in vitro assay, enzyme expressed in E coli, purified
Conditions: pH 7.0-8.0, temp 30 ºC. Concentration of substrates: 4mM ATP, 3mM RS-mevalonate, 0.16mM NADH.
View species-specific inhibitor tables
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  Immune regulation
Tissue Distribution Click here for help
Liver, kidney, brain and heart tissue
Expression level:  High
Species:  Human
Technique:  Northern blot
References:  19
Liver
Species:  Human
Technique:  Immunocytochemistry
References:  14
Liver, kidney, brain and heart tissue
Expression level:  High
Species:  Mouse
Technique:  Northern blot
References:  19
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Hyper-IgD syndrome
Synonyms: Hyperimmunoglobulinemia D with periodic fever [Orphanet: ORPHA343]
OMIM: 260920
Orphanet: ORPHA343
References:  15-16
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human H20Q 60T>A 5
Missense Human H20N 149C>A 4
Missense Human H20P 150A>C 4,16-17
Missense Human L39P 116T>C 4,16
Missense Human V132I 394G>A 5
Missense Human S135L 404C>T 16
Missense Human A148T 442G>T 5,16
Missense Human S150L 540C>T 4
Missense Human P167L 591C>T 4,6
Missense Human G171R 511G>A 5
Missense Human G202R 695G>A 4
Missense Human G211E 632G>A 5
Missense Human R215Q 735G>A 4-5
Missense Human V250I 748G>A 5
Missense Human L265R 794T>G 5
Missense Human I268T 803T>C 4-6,10,16-17
Missense Human G309S 1016G>A 4
Missense Human V310M 928G>A 5,16,18
Missense Human G326R 1067G>A 4
Missense Human G376V 1127G>T 5
Missense Human V377I 1129G>A This is the most frequent mutation in Hyper-IgD syndrome 4-6,16-17
Disease:  Mevalonic aciduria
Disease Ontology: DOID:0050452
OMIM: 610377
Orphanet: ORPHA29
References:  12-13
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human H20P 59A>C Compound heterozygosity for the nucleotide transversion with 1129G>A (V377I) 4,16-17
Missense Human T243I 728C>T 10
Missense Human L264F 790C>T 10,16
Missense Human L265P 794T>C This mutation leads to a significant increase in the quantity of MVK protein produced. 10
Missense Human I268T 803T>C 4-6,10,16-17
Missense Human N301T 902A>C The presence of the missense mutation in the patient was confirmed by PCR amplification 23
Missense Human V310M 928G>A 5,16,18
Missense Human A334T 1000G>A 4,16,18
Disease:  Porokeratosis 3, disseminated superficial actinic type; POROK3
Synonyms: Disseminated superficial actinic porokeratosis [Orphanet: ORPHA79152]
OMIM: 175900
Orphanet: ORPHA79152
References:  27
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human L41P 122T>C Heterozygous nucleotide transition in exon 3 of the MVK gene 27
Missense Human L225P 764T>C Heterozygous nucleotide transition in exon 8 of the MVK gene 27
Missense Human F364S 1094T>C Heterozygous nucleotide transition in exon 11 of the MVK gene. 27
Splice site Human L348IfsX17 c.1039+2T>C The insertion of 11 bp at the splice donor site in intron 10 results in a frameshift and premature truncation of the protein 27
General Comments
Deficiency in mevalonate kinase causes metabolic inflammatory disease [25].

References

Show »

1. Chu X, Li D. (2003) Cloning, expression, and purification of His-tagged rat mevalonate kinase. Protein Expr Purif, 27 (1): 165-70. [PMID:12509999]

2. Chu X, Li D. (2003) Expression, purification, and characterization of His20 mutants of rat mevalonate kinase. Protein Expr Purif, 32 (1): 75-82. [PMID:14680942]

3. Chu X, Yu W, Wu L, Liu X, Li N, Li D. (2007) Effect of a disulfide bond on mevalonate kinase. Biochim Biophys Acta, 1774 (12): 1571-81. [PMID:17964869]

4. Cuisset L, Drenth JP, Simon A, Vincent MF, van der Velde Visser S, van der Meer JW, Grateau G, Delpech M, International Hyper-IgD Study Group. (2001) Molecular analysis of MVK mutations and enzymatic activity in hyper-IgD and periodic fever syndrome. Eur J Hum Genet, 9 (4): 260-6. [PMID:11313769]

5. D'Osualdo A, Picco P, Caroli F, Gattorno M, Giacchino R, Fortini P, Corona F, Tommasini A, Salvi G, Specchia F et al.. (2005) MVK mutations and associated clinical features in Italian patients affected with autoinflammatory disorders and recurrent fever. Eur J Hum Genet, 13 (3): 314-20. [PMID:15536479]

6. Drenth JP, Cuisset L, Grateau G, Vasseur C, van de Velde-Visser SD, de Jong JG, Beckmann JS, van der Meer JW, Delpech M. (1999) Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. International Hyper-IgD Study Group. Nat Genet, 22 (2): 178-81. [PMID:10369262]

7. Fu Z, Voynova NE, Herdendorf TJ, Miziorko HM, Kim JJ. (2008) Biochemical and structural basis for feedback inhibition of mevalonate kinase and isoprenoid metabolism. Biochemistry, 47 (12): 3715-24. [PMID:18302342]

8. Gibson KM, Hoffmann GF, Tanaka RD, Bishop RW, Chambliss KL. (1997) Mevalonate kinase map position 12q24. Chromosome Res, 5 (2): 150. [PMID:9146921]

9. Hinson DD, Chambliss KL, Toth MJ, Tanaka RD, Gibson KM. (1997) Post-translational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways. J Lipid Res, 38 (11): 2216-23. [PMID:9392419]

10. Hinson DD, Ross RM, Krisans S, Shaw JL, Kozich V, Rolland MO, Divry P, Mancini J, Hoffmann GF, Gibson KM. (1999) Identification of a mutation cluster in mevalonate kinase deficiency, including a new mutation in a patient of Mennonite ancestry. Am J Hum Genet, 65 (2): 327-35. [PMID:10417275]

11. Hoffmann F, Lohse P, Stojanov S, Shin YS, Renner ED, Kéry A, Zellerer S, Belohradsky BH. (2005) Identification of a novel mevalonate kinase gene mutation in combination with the common MVK V377I substitution and the low-penetrance TNFRSF1A R92Q mutation. Eur J Hum Genet, 13 (4): 510-2. [PMID:15657603]

12. Hoffmann G, Gibson KM, Brandt IK, Bader PI, Wappner RS, Sweetman L. (1986) Mevalonic aciduria--an inborn error of cholesterol and nonsterol isoprene biosynthesis. N Engl J Med, 314 (25): 1610-4. [PMID:3012338]

13. Hoffmann GF, Charpentier C, Mayatepek E, Mancini J, Leichsenring M, Gibson KM, Divry P, Hrebicek M, Lehnert W, Sartor K. (1993) Clinical and biochemical phenotype in 11 patients with mevalonic aciduria. Pediatrics, 91 (5): 915-21. [PMID:8386351]

14. Hogenboom S, Tuyp JJ, Espeel M, Koster J, Wanders RJ, Waterham HR. (2004) Mevalonate kinase is a cytosolic enzyme in humans. J Cell Sci, 117 (Pt 4): 631-9. [PMID:14730012]

15. Houten SM, Frenkel J, Rijkers GT, Wanders RJ, Kuis W, Waterham HR. (2002) Temperature dependence of mutant mevalonate kinase activity as a pathogenic factor in hyper-IgD and periodic fever syndrome. Hum Mol Genet, 11 (25): 3115-24. [PMID:12444096]

16. Houten SM, Koster J, Romeijn GJ, Frenkel J, Di Rocco M, Caruso U, Landrieu P, Kelley RI, Kuis W, Poll-The BT et al.. (2001) Organization of the mevalonate kinase (MVK) gene and identification of novel mutations causing mevalonic aciduria and hyperimmunoglobulinaemia D and periodic fever syndrome. Eur J Hum Genet, 9 (4): 253-9. [PMID:11313768]

17. Houten SM, Kuis W, Duran M, de Koning TJ, van Royen-Kerkhof A, Romeijn GJ, Frenkel J, Dorland L, de Barse MM, Huijbers WA et al.. (1999) Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nat Genet, 22 (2): 175-7. [PMID:10369261]

18. Houten SM, Romeijn GJ, Koster J, Gray RG, Darbyshire P, Smit GP, de Klerk JB, Duran M, Gibson KM, Wanders RJ et al.. (1999) Identification and characterization of three novel missense mutations in mevalonate kinase cDNA causing mevalonic aciduria, a disorder of isoprene biosynthesis. Hum Mol Genet, 8 (8): 1523-8. [PMID:10401001]

19. Murphy C, Murray AM, Meaney S, Gåfvels M. (2007) Regulation by SREBP-2 defines a potential link between isoprenoid and adenosylcobalamin metabolism. Biochem Biophys Res Commun, 355 (2): 359-64. [PMID:17300749]

20. Potter D, Miziorko HM. (1997) Identification of catalytic residues in human mevalonate kinase. J Biol Chem, 272 (41): 25449-54. [PMID:9325256]

21. Potter D, Wojnar JM, Narasimhan C, Miziorko HM. (1997) Identification and functional characterization of an active-site lysine in mevalonate kinase. J Biol Chem, 272 (9): 5741-6. [PMID:9038186]

22. Qiu Y, Li D. (2006) Bifunctional inhibitors of mevalonate kinase and mevalonate 5-diphosphate decarboxylase. Org Lett, 8 (6): 1013-6. [PMID:16524256]

23. Schafer BL, Bishop RW, Kratunis VJ, Kalinowski SS, Mosley ST, Gibson KM, Tanaka RD. (1992) Molecular cloning of human mevalonate kinase and identification of a missense mutation in the genetic disease mevalonic aciduria. J Biol Chem, 267 (19): 13229-38. [PMID:1377680]

24. Tanaka RD, Schafer BL, Lee LY, Freudenberger JS, Mosley ST. (1990) Purification and regulation of mevalonate kinase from rat liver. J Biol Chem, 265 (4): 2391-8. [PMID:2153681]

25. van der Burgh R, Ter Haar NM, Boes ML, Frenkel J. (2013) Mevalonate kinase deficiency, a metabolic autoinflammatory disease. Clin Immunol, 147 (3): 197-206. [PMID:23110805]

26. Voynova NE, Rios SE, Miziorko HM. (2004) Staphylococcus aureus mevalonate kinase: isolation and characterization of an enzyme of the isoprenoid biosynthetic pathway. J Bacteriol, 186 (1): 61-7. [PMID:14679225]

27. Zhang SQ, Jiang T, Li M, Zhang X, Ren YQ, Wei SC, Sun LD, Cheng H, Li Y, Yin XY et al.. (2012) Exome sequencing identifies MVK mutations in disseminated superficial actinic porokeratosis. Nat Genet, 44 (10): 1156-60. [PMID:22983302]

Contributors

Show »

How to cite this page