LPA4 receptor

Target id: 94

Nomenclature: LPA4 receptor

Family: Lysophospholipid (LPA) receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for LPA4 receptor in GtoImmuPdb

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 370 Xq21.1 LPAR4 lysophosphatidic acid receptor 4
Mouse 7 370 X Lpar4 lysophosphatidic acid receptor 4
Rat 7 370 Xq31 Lpar4 lysophosphatidic acid receptor 4
Previous and Unofficial Names
P2RY9 | P2Y5-like receptor | GPR23 | G protein-coupled receptor 23 | LPA receptor 4 | LPA4 | P2Y purinoceptor 9 | Purinergic receptor 9
Database Links
Specialist databases
GPCRDB lpar4_human (Hs), lpar4_mouse (Mm)
Other databases
ChEMBL Target
Ensembl Gene
Entrez Gene
GenitoUrinary Development Molecular Anatomy Project
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands
LPA
Comments: Proposed ligand in several publications but not replicated in a recent study based on β-arrestin recruitment [8].

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
LPA Hs Agonist 7.3 pKd 6
pKd 7.3 [6]
LPA Mm Agonist 7.3 pKd 6
pKd 7.3 (Kd 4.5x10-8 M) [6]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[1-bromo-(3S)-hydrox-4-(palmitoyloxy)butyl]phosphate Hs Antagonist 6.6 pIC50 4
pIC50 6.6 (IC50 2.66x10-7 M) [4]
farnesyl monophosphate Hs Antagonist 5.8 pIC50 10
pIC50 5.8 [10]
farnesyl diphosphate Hs Antagonist 5.7 pIC50 10
pIC50 5.7 [10]
AM966 Hs Antagonist 5.1 pIC50 9
pIC50 5.1 [9]
Primary Transduction Mechanisms
Transducer Effector/Response
Gs family
Gi/Go family
Gq/G11 family
G12/G13 family
Adenylate cyclase stimulation
Comments:  Increase in intracellular calcium and cAMP formation; adenylate cyclase activity may be cell type dependent [11]. Others include: phosphatidylinositol-3-kinase, RAS, Rho. For a detailed review please see [1].
References:  6
Tissue Distribution
Ovary, thymus, pancreas, brain, heart, small intestine, testis, prostate, colon, spleen
Species:  Human
Technique:  RT-PCR
References:  6
Embryonic brain, maxillary processes, branchial arches, limb buds, liver, somites, heart, ovary, skin, thymus, bone marrow
Species:  Mouse
Technique:  Northern blot, in situ hybridisation
References:  7
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Neurite retraction
Species:  Rat
Tissue:  Brain
Response measured:  Neurite retraction in B103 neuroblastoma cells
References:  11
Stress fiber formation
Species:  Rat
Tissue:  Liver
Response measured:  Stress fiber formation in RH7777 hepatoma cells
References:  11
Cell aggregation and cadherin-dependent cell adhesion
Species:  Rat
Tissue:  Brain
Response measured:  Cell aggregation and cadherin-dependent cell adhesion in B103 neuroblastoma cells
References:  11
Physiological Functions
Negative regulation of cell motility
Species:  Mouse
Tissue:  Fibroblasts
References:  5
Physiological Consequences of Altering Gene Expression
Mice with receptor knockout are hypersensitive to LPA-induced cell migration.
Species:  Mouse
Tissue:  Fibroblast
Technique:  Gene knockouts
References:  5
Mice with receptor knockout demonstrate reduced numbers of hematopoietic stem/progenitor cells and are hypersusceptible to myelosuppresion, due to LPA4-mediated hematopoiesis-supporting activity of bone marrow stromal cells.
Species:  Mouse
Tissue:  Bone marrow PDGFRα (+) stromal cells
Technique:  Gene knockouts
References:  3
Lysophosphatidic acid receptors LPA4 and LPA6 differentially promote lymphocyte transmigration across high endothelial venules in lymph nodes.
Species:  Mouse
Tissue:  Lymphocyte
Technique:  Gene knockouts
References:  2

References

Show »

1. Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J. (2010) LPA receptors: subtypes and biological actions. Annu. Rev. Pharmacol. Toxicol.50: 157-86. [PMID:20055701]

2. Hata E, Sasaki N, Takeda A, Tohya K, Umemoto E, Akahoshi N, Ishii S, Bando K, Abe T, Kano K et al.. (2016) Lysophosphatidic acid receptors LPA4 and LPA6 differentially promote lymphocyte transmigration across high endothelial venules in lymph nodes. Int. Immunol.28 (6): 283-92. [PMID:26714589]

3. Igarashi H, Akahoshi N, Ohto-Nakanishi T, Yasuda D, Ishii S. (2015) The lysophosphatidic acid receptor LPA4 regulates hematopoiesis-supporting activity of bone marrow stromal cells. Sci Rep5: 11410. [PMID:26090649]

4. Kano K, Arima N, Ohgami M, Aoki J. (2008) LPA and its analogs-attractive tools for elucidation of LPA biology and drug development. Curr. Med. Chem.15 (21): 2122-31. [PMID:18781939]

5. Lee Z, Cheng CT, Zhang H, Subler MA, Wu J, Mukherjee A, Windle JJ, Chen CK, Fang X. (2008) Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol. Biol. Cell19 (12): 5435-45. [PMID:18843048]

6. Noguchi K, Ishii S, Shimizu T. (2003) Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem278: 25600-25606. [PMID:12724320]

7. Ohuchi H, Hamada A, Matsuda H, Takagi A, Tanaka M, Aoki J, Arai H, Noji S. (2008) Expression patterns of the lysophospholipid receptor genes during mouse early development. Dev. Dyn.237 (11): 3280-94. [PMID:18924241]

8. Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, Merritt A, Bassoni DL, Raab WJ, Quinn E, Wehrman TS et al.. (2013) Screening β-Arrestin Recruitment for the Identification of Natural Ligands for Orphan G-Protein-Coupled Receptors. J Biomol Screen18 (5): 599-609. [PMID:23396314]

9. Swaney JS, Chapman C, Correa LD, Stebbins KJ, Bundey RA, Prodanovich PC, Fagan P, Baccei CS, Santini AM, Hutchinson JH et al.. (2010) A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br. J. Pharmacol.160 (7): 1699-713. [PMID:20649573]

10. Williams JR, Khandoga AL, Goyal P, Fells JI, Perygin DH, Siess W, Parrill AL, Tigyi G, Fujiwara Y. (2009) Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate receptor indicates role in human platelet activation. J. Biol. Chem.284 (25): 17304-19. [PMID:19366702]

11. Yanagida K, Ishii S, Hamano F, Noguchi K, Shimizu T. (2007) LPA4/p2y9/GPR23 mediates rho-dependent morphological changes in a rat neuronal cell line. J. Biol. Chem.282 (8): 5814-24. [PMID:17172642]

Contributors

Show »

How to cite this page

Yasuyuki Kihara, Yun C. Yung, Jerold Chun.
Lysophospholipid (LPA) receptors: LPA4 receptor. Last modified on 13/03/2017. Accessed on 22/11/2017. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=94.