[3H]GlySar

Ligand id: 4659

Name: [3H]GlySar    

Structure and Physico-chemical Properties

2D Structure
Calculated Physico-chemical Properties
Hydrogen bond acceptors 5
Hydrogen bond donors 2
Rotatable bonds 4
Topological polar surface area 83.63
Molecular weight 146.07
XLogP -4.04
No. Lipinski's rules broken 0

Molecular properties generated using the CDK

References
1. Anand BS, Patel J, Mitra AK. (2003)
Interactions of the dipeptide ester prodrugs of acyclovir with the intestinal oligopeptide transporter: competitive inhibition of glycylsarcosine transport in human intestinal cell line-Caco-2.
J. Pharmacol. Exp. Ther., 304 (2): 781-91. [PMID:12538834]
2. Buyse M, Berlioz F, Guilmeau S, Tsocas A, Voisin T, Péranzi G, Merlin D, Laburthe M, Lewin MJ, Rozé C et al.. (2001)
PepT1-mediated epithelial transport of dipeptides and cephalexin is enhanced by luminal leptin in the small intestine.
J. Clin. Invest., 108 (10): 1483-94. [PMID:11714740]
3. Chu XY, Sánchez-Castaño GP, Higaki K, Oh DM, Hsu CP, Amidon GL. (2001)
Correlation between epithelial cell permeability of cephalexin and expression of intestinal oligopeptide transporter.
J. Pharmacol. Exp. Ther., 299 (2): 575-82. [PMID:11602669]
4. Covitz KM, Amidon GL, Sadée W. (1996)
Human dipeptide transporter, hPEPT1, stably transfected into Chinese hamster ovary cells.
Pharm. Res., 13 (11): 1631-4. [PMID:8956326]
5. Han H, de Vrueh RL, Rhie JK, Covitz KM, Smith PL, Lee CP, Oh DM, Sadée W, Amidon GL. (1998)
5'-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter.
Pharm. Res., 15 (8): 1154-9. [PMID:9706043]
6. Jappar D, Wu SP, Hu Y, Smith DE. (2010)
Significance and regional dependency of peptide transporter (PEPT) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and Pept1 knockout mice.
Drug Metab. Dispos., 38 (10): 1740-6. [PMID:20660104]
7. Li M, Anderson GD, Phillips BR, Kong W, Shen DD, Wang J. (2006)
Interactions of amoxicillin and cefaclor with human renal organic anion and peptide transporters.
Drug Metab. Dispos., 34 (4): 547-55. [PMID:16434549]
8. Lu X, Chan T, Xu C, Zhu L, Zhou QT, Roberts KD, Chan HK, Li J, Zhou F. (2016)
Human oligopeptide transporter 2 (PEPT2) mediates cellular uptake of polymyxins.
J. Antimicrob. Chemother., 71 (2): 403-12. [PMID:26494147]
9. Otter M, Oswald S, Siegmund W, Keiser M. (2017)
Effects of frequently used pharmaceutical excipients on the organic cation transporters 1-3 and peptide transporters 1/2 stably expressed in MDCKII cells.
Eur J Pharm Biopharm, 112: 187-195. [PMID:27903454]
10. Sala-Rabanal M, Loo DD, Hirayama BA, Turk E, Wright EM. (2006)
Molecular interactions between dipeptides, drugs and the human intestinal H+ -oligopeptide cotransporter hPEPT1.
J. Physiol. (Lond.), 574 (Pt 1): 149-66. [PMID:16627568]
11. Sala-Rabanal M, Loo DD, Hirayama BA, Wright EM. (2008)
Molecular mechanism of dipeptide and drug transport by the human renal H+/oligopeptide cotransporter hPEPT2.
Am. J. Physiol. Renal Physiol., 294 (6): F1422-32. [PMID:18367661]
12. Song F, Hu Y, Jiang H, Smith DE. (2017)
Species Differences in Human and Rodent PEPT2-Mediated Transport of Glycylsarcosine and Cefadroxil in Pichia Pastoris Transformants.
Drug Metab. Dispos., 45 (2): 130-136. [PMID:27836942]
13. Tai W, Chen Z, Cheng K. (2013)
Expression profile and functional activity of peptide transporters in prostate cancer cells.
Mol. Pharm., 10 (2): 477-87. [PMID:22950754]