Top ▲

5-HT1A receptor

Click here for help

Immunopharmacology Ligand target has curated data in GtoImmuPdb

Target id: 1

Nomenclature: 5-HT1A receptor

Family: 5-Hydroxytryptamine receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 422 5q12.3 HTR1A 5-hydroxytryptamine receptor 1A 24,97
Mouse 7 421 13 56.92 cM Htr1a 5-hydroxytryptamine (serotonin) receptor 1A 15
Rat 7 422 2q13 Htr1a 5-hydroxytryptamine receptor 1A 3,26
Previous and Unofficial Names Click here for help
ADRBRL1 | 5-HT1A | ADRB2RL1 | serotonin receptor 1A | Gpcr18 | 5-hydroxytryptamine (serotonin) receptor 1A, G protein-coupled
Database Links Click here for help
Specialist databases
GPCRdb 5ht1a_human (Hs), 5ht1a_mouse (Mm), 5ht1a_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Cryo-EM structure of SEP-363856 bound serotonin 1A (5-HT1A) receptor-Gi protein complex
PDB Id:  8W8B
Ligand:  ulotaront
Resolution:  3.0Å
Species:  Human
References:  55
Natural/Endogenous Ligands Click here for help
5-hydroxytryptamine

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]NLX-112 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist 8.9 pKd 34
pKd 8.9 (Kd 1.4x10-9 M) [34]
[3H]8-OH-DPAT Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 6.0 – 9.4 pKd 9,40,70,73
pKd 6.0 – 9.4 (Kd 1x10-6 – 3.98x10-10 M) [9,40,70,73]
[3H]S-15535 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Partial agonist 5.8 – 5.9 pKd 73
pKd 5.8 – 5.9 [73]
S-14671 Small molecule or natural product Hs Full agonist 10.2 – 10.5 pKi 71,73
pKi 10.2 – 10.5 [71,73]
LY293284 Small molecule or natural product Hs Full agonist 10.1 pKi 9
pKi 10.1 [9]
5-CT Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 9.4 – 10.3 pKi 69,71,73-74
pKi 9.4 – 10.3 [69,71,73-74]
lisuride Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 9.7 – 9.8 pKi 61,61,73
pKi 9.7 – 9.8 [61,61,73]
U92016A Small molecule or natural product Hs Full agonist 9.7 pKi 58
pKi 9.7 [58]
vilazodone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 9.7 pKi 19
pKi 9.7 (Ki 2x10-10 M) [19]
Description: Binding of vilazodone to human 5-HT1A receptors against [3H]8-OH-DPAT (DPAT)
S-14506 Small molecule or natural product Hs Full agonist 9.6 – 9.7 pKi 71,73
pKi 9.6 – 9.7 [71,73]
roxindole Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 9.4 – 9.9 pKi 61,70
pKi 9.4 – 9.9 [61,70]
5-hydroxytryptamine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 9.1 – 9.7 pKi 40,69-71,73-74
pKi 9.1 – 9.7 [40,69-71,73-74]
flesinoxan Small molecule or natural product Hs Full agonist 9.3 pKi 71
pKi 9.3 [71]
L-694,247 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.3 pKi 69
pKi 9.3 [69]
S-15535 Small molecule or natural product Hs Partial agonist 9.2 pKi 73
pKi 9.2 [73]
Lysergide Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 9.0 pKi 75
pKi 9.0 [75]
RU 24969 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.0 pKi 71
pKi 9.0 [71]
flibanserin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 9.0 pKi 10
pKi 9.0 (Ki 1x10-9 M) [10]
8-OH-DPAT Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.4 – 9.4 pKi 20,30,40,49,62,71,73-74
pKi 8.4 – 9.4 (Ki 3.98x10-9 – 3.98x10-10 M) [20,30,40,49,62,71,73-74]
LY 165,163 Small molecule or natural product Hs Full agonist 8.9 pKi 71
pKi 8.9 [71]
spiroxatrine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.8 pKi 71
pKi 8.8 [71]
ipsapirone Small molecule or natural product Hs Partial agonist 8.6 – 8.8 pKi 71,73
pKi 8.6 – 8.8 [71,73]
FG-5893 Small molecule or natural product Hs Full agonist 8.7 pKi 71
pKi 8.7 [71]
pergolide Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 8.7 pKi 61
pKi 8.7 [61]
7-methoxy-1-naphthylpiperazine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.6 pKi 39
pKi 8.6 [39]
(R)-UH 301 Small molecule or natural product Hs Partial agonist 8.6 pKi 71
pKi 8.6 (Ki 2.74x10-9 M) [71]
NLX-101 Small molecule or natural product Hs Full agonist 8.6 pKi 72
pKi 8.6 [72]
terguride Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 8.5 pKi 61
pKi 8.5 [61]
ziprasidone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 7.9 – 8.9 pKi 71,92
pKi 7.9 – 8.9 [71,92]
S 16924 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 8.4 pKi 59
pKi 8.4 [59]
aripiprazole Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 8.2 pKi 95
pKi 8.2 [95]
tandospirone Small molecule or natural product Hs Full agonist 8.2 pKi 71
pKi 8.2 [71]
lurasidone Small molecule or natural product Approved drug Click here for species-specific activity table Rn Partial agonist 8.2 pKi 35
pKi 8.2 (Ki 6.75x10-9 M) [35]
asenapine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 8.0 – 8.3 pKi 71,92
pKi 8.0 – 8.3 [71,92]
zalospirone Small molecule or natural product Hs Full agonist 8.1 pKi 71
pKi 8.1 [71]
1-naphthylpiperazine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.0 pKi 39
pKi 8.0 [39]
ocaperidone Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.0 pKi 27
pKi 8.0 [27]
bromocriptine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 7.9 pKi 61
pKi 7.9 [61]
buspirone Small molecule or natural product Approved drug Primary target of this compound Hs Partial agonist 7.7 – 8.0 pKi 71,73-74
pKi 7.7 – 8.0 [71,73-74]
vortioxetine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Partial agonist 7.8 pKi 7
pKi 7.8 (Ki 1.5x10-8 M) [7]
LY334370 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.8 pKi 99
pKi 7.8 [99]
BRL-15572 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Partial agonist 7.7 pKi 85
pKi 7.7 [85]
cabergoline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 7.7 pKi 61
pKi 7.7 [61]
donitriptan Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.6 pKi 38
pKi 7.6 [38]
eletriptan Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 7.4 pKi 68
pKi 7.4 [68]
naratriptan Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 7.1 – 7.6 pKi 68-69
pKi 7.1 – 7.6 [68-69]
nafadotride Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.3 pKi 71
pKi 7.3 [71]
LP-44 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.3 pKi 51
pKi 7.3 (Ki 5.27x10-8 M) [51]
frovatriptan Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 7.2 pKi 103
pKi 7.2 (Ki 6x10-8 M) [103]
LP-12 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.2 pKi 51
pKi 7.2 (Ki 6.09x10-8 M) [51]
BMY-14802 Small molecule or natural product Hs Full agonist 7.2 pKi 71
pKi 7.2 [71]
xanomeline Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.2 pKi 101
pKi 7.2 [101]
avitriptan Small molecule or natural product Click here for species-specific activity table Rn Agonist 7.2 pKi 91
pKi 7.2 (Ki 7.08x10-8 M) [91]
GR 127935 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 7.1 – 7.2 pKi 39,85
pKi 7.1 – 7.2 [39,85]
apomorphine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 6.9 pKi 61
pKi 6.9 [61]
clozapine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 6.8 – 6.9 pKi 59,71,92
pKi 6.8 – 6.9 [59,71,92]
EMDT Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.8 pKi 29
pKi 6.8 [29]
fluparoxan Small molecule or natural product Hs Partial agonist 6.8 pKi 62
pKi 6.8 [62]
LP-211 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.7 pKi 52
pKi 6.7 (Ki 1.88x10-7 M) [52]
zolmitriptan Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 6.6 pKi 68
pKi 6.6 [68]
quetiapine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 6.5 – 6.6 pKi 71,92
pKi 6.5 – 6.6 [71,92]
piribedil Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.4 pKi 61
pKi 6.4 [61]
rizatriptan Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 6.4 pKi 68
pKi 6.4 [68]
LY344864 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.3 pKi 81
pKi 6.3 [81]
SB 216641 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.3 pKi 85
pKi 6.3 [85]
CP 93129 Small molecule or natural product Hs Full agonist 6.1 pKi 69
pKi 6.1 [69]
capeserod Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.0 pKi 65
pKi 6.0 [65]
sumatriptan Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 6.0 pKi 68
pKi 6.0 [68]
quinpirole Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.8 pKi 70
pKi 5.8 [70]
olanzapine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 5.6 – 5.8 pKi 71,92
pKi 5.6 – 5.8 [71,92]
vilazodone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 9.5 pIC50 32
pIC50 9.5 (IC50 3x10-10 M) [32]
BMY-7378 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.8 – 8.0 pIC50 43
pIC50 6.8 – 8.0 [43]
L-772,405 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.2 pIC50 89
pIC50 7.2 [89]
ulotaront Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 5.6 pIC50 21
pIC50 5.6 (IC50 2.3x10-6 M) [21]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]robalzotan Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 9.8 pKd 36
pKd 9.8 (Kd 1.58x10-10 M) [36]
[3H]WAY100635 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 9.5 pKd 43
pKd 9.5 (Kd 3x10-10 M) [43]
[3H]p-MPPF Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 8.4 pKd 40
pKd 8.4 [40]
Rec 15/3079 Small molecule or natural product Hs Antagonist 9.7 pKi 50
pKi 9.7 [50]
NAN 190 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.4 pKi 71
pKi 9.4 [71]
repinotan Small molecule or natural product Hs Antagonist 9.4 pKi 20
pKi 9.4 [20]
robalzotan Small molecule or natural product Hs Antagonist 9.2 pKi 37
pKi 9.2 (Ki 6.31x10-10 M) [37]
SB 649915 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.6 pKi 100
pKi 8.6 [100]
WAY-100635 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.9 – 9.2 pKi 71,73
pKi 7.9 – 9.2 (Ki 1.26x10-8 – 6.31x10-10 M) [71,73]
p-MPPI Small molecule or natural product Hs Antagonist 8.4 pKi 40
pKi 8.4 [40]
tiospirone Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.3 pKi 71
pKi 8.3 [71]
(-)-tertatolol Small molecule or natural product Hs Antagonist 8.2 pKi 49,71
pKi 8.2 [49,71]
pindolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.1 pKi 73
pKi 8.1 [73]
SB 272183 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.0 pKi 102
pKi 8.0 [102]
WAY-100135 Small molecule or natural product Hs Antagonist 8.0 pKi 73
pKi 8.0 [73]
methiothepin Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.8 – 8.1 pKi 71,73
pKi 7.8 – 8.1 [71,73]
(S)-UH 301 Small molecule or natural product Hs Antagonist 7.9 pKi 71
pKi 7.9 (Ki 1.35x10-8 M) [71]
spiperone Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.7 – 8.8 pKi 71,73-74
pKi 6.7 – 8.8 [71,73-74]
(-)-propranolol Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.5 pKi 69
pKi 7.5 [69]
(S)-flurocarazolol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.5 pKi 88
pKi 7.5 [88]
pizotifen Small molecule or natural product Approved drug Hs Antagonist 7.4 pKi 69
pKi 7.4 [69]
GR 125,743 Small molecule or natural product Hs Antagonist 7.3 pKi 69
pKi 7.3 [69]
yohimbine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.3 pKi 62
pKi 7.3 [62]
fluspirilene Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.2 pKi 92
pKi 7.2 [92]
thioridazine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.1 pKi 71
pKi 7.1 [71]
iloperidone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.0 pKi 41
pKi 7.0 [41]
mesoridazine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.0 pKi 17
pKi 7.0 (Ki 1.05x10-7 M) [17]
GR 218,231 Small molecule or natural product Hs Antagonist 6.8 pKi 60
pKi 6.8 [60]
iloperidone Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 6.8 pKi 44
pKi 6.8 [44]
pimozide Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.8 pKi 71
pKi 6.8 [71]
(R)-flurocarazolol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.5 pKi 88
pKi 6.5 [88]
SB 714786 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.5 pKi 100
pKi 6.5 [100]
sertindole Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.4 – 6.6 pKi 71,92
pKi 6.4 – 6.6 [71,92]
zotepine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.5 pKi 92
pKi 6.5 [92]
risperidone Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.4 – 6.5 pKi 71,92
pKi 6.4 – 6.5 [71,92]
(+)-butaclamol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.4 pKi 71
pKi 6.4 [71]
cyamemazine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.3 pKi 30
pKi 6.3 [30]
9-OH-risperidone Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.2 pKi 92
pKi 6.2 [92]
chlorpromazine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.2 pKi 71
pKi 6.2 [71]
risperidone Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 6.2 pKi 44
pKi 6.2 [44]
MPDT Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.8 pKi 29
pKi 5.8 [29]
haloperidol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.7 – 5.8 pKi 49,59,71,92
pKi 5.7 – 5.8 [49,59,71,92]
pipamperone Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.6 pKi 92
pKi 5.6 [92]
raclopride Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.2 pKi 71
pKi 5.2 [71]
ketanserin Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.0 pKi 74
pKi 5.0 [74]
SDZ-216525 Small molecule or natural product Hs Antagonist 7.8 – 8.2 pIC50 43
pIC50 7.8 – 8.2 [43]
ritanserin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.2 – 5.5 pIC50 43
pIC50 5.2 – 5.5 [43]
p-[18F]MPPF Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist - - 18
[18]
[11C]WAY100635 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist - - 98
[98]
View species-specific antagonist tables
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
RS-30199 Small molecule or natural product Hs Positive 7.1 – 7.5 pKi 96
pKi 7.1 – 7.5 [96]
Immunopharmacology Comments
The chemoattractant properties of 5-HT on both human and mouse mast cells are mediated by 5-HT1A receptor [45]. Mouse 5-HT1A receptor activation stimulates production of pro-inflammatory cytokines (e.g. IL-1 and IL-6) from peritoneal macrophages in a NF-κB-dependent manner [28] and enhances their phagocytic capacity [25].
Cell Type Associations
Immuno Cell Type:  T cells
References:  93
Immuno Cell Type:  B cells
Cell Ontology Term:   B cell (CL:0000236)
References:  93
Immuno Cell Type:  Natural killer cells
References:  93
Immuno Cell Type:  Mast cells
Cell Ontology Term:   mast cell (CL:0000097)
Comment:  Involved in mast cell chemotaxix.
References:  1
Immuno Cell Type:  Macrophages & monocytes
Cell Ontology Term:   macrophage (CL:0000235)
monocyte (CL:0000576)
Comment:  Involved in phagocytosis.
References:  1,93
Immuno Disease Associations
Disease Name:  Colitis
Disease Synonyms:  no synonynms
Comment:  Serotonin acting via 5-HT1A receptors plays a key role in the pathogenesis of experimental colitis
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Comments:  The 5-HT1A has also been found to stimulate cAMP accumulation via Gi2 and ACII [2].
References:  2,24,54
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Phospholipase C stimulation
References:  24
Tissue Distribution Click here for help
Kidney: medullary and cortical thick ascending limbs (TAL), distal convoluted tubules (DCT), connecting tubule cells, principal cells of the initial collecting tubule.
Species:  Human
Technique:  Immunohistochemistry.
References:  87
Benign and malignant prostate tissue.
Species:  Human
Technique:  Western blotting.
References:  23
Poorly expressed in coronary arteries, atrium, ventricle and epicardium.
Species:  Human
Technique:  RT-PCR.
References:  76
Spinal cord: dorsal horn > ventral horn.
Species:  Human
Technique:  Radioligand binding.
References:  48
CNS: dentate gyrus, hippocampus (all fields especially CA1), subiculum, parahippocampal gyrus and neocortical regions (superficial and middle laminae), raphe of the brainstem.
Species:  Human
Technique:  in situ hybridisation.
References:  14
Peritoneal macrophages.
Species:  Mouse
Technique:  Immunohistochemistry.
References:  25
CNS: Dorsal raphe nucleus, septum, hippocampus, entorhinal cortex, interpeduncular nucleus > olfactory bulb, cerebral cortex, thalamic and hypothalamic nuclei, nuclei of the brainstem, dorsal horn of the spinal cord.
Species:  Rat
Technique:  in situ hybridisation.
References:  83
Superior cervical ganglia, lumbar sympathetic ganglia.
Species:  Rat
Technique:  RT-PCR.
References:  82
Brain: pyramidal and principal cells and calbindin- and parvalbumin-containing neurons.
Species:  Rat
Technique:  Immunohistochemistry.
References:  5
Limbic system: septum, hippocampus, thalamus, amygdala, olfactory bulb, medulla, mesencephalon, hypothalamus.
Species:  Rat
Technique:  Northern blotting.
References:  3
Posterior taste buds.
Species:  Rat
Technique:  RT-PCR.
References:  42
Kidney: medullary and cortical thick ascending limbs (TAL), distal convoluted tubules (DCT), connecting tubule cells, principal cells of the initial collecting tubule.
Species:  Rat
Technique:  Immunohistochemistry.
References:  87
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of IP3 levels in HeLa cells transfected with the 5-HT1A receptor.
Species:  Human
Tissue:  HeLa cells.
Response measured:  PLC mediated IP3 accumulation.
References:  24
Measurement of cAMP levels in rat CH4ZD10 cells endogenously expressing the 5-HT1A receptor.
Species:  Rat
Tissue:  CH4ZD10 cells.
Response measured:  PTX-sensitive inhibition of cAMP accumulation.
References:  3
Measurement of cAMP levels in SN-48 cells endogenously expressing the 5-HT1A receptor.
Species:  Mouse
Tissue:  Differentiated SN-48 cell line.
Response measured:  Inhibition of cAMP accumulation.
References:  15
Measurement of cAMP levels in HEK 293 cells transfected with the rat 5-HT1A receptor alone/with adenylyl cyclase II (ACII).
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  Inhibition of cAMP accumulation in the absence of ACII.
Increase in cAMP accumulation in the presence of ACII.
References:  2
Measurement of extracellular acidification rate (ECAR) in CHO-K1 cells transfected with the 5-HT1A receptor.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  Activation of the Na+/H+ exchanger.
References:  27
Measurement of phosphorylated ERK1/2 levels in the rat hippocampus.
Species:  Rat
Tissue:  Hippocampus.
Response measured:  Inhibition of the Erk1/2 MAPK pathway.
References:  16
Measurement of cAMP levels in COS-7 cells transfected with the 5-HT1A receptor.
Species:  Human
Tissue:  COS-7
Response measured:  Inhibition of cAMP accumulation.
References:  24,74
Physiological Functions Click here for help
Stimulation of cell proliferation.
Species:  Human
Tissue:  DU145, PC-3, LNCaP and hPCP prostatic cell lines.
References:  23
Increase in phagocytic activity.
Species:  Mouse
Tissue:  Peritoneal macrophages.
References:  25
Hyperpolarisation of orexin neurons.
Species:  Mouse
Tissue:  Hypothalamus.
References:  66
Regulation of sleep-wakefulness cycles.
Species:  Rat
Tissue:  In vivo.
References:  63-64
Regulation of sleep-wakefulness cycles.
Species:  Mouse
Tissue:  In vivo.
References:  12
Regulation of epileptic activity.
Species:  Rat
Tissue:  In vivo.
References:  56
Regulation of oxytocin and adrenocorticotropin hormone release.
Species:  Rat
Tissue:  In vivo (paraventricular nucleus).
References:  77
Adult brain cell proliferation.
Species:  Rat
Tissue:  Subgranular layer (SGL) of the dentate gyrus (DG) and the subventricular zone (SVZ).
References:  6
Autoreceptor: autoinhibitory control.
Species:  Mouse
Tissue:  In vivo (dorsal raphe nucleus).
References:  11
Regulation of cholinergic, GABAergic and glutamatergic transmission and hence cognitive performance.
Species:  Mouse
Tissue:  In vivo.
References:  57
Regulation of anxiety-like behaviour.
Species:  Mouse
Tissue:  In vivo.
References:  46
Regulation of stress responses and locomotor activity.
Species:  Mouse
Tissue:  In vivo (hypothalamus).
References:  53
Regulation of aggressive bahaviour.
Species:  Rat
Tissue:  In vivo.
References:  84
Regulation of feeding behaviour by inducing preproNPY mRNA expression.
Species:  Rat
Tissue:  In vivo (arcuate nucleus).
References:  80
Facilitation of autoshaped learning.
Species:  Mouse
Tissue:  In vivo.
References:  79
Regulation of hippocampal functions.
Species:  Rat
Tissue:  In vivo.
References:  13
Antinociception.
Species:  Rat
Tissue:  In vivo.
References:  31,94
Physiological Consequences of Altering Gene Expression Click here for help
5-HT1A receptor knockout mice exhibit higher amounts of paradoxical sleep than wild-type mice during both the light and the dark phases.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  12
5-HT1A receptor knockout mice have an increased responsiveness to 5-HT in the dorsal raphe nucleus due to lack of autoinhibitory control by 5-HT1A autoreceptors.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  11
Increased 5-HT1A receptor expression during postnatal development caused elevated 5-HT levels in the hippocampus and striatum, decreased anxiety-like behaviour (in male and female) and decreased body temperature (male only).
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  46
5-HT1A receptor knockout mice exhibit a deficit in hippocampal-dependent learning and memory as well as higher limbic excitability.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  90
5-HT1A receptor knockout mice exhibit altered decision making abilities and response inhibition.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  79
Temporary 5-HT1A receptor overexpression during embryonic and perinatal development causes long-term memory impairment.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  8
5-HT1A receptor knockout mice show increases in typical anxiety and stress responses.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  33,78,86
5-HT1A receptor knockout mice exhibit down-regulation of the 5-HT transporter.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  4
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Htr1atm2Rhn|Slc6a4+|Slc6a4tm1(tTA)Cogr Htr1atm2Rhn/Htr1atm2Rhn,Slc6a4tm1(tTA)Cogr/Slc6a4+
involves: 129S1/Sv * BALB/cJ * C57BL/6 * CBA
MGI:96273  MGI:96285  MP:0006276 abnormal autonomic nervous system physiology PMID: 18599790 
Htr1atm1Rhn Htr1atm1Rhn/Htr1atm1Rhn
129S6/SvEvTac-Htr1a
MGI:96273  MP:0005663 abnormal circulating noradrenaline level PMID: 11080193 
Htr1atm2Rhn|Slc6a4+|Slc6a4tm1(tTA)Cogr Htr1atm2Rhn/Htr1atm2Rhn,Slc6a4tm1(tTA)Cogr/Slc6a4+
involves: 129S1/Sv * BALB/cJ * C57BL/6 * CBA
MGI:96273  MGI:96285  MP:0004811 abnormal neuron physiology PMID: 18599790 
Htr1atm1Rhn Htr1atm1Rhn/Htr1atm1Rhn
129S6/SvEvTac-Htr1a
MGI:96273  MP:0005322 abnormal serotonin concentration PMID: 11080193  11483665 
Htr1atm1Toth Htr1atm1Toth/Htr1atm1Toth
involves: 129P2/OlaHsd * Black Swiss
MGI:96273  MP:0001463 abnormal spatial learning PMID: 11121072 
Htr1atm1Tct Htr1atm1Tct/Htr1atm1Tct
involves: 129X1/SvJ * C57BL/6J
MGI:96273  MP:0002573 behavioral despair PMID: 9844013 
Htr1a+|Htr1atm1Tct Htr1atm1Tct/Htr1a+
involves: 129X1/SvJ * C57BL/6J
MGI:96273  MP:0002573 behavioral despair PMID: 9844013 
Htr1atm1Rhn Htr1atm1Rhn/Htr1atm1Rhn
involves: 129S1/Sv
MGI:96273  MP:0002573 behavioral despair PMID: 9826725 
Htr1atm2Rhn|Slc6a4+|Slc6a4tm1(tTA)Cogr Htr1atm2Rhn/Htr1atm2Rhn,Slc6a4tm1(tTA)Cogr/Slc6a4+
involves: 129S1/Sv * BALB/cJ * C57BL/6 * CBA
MGI:96273  MGI:96285  MP:0005534 decreased body temperature PMID: 18599790 
Htr1atm2Rhn|Slc6a4+|Slc6a4tm1(tTA)Cogr Htr1atm2Rhn/Htr1atm2Rhn,Slc6a4tm1(tTA)Cogr/Slc6a4+
involves: 129S1/Sv * BALB/cJ * C57BL/6 * CBA
MGI:96273  MGI:96285  MP:0005333 decreased heart rate PMID: 18599790 
Htr1atm1Toth Htr1atm1Toth/Htr1atm1Toth
involves: 129P2/OlaHsd * Black Swiss
MGI:96273  MP:0002920 decreased paired-pulse facilitation PMID: 10751426  11121072 
Htr1atm2Rhn|Slc6a4+|Slc6a4tm1(tTA)Cogr Htr1atm2Rhn/Htr1atm2Rhn,Slc6a4tm1(tTA)Cogr/Slc6a4+
involves: 129S1/Sv * BALB/cJ * C57BL/6 * CBA
MGI:96273  MGI:96285  MP:0008770 decreased survivor rate PMID: 18599790 
Htr1a+|Htr1atm2Rhn Htr1atm2Rhn/Htr1a+
involves: BALB/c * C57BL/6
MGI:96273  MP:0002757 decreased vertical activity PMID: 16507009 
Htr1atm1Toth Htr1atm1Toth/Htr1atm1Toth
involves: 129P2/OlaHsd * Black Swiss
MGI:96273  MP:0001399 hyperactivity PMID: 9724773 
Htr1atm1Tct Htr1atm1Tct/Htr1atm1Tct
involves: 129X1/SvJ * C57BL/6J
MGI:96273  MP:0001363 increased anxiety-related response PMID: 9844013 
Htr1a+|Htr1atm1Tct Htr1atm1Tct/Htr1a+
involves: 129X1/SvJ * C57BL/6J
MGI:96273  MP:0001363 increased anxiety-related response PMID: 9844013 
Htr1atm1Toth Htr1atm1Toth/Htr1atm1Toth
involves: 129P2/OlaHsd * Black Swiss
MGI:96273  MP:0001363 increased anxiety-related response PMID: 10751426  9724773 
Htr1atm1Rhn Htr1atm1Rhn/Htr1atm1Rhn
involves: 129S1/Sv
MGI:96273  MP:0001363 increased anxiety-related response PMID: 9826725 
Htr1a+|Htr1atm1Rhn Htr1atm1Rhn/Htr1a+
involves: 129S1/Sv
MGI:96273  MP:0001363 increased anxiety-related response PMID: 9826725 
Htr1a+|Htr1atm1Toth Htr1atm1Toth/Htr1a+
involves: 129P2/OlaHsd * Black Swiss
MGI:96273  MP:0001363 increased anxiety-related response PMID: 9724773 
Htr1atm1Rhn Htr1atm1Rhn/Htr1atm1Rhn
129S6/SvEvTac-Htr1a
MGI:96273  MP:0001906 increased dopamine level PMID: 11080193 
Htr1atm1Toth Htr1atm1Toth/Htr1atm1Toth
involves: 129P2/OlaHsd * Black Swiss
MGI:96273  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 11121072 
Htr1atm1Tct Htr1atm1Tct/Htr1atm1Tct
involves: 129X1/SvJ * C57BL/6J
MGI:96273  MP:0002797 increased thigmotaxis PMID: 9844013 
Htr1atm2Rhn|Slc6a4+|Slc6a4tm1(tTA)Cogr Htr1atm2Rhn/Htr1atm2Rhn,Slc6a4tm1(tTA)Cogr/Slc6a4+
involves: 129S1/Sv * BALB/cJ * C57BL/6 * CBA
MGI:96273  MGI:96285  MP:0002083 premature death PMID: 18599790 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Periodic fever, menstrual cycle dependent
OMIM: 614674
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  Two polymorphisms, Gly22 -> Ser and Ile28 -> Val, have been found to alter the extracellular amino terminal region of the receptor.
References:  67
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The polymorphism Arg219 -> Leu has been associated with Tourette's syndrome.
References:  47
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The polymorphism Ala50 -> Val, occurring in transmembrane 1, results in a loss of response to 5-HT.
References:  22

References

Show »

1. Ahern GP. (2011) 5-HT and the immune system. Curr Opin Pharmacol, 11 (1): 29-33. [PMID:21393060]

2. Albert PR, Sajedi N, Lemonde S, Ghahremani MH. (1999) Constitutive G(i2)-dependent activation of adenylyl cyclase type II by the 5-HT1A receptor. Inhibition by anxiolytic partial agonists. J Biol Chem, 274 (50): 35469-74. [PMID:10585418]

3. Albert PR, Zhou QY, Van Tol HH, Bunzow JR, Civelli O. (1990) Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J Biol Chem, 265 (10): 5825-32. [PMID:2156831]

4. Ase AR, Reader TA, Hen R, Riad M, Descarries L. (2001) Regional changes in density of serotonin transporter in the brain of 5-HT1A and 5-HT1B knockout mice, and of serotonin innervation in the 5-HT1B knockout. J Neurochem, 78 (3): 619-30. [PMID:11483665]

5. Aznar S, Qian Z, Shah R, Rahbek B, Knudsen GM. (2003) The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain. Brain Res, 959 (1): 58-67. [PMID:12480158]

6. Banasr M, Hery M, Printemps R, Daszuta A. (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology, 29 (3): 450-60. [PMID:14872203]

7. Bang-Andersen B, Ruhland T, Jørgensen M, Smith G, Frederiksen K, Jensen KG, Zhong H, Nielsen SM, Hogg S, Mørk A et al.. (2011) Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem, 54 (9): 3206-21. [PMID:21486038]

8. Bert B, Dere E, Wilhelmi N, Kusserow H, Theuring F, Huston JP, Fink H. (2005) Transient overexpression of the 5-HT1A receptor impairs water-maze but not hole-board performance. Neurobiol Learn Mem, 84 (1): 57-68. [PMID:15936683]

9. Blair JB, Kurrasch-Orbaugh D, Marona-Lewicka D, Cumbay MG, Watts VJ, Barker EL, Nichols DE. (2000) Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. J Med Chem, 43 (24): 4701-10. [PMID:11101361]

10. Borsini F, Evans K, Jason K, Rohde F, Alexander B, Pollentier S. (2002) Pharmacology of flibanserin. CNS Drug Rev, 8 (2): 117-42. [PMID:12177684]

11. Bortolozzi A, Amargós-Bosch M, Toth M, Artigas F, Adell A. (2004) In vivo efflux of serotonin in the dorsal raphe nucleus of 5-HT1A receptor knockout mice. J Neurochem, 88 (6): 1373-9. [PMID:15009637]

12. Boutrel B, Monaca C, Hen R, Hamon M, Adrien J. (2002) Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J Neurosci, 22 (11): 4686-92. [PMID:12040075]

13. Buhot MC, Naïli S. (1995) Changes in exploratory activity following stimulation of hippocampal 5-HT1A and 5-HT1B receptors in the rat. Hippocampus, 5 (3): 198-208. [PMID:7550615]

14. Burnet PW, Eastwood SL, Lacey K, Harrison PJ. (1995) The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res, 676 (1): 157-68. [PMID:7796165]

15. Charest A, Wainer BH, Albert PR. (1993) Cloning and differentiation-induced expression of a murine serotonin1A receptor in a septal cell line. J Neurosci, 13 (12): 5164-71. [PMID:8254366]

16. Chen J, Shen C, Meller E. (2002) 5-HT1A receptor-mediated regulation of mitogen-activated protein kinase phosphorylation in rat brain. Eur J Pharmacol, 452 (2): 155-62. [PMID:12354565]

17. Choi S, Haggart D, Toll L, Cuny GD. (2004) Synthesis, receptor binding and functional studies of mesoridazine stereoisomers. Bioorg Med Chem Lett, 14 (17): 4379-82. [PMID:15357957]

18. Costes N, Merlet I, Ostrowsky K, Faillenot I, Lavenne F, Zimmer L, Ryvlin P, Le Bars D. (2005) A 18F-MPPF PET normative database of 5-HT1A receptor binding in men and women over aging. J Nucl Med, 46 (12): 1980-9. [PMID:16330560]

19. Dawson LA, Watson JM. (2009) Vilazodone: a 5-HT1A receptor agonist/serotonin transporter inhibitor for the treatment of affective disorders. CNS Neurosci Ther, 15 (2): 107-17. [PMID:19499624]

20. De Vry J, Schohe-Loop R, Heine HG, Greuel JM, Mauler F, Schmidt B, Sommermeyer H, Glaser T. (1998) Characterization of the aminomethylchroman derivative BAY x 3702 as a highly potent 5-hydroxytryptamine1A receptor agonist. J Pharmacol Exp Ther, 284 (3): 1082-94. [PMID:9495870]

21. Dedic N, Jones PG, Hopkins SC, Lew R, Shao L, Campbell JE, Spear KL, Large TH, Campbell UC, Hanania T et al.. (2019) SEP-363856, a Novel Psychotropic Agent with a Unique, Non-D2 Receptor Mechanism of Action. J Pharmacol Exp Ther, 371 (1): 1-14. [PMID:31371483]

22. Del Tredici AL, Schiffer HH, Burstein ES, Lameh J, Mohell N, Hacksell U, Brann MR, Weiner DM. (2004) Pharmacology of polymorphic variants of the human 5-HT1A receptor. Biochem Pharmacol, 67 (3): 479-90. [PMID:15037200]

23. Dizeyi N, Bjartell A, Nilsson E, Hansson J, Gadaleanu V, Cross N, Abrahamsson PA. (2004) Expression of serotonin receptors and role of serotonin in human prostate cancer tissue and cell lines. Prostate, 59 (3): 328-36. [PMID:15042609]

24. Fargin A, Raymond JR, Regan JW, Cotecchia S, Lefkowitz RJ, Caron MG. (1989) Effector coupling mechanisms of the cloned 5-HT1A receptor. J Biol Chem, 264 (25): 14848-52. [PMID:2549039]

25. Freire-Garabal M, Núñez MJ, Balboa J, López-Delgado P, Gallego R, García-Caballero T, Fernández-Roel MD, Brenlla J, Rey-Méndez M. (2003) Serotonin upregulates the activity of phagocytosis through 5-HT1A receptors. Br J Pharmacol, 139 (2): 457-63. [PMID:12770951]

26. Fujiwara Y, Nelson DL, Kashihara K, Varga E, Roeske WR, Yamamura HI. (1990) The cloning and sequence analysis of the rat serotonin-1A receptor gene. Life Sci, 47 (22): PL127-32. [PMID:2273937]

27. Garnovskaya MN, Gettys TW, van Biesen T, Prpic V, Chuprun JK, Raymond JR. (1997) 5-HT1A receptor activates Na+/H+ exchange in CHO-K1 cells through Gialpha2 and Gialpha3. J Biol Chem, 272 (12): 7770-6. [PMID:9065439]

28. Ghia JE, Li N, Wang H, Collins M, Deng Y, El-Sharkawy RT, Côté F, Mallet J, Khan WI. (2009) Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology, 137 (5): 1649-60. [PMID:19706294]

29. Glennon RA, Lee M, Rangisetty JB, Dukat M, Roth BL, Savage JE, McBride A, Rauser L, Hufeisen S, Lee DK. (2000) 2-Substituted tryptamines: agents with selectivity for 5-HT(6) serotonin receptors. J Med Chem, 43 (5): 1011-8. [PMID:10715164]

30. Hameg A, Bayle F, Nuss P, Dupuis P, Garay RP, Dib M. (2003) Affinity of cyamemazine, an anxiolytic antipsychotic drug, for human recombinant dopamine vs. serotonin receptor subtypes. Biochem Pharmacol, 65 (3): 435-40. [PMID:12527336]

31. Harte SE, Kender RG, Borszcz GS. (2005) Activation of 5-HT1A and 5-HT7 receptors in the parafascicular nucleus suppresses the affective reaction of rats to noxious stimulation. Pain, 113 (3): 405-15. [PMID:15661450]

32. Heinrich T, Böttcher H, Gericke R, Bartoszyk GD, Anzali S, Seyfried CA, Greiner HE, Van Amsterdam C. (2004) Synthesis and structure--activity relationship in a class of indolebutylpiperazines as dual 5-HT(1A) receptor agonists and serotonin reuptake inhibitors. J Med Chem, 47 (19): 4684-92. [PMID:15341484]

33. Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH. (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci USA, 95 (25): 15049-54. [PMID:9844013]

34. Heusler P, Palmier C, Tardif S, Bernois S, Colpaert FC, Cussac D. (2010) [(3)H]-F13640, a novel, selective and high-efficacy serotonin 5-HT(1A) receptor agonist radioligand. Naunyn Schmiedebergs Arch Pharmacol, 382 (4): 321-30. [PMID:20799027]

35. Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R, Matsumoto K, Nishikawa H, Ueda Y, Toma S et al.. (2010) Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther, 334 (1): 171-81. [PMID:20404009]

36. Jerning E, Svantesson GT, Mohell N. (1998) Receptor binding characteristics of [3H]NAD-299, a new selective 5-HT1A receptor antagonist. Eur J Pharmacol, 360 (2-3): 219-25. [PMID:9851589]

37. Johansson L, Sohn D, Thorberg SO, Jackson DM, Kelder D, Larsson LG, Rényi L, Ross SB, Wallsten C, Eriksson H et al.. (1997) The pharmacological characterization of a novel selective 5-hydroxytryptamine1A receptor antagonist, NAD-299. J Pharmacol Exp Ther, 283 (1): 216-25. [PMID:9336327]

38. John GW, Pauwels PJ, Perez M, Halazy S, Le Grand B, Verscheure Y, Valentin JP, Palmier C, Wurch T, Chopin P et al.. (1999) F 11356, a novel 5-hydroxytryptamine (5-HT) derivative with potent, selective, and unique high intrinsic activity at 5-HT1B/1D receptors in models relevant to migraine. J Pharmacol Exp Ther, 290 (1): 83-95. [PMID:10381763]

39. Jorand-Lebrun C, Pauwels PJ, Palmier C, Moret C, Chopin P, Perez M, Marien M, Halazy S. (1997) 5-HT1B receptor antagonist properties of novel arylpiperazide derivatives of 1-naphthylpiperazine. J Med Chem, 40 (24): 3974-8. [PMID:9397179]

40. Kalipatnapu S, Pucadyil TJ, Harikumar KG, Chattopadhyay A. (2004) Ligand binding characteristics of the human serotonin1A receptor heterologously expressed in CHO cells. Biosci Rep, 24 (2): 101-15. [PMID:15628665]

41. Kalkman HO, Subramanian N, Hoyer D. (2001) Extended radioligand binding profile of iloperidone: a broad spectrum dopamine/serotonin/norepinephrine receptor antagonist for the management of psychotic disorders. Neuropsychopharmacology, 25 (6): 904-14. [PMID:11750183]

42. Kaya N, Shen T, Lu SG, Zhao FL, Herness S. (2004) A paracrine signaling role for serotonin in rat taste buds: expression and localization of serotonin receptor subtypes. Am J Physiol Regul Integr Comp Physiol, 286 (4): R649-58. [PMID:14715493]

43. Khawaja X, Ennis C, Minchin MC. (1997) Pharmacological characterization of recombinant human 5-hydroxytryptamine1A receptors using a novel antagonist radioligand, [3H]WAY-100635. Life Sci, 60 (9): 653-65. [PMID:9048968]

44. Kongsamut S, Roehr JE, Cai J, Hartman HB, Weissensee P, Kerman LL, Tang L, Sandrasagra A. (1996) Iloperidone binding to human and rat dopamine and 5-HT receptors. Eur J Pharmacol, 317 (2-3): 417-23. [PMID:8997630]

45. Kushnir-Sukhov NM, Gilfillan AM, Coleman JW, Brown JM, Bruening S, Toth M, Metcalfe DD. (2006) 5-hydroxytryptamine induces mast cell adhesion and migration. J Immunol, 177 (9): 6422-32. [PMID:17056574]

46. Kusserow H, Davies B, Hörtnagl H, Voigt I, Stroh T, Bert B, Deng DR, Fink H, Veh RW, Theuring F. (2004) Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin 1A receptors. Brain Res Mol Brain Res, 129 (1-2): 104-16. [PMID:15469887]

47. Lam S, Shen Y, Nguyen T, Messier TL, Brann M, Comings D, George SR, O'Dowd BF. (1996) A serotonin receptor gene (5HT1A) variant found in a Tourette's syndrome patient. Biochem Biophys Res Commun, 219 (3): 853-8. [PMID:8645269]

48. Laporte AM, Doyen C, Nevo IT, Chauveau J, Hauw JJ, Hamon M. (1996) Autoradiographic mapping of serotonin 5-HT1A, 5-HT1D, 5-HT2A and 5-HT3 receptors in the aged human spinal cord. J Chem Neuroanat, 11 (1): 67-75. [PMID:8841890]

49. Lejeune F, Newman-Tancredi A, Audinot V, Millan MJ. (1997) Interactions of (+)- and (-)-8- and 7-hydroxy-2-(di-n-propylamino)tetralin at human (h)D3, hD2 and h serotonin1A receptors and their modulation of the activity of serotoninergic and dopaminergic neurones in rats. J Pharmacol Exp Ther, 280 (3): 1241-9. [PMID:9067310]

50. Leonardi A, Guarneri L, Poggesi E, Angelico P, Velasco C, Cilia A, Testa R. (2001) N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-nitrophenyl) cyclohexanecarboxamide: a novel pre- and postsynaptic 5-hydroxytryptamine(1A) receptor antagonist active on the lower urinary tract. J Pharmacol Exp Ther, 299 (3): 1027-37. [PMID:11714892]

51. Leopoldo M, Lacivita E, Contino M, Colabufo NA, Berardi F, Perrone R. (2007) Structure-activity relationship study on N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides, a class of 5-HT7 receptor agents. 2. J Med Chem, 50 (17): 4214-21. [PMID:17649988]

52. Leopoldo M, Lacivita E, De Giorgio P, Fracasso C, Guzzetti S, Caccia S, Contino M, Colabufo NA, Berardi F, Perrone R. (2008) Structural modifications of N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides: influence on lipophilicity and 5-HT7 receptor activity. Part III. J Med Chem, 51 (18): 5813-22. [PMID:18800769]

53. Li Q, Holmes A, Ma L, Van de Kar LD, Garcia F, Murphy DL. (2004) Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences. J Neurosci, 24 (48): 10868-77. [PMID:15574737]

54. Lin SL, Setya S, Johnson-Farley NN, Cowen DS. (2002) Differential coupling of 5-HT(1) receptors to G proteins of the G(i) family. Br J Pharmacol, 136 (7): 1072-8. [PMID:12145108]

55. Liu H, Zheng Y, Wang Y, Wang Y, He X, Xu P, Huang S, Yuan Q, Zhang X, Wang L et al.. (2023) Recognition of methamphetamine and other amines by trace amine receptor TAAR1. Nature, 624 (7992): 663-671. [PMID:37935377]

56. López-Meraz ML, González-Trujano ME, Neri-Bazán L, Hong E, Rocha LL. (2005) 5-HT1A receptor agonists modify epileptic seizures in three experimental models in rats. Neuropharmacology, 49 (3): 367-75. [PMID:15993434]

57. Madjid N, Tottie EE, Lüttgen M, Meister B, Sandin J, Kuzmin A, Stiedl O, Ogren SO. (2006) 5-Hydroxytryptamine 1A receptor blockade facilitates aversive learning in mice: interactions with cholinergic and glutamatergic mechanisms. J Pharmacol Exp Ther, 316 (2): 581-91. [PMID:16223872]

58. McCall RB, Romero AG, Bienkowski MJ, Harris DW, McGuire JC, Piercey MF, Shuck ME, Smith MW, Svensson KA, Schreur PJ et al.. (1994) Characterization of U-92016A as a selective, orally active, high intrinsic activity 5-hydroxytryptamine1A agonist. J Pharmacol Exp Ther, 271 (2): 875-83. [PMID:7965808]

59. Millan MJ, Gobert A, Newman-Tancredi A, Audinot V, Lejeune F, Rivet JM, Cussac D, Nicolas JP, Muller O, Lavielle G. (1998) S 16924 ((R)-2-[1-[2-(2,3-dihydro-benzo[1,4] dioxin-5-Yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), a novel, potential antipsychotic with marked serotonin (5-HT)1A agonist properties: I. Receptorial and neurochemical profile in comparison with clozapine and haloperidol. J Pharmacol Exp Ther, 286 (3): 1341-55. [PMID:9732398]

60. Millan MJ, Gobert A, Newman-Tancredi A, Lejeune F, Cussac D, Rivet JM, Audinot V, Dubuffet T, Lavielle G. (2000) S33084, a novel, potent, selective, and competitive antagonist at dopamine D(3)-receptors: I. Receptorial, electrophysiological and neurochemical profile compared with GR218,231 and L741,626. J Pharmacol Exp Ther, 293 (3): 1048-62. [PMID:10869410]

61. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A. (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther, 303 (2): 791-804. [PMID:12388666]

62. Millan MJ, Newman-Tancredi A, Audinot V, Cussac D, Lejeune F, Nicolas JP, Cogé F, Galizzi JP, Boutin JA, Rivet JM et al.. (2000) Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse, 35 (2): 79-95. [PMID:10611634]

63. Monti JM, Jantos H. (2003) Differential effects of the 5-HT1A receptor agonist flesinoxan given locally or systemically on REM sleep in the rat. Eur J Pharmacol, 478 (2-3): 121-30. [PMID:14575796]

64. Monti JM, Jantos H. (2004) Effects of the 5-HT1A receptor ligands flesinoxan and WAY 100635 given systemically or microinjected into the laterodorsal tegmental nucleus on REM sleep in the rat. Behav Brain Res, 151 (1-2): 159-66. [PMID:15084431]

65. Moser PC, Bergis OE, Jegham S, Lochead A, Duconseille E, Terranova JP, Caille D, Berque-Bestel I, Lezoualc'h F, Fischmeister R et al.. (2002) SL65.0155, a novel 5-hydroxytryptamine(4) receptor partial agonist with potent cognition-enhancing properties. J Pharmacol Exp Ther, 302 (2): 731-41. [PMID:12130738]

66. Muraki Y, Yamanaka A, Tsujino N, Kilduff TS, Goto K, Sakurai T. (2004) Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. J Neurosci, 24 (32): 7159-66. [PMID:15306649]

67. Nakhai B, Nielsen DA, Linnoila M, Goldman D. (1995) Two naturally occurring amino acid substitutions in the human 5-HT1A receptor: glycine 22 to serine 22 and isoleucine 28 to valine 28. Biochem Biophys Res Commun, 210 (2): 530-6. [PMID:7755630]

68. Napier C, Stewart M, Melrose H, Hopkins B, McHarg A, Wallis R. (1999) Characterisation of the 5-HT receptor binding profile of eletriptan and kinetics of [3H]eletriptan binding at human 5-HT1B and 5-HT1D receptors. Eur J Pharmacol, 368 (2-3): 259-68. [PMID:10193663]

69. Newman-Tancredi A, Conte C, Chaput C, Verrièle L, Audinot-Bouchez V, Lochon S, Lavielle G, Millan MJ. (1997) Agonist activity of antimigraine drugs at recombinant human 5-HT1A receptors: potential implications for prophylactic and acute therapy. Naunyn Schmiedebergs Arch Pharmacol, 355 (6): 682-8. [PMID:9205951]

70. Newman-Tancredi A, Cussac D, Audinot V, Millan MJ. (1999) Actions of roxindole at recombinant human dopamine D2, D3 and D4 and serotonin 5-HT1A, 5-HT1B and 5-HT1D receptors. Naunyn Schmiedebergs Arch Pharmacol, 359 (6): 447-53. [PMID:10431754]

71. Newman-Tancredi A, Gavaudan S, Conte C, Chaput C, Touzard M, Verrièle L, Audinot V, Millan MJ. (1998) Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study. Eur J Pharmacol, 355 (2-3): 245-56. [PMID:9760039]

72. Newman-Tancredi A, Martel JC, Assié MB, Buritova J, Lauressergues E, Cosi C, Heusler P, Bruins Slot L, Colpaert FC, Vacher B et al.. (2009) Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br J Pharmacol, 156 (2): 338-53. [PMID:19154445]

73. Newman-Tancredi A, Verrièle L, Chaput C, Millan MJ. (1998) Labelling of recombinant human and native rat serotonin 5-HT1A receptors by a novel, selective radioligand, [3H]-S 15535: definition of its binding profile using agonists, antagonists and inverse agonists. Naunyn Schmiedebergs Arch Pharmacol, 357 (3): 205-17. [PMID:9550290]

74. Newman-Tancredi A, Wootton R, Strange PG. (1992) High-level stable expression of recombinant 5-HT1A 5-hydroxytryptamine receptors in Chinese hamster ovary cells. Biochem J, 285 ( Pt 3): 933-8. [PMID:1386736]

75. Nichols DE, Frescas S, Marona-Lewicka D, Kurrasch-Orbaugh DM. (2002) Lysergamides of isomeric 2,4-dimethylazetidines map the binding orientation of the diethylamide moiety in the potent hallucinogenic agent N,N-diethyllysergamide (LSD). J Med Chem, 45 (19): 4344-9. [PMID:12213075]

76. Nilsson T, Longmore J, Shaw D, Pantev E, Bard JA, Branchek T, Edvinsson L. (1999) Characterisation of 5-HT receptors in human coronary arteries by molecular and pharmacological techniques. Eur J Pharmacol, 372 (1): 49-56. [PMID:10374714]

77. Osei-Owusu P, James A, Crane J, Scrogin KE. (2005) 5-Hydroxytryptamine 1A receptors in the paraventricular nucleus of the hypothalamus mediate oxytocin and adrenocorticotropin hormone release and some behavioral components of the serotonin syndrome. J Pharmacol Exp Ther, 313 (3): 1324-30. [PMID:15743927]

78. Parks CL, Robinson PS, Sibille E, Shenk T, Toth M. (1998) Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA, 95 (18): 10734-9. [PMID:9724773]

79. Pattij T, Broersen LM, van der Linde J, Groenink L, van der Gugten J, Maes RA, Olivier B. (2003) Operant learning and differential-reinforcement-of-low-rate 36-s responding in 5-HT1A and 5-HT1B receptor knockout mice. Behav Brain Res, 141 (2): 137-45. [PMID:12742250]

80. Pesonen U, Rouru J, Huupponen R, Koulu M. (1991) Effects of repeated administration of mifepristone and 8-OH-DPAT on expression of preproneuropeptide Y mRNA in the arcuate nucleus of obese Zucker rats. Brain Res Mol Brain Res, 10 (3): 267-72. [PMID:1653393]

81. Phebus LA, Johnson KW, Zgombick JM, Gilbert PJ, Van Belle K, Mancuso V, Nelson DL, Calligaro DO, Kiefer Jr AD, Branchek TA et al.. (1997) Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine. Life Sci, 61 (21): 2117-26. [PMID:9395253]

82. Pierce PA, Xie GX, Levine JD, Peroutka SJ. (1996) 5-Hydroxytryptamine receptor subtype messenger RNAs in rat peripheral sensory and sympathetic ganglia: a polymerase chain reaction study. Neuroscience, 70 (2): 553-9. [PMID:8848158]

83. Pompeiano M, Palacios JM, Mengod G. (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci, 12 (2): 440-53. [PMID:1531498]

84. Popova NK, Naumenko VS, Plyusnina IZ, Kulikov AV. (2005) Reduction in 5-HT1A receptor density, 5-HT1A mRNA expression, and functional correlates for 5-HT1A receptors in genetically defined aggressive rats. J Neurosci Res, 80 (2): 286-92. [PMID:15765530]

85. Price GW, Burton MJ, Collin LJ, Duckworth M, Gaster L, Göthert M, Jones BJ, Roberts C, Watson JM, Middlemiss DN. (1997) SB-216641 and BRL-15572--compounds to pharmacologically discriminate h5-HT1B and h5-HT1D receptors. Naunyn Schmiedebergs Arch Pharmacol, 356 (3): 312-20. [PMID:9303567]

86. Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R. (1998) Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA, 95 (24): 14476-81. [PMID:9826725]

87. Raymond JR, Kim J, Beach RE, Tisher CC. (1993) Immunohistochemical mapping of cellular and subcellular distribution of 5-HT1A receptors in rat and human kidneys. Am J Physiol, 264 (1 Pt 2): F9-19. [PMID:8430834]

88. Roth BL, Ernsberger P, Steinberg SA, Rao S, Rauser L, Savage J, Hufeisen S, Berridge MS, Muzic Jr RF. (2001) The in vitro pharmacology of the beta-adrenergic receptor pet ligand (s)-fluorocarazolol reveals high affinity for cloned beta-adrenergic receptors and moderate affinity for the human 5-HT1A receptor. Psychopharmacology (Berl.), 157 (1): 111-4. [PMID:11512051]

89. Russell MG, Matassa VG, Pengilley RR, van Niel MB, Sohal B, Watt AP, Hitzel L, Beer MS, Stanton JA, Broughton HB et al.. (1999) 3-[3-(Piperidin-1-yl)propyl]indoles as highly selective h5-HT(1D) receptor agonists. J Med Chem, 42 (24): 4981-5001. [PMID:10585208]

90. Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M. (2000) Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci USA, 97 (26): 14731-6. [PMID:11121072]

91. Saxena PR, De Vries P, Wang W, Heiligers JP, Maassen vandenBrink A, Bax WA, Yocca FD. (1997) Effects of avitriptan, a new 5-HT 1B/1D receptor agonist, in experimental models predictive of antimigraine activity and coronary side-effect potential. Naunyn Schmiedebergs Arch Pharmacol, 355 (2): 295-302. [PMID:9050026]

92. Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, De Loore K, Leysen JE. (1996) Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl.), 124 (1-2): 57-73. [PMID:8935801]

93. Shajib MS, Khan WI. (2015) The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxf), 213 (3): 561-74. [PMID:25439045]

94. Shannon HE, Lutz EA. (2000) Yohimbine produces antinociception in the formalin test in rats: involvement of serotonin(1A) receptors. Psychopharmacology (Berl.), 149 (1): 93-7. [PMID:10789888]

95. Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, Roth BL, Mailman R. (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology, 28 (8): 1400-11. [PMID:12784105]

96. Spedding M, Newman-Tancredi A, Millan MJ, Dacquet C, Michel AN, Jacoby E, Vickery B, Tallentire D. (1998) Interaction of the anxiogenic agent, RS-30199, with 5-HT1A receptors: modulation of sexual activity in the male rat. Neuropharmacology, 37 (6): 769-80. [PMID:9707291]

97. Stam NJ, Van Huizen F, Van Alebeek C, Brands J, Dijkema R, Tonnaer JA, Olijve W. (1992) Genomic organization, coding sequence and functional expression of human 5-HT2 and 5-HT1A receptor genes. Eur J Pharmacol, 227 (2): 153-62. [PMID:1330647]

98. Turner MR, Rabiner EA, Hammers A, Al-Chalabi A, Grasby PM, Shaw CE, Brooks DJ, Leigh PN. (2005) [11C]-WAY100635 PET demonstrates marked 5-HT1A receptor changes in sporadic ALS. Brain, 128 (Pt 4): 896-905. [PMID:15689356]

99. Wainscott DB, Krushinski Jr JH, Audia JE, Schaus JM, Zgombick JM, Lucaites VL, Nelson DL. (2005) [3H]LY334370, a novel radioligand for the 5-HT1F receptor. I. In vitro characterization of binding properties. Naunyn Schmiedebergs Arch Pharmacol, 371 (3): 169-77. [PMID:15900510]

100. Ward SE, Harrington FP, Gordon LJ, Hopley SC, Scott CM, Watson JM. (2005) Discovery of the first potent, selective 5-hydroxytryptamine1D receptor antagonist. J Med Chem, 48 (10): 3478-80. [PMID:15887956]

101. Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, Jerman J, Middlemiss DN, Riley GJ, Brown AM. (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol, 125 (7): 1413-20. [PMID:9884068]

102. Watson J, Roberts C, Scott C, Kendall I, Collin L, Day NC, Harries MH, Soffin E, Davies CH, Randall AD et al.. (2001) SB-272183, a selective 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptor antagonist in native tissue. Br J Pharmacol, 133 (6): 797-806. [PMID:11454652]

103. Xu YC, Schaus JM, Walker C, Krushinski J, Adham N, Zgombick JM, Liang SX, Kohlman DT, Audia JE. (1999) N-Methyl-5-tert-butyltryptamine: A novel, highly potent 5-HT1D receptor agonist. J Med Chem, 42 (3): 526-31. [PMID:9986723]

Contributors

Show »

How to cite this page