Top ▲

M2 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 14

Nomenclature: M2 receptor

Family: Acetylcholine receptors (muscarinic)

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 466 7q33 CHRM2 cholinergic receptor muscarinic 2 3,10-11,104,160
Mouse 7 466 6 B1 Chrm2 cholinergic receptor, muscarinic 2, cardiac 82
Rat 7 466 4q22 Chrm2 cholinergic receptor, muscarinic 2 138
Previous and Unofficial Names Click here for help
M2 muscarinic acetylcholine receptor | AChR M2 | Chrm-2 | cholinergic receptor, muscarinic 2 | cholinergic receptor | cholinergic receptor, muscarinic 2, cardiac
Database Links Click here for help
Specialist databases
GPCRdb acm2_human (Hs), acm2_mouse (Mm), acm2_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist
PDB Id:  3UON
Ligand:  3-quinuclidinyl-benzilate
Resolution:  3.0Å
Species:  Human
References:  47
Image of receptor 3D structure from RCSB PDB
Description:  Structure of active human M2 muscarinic acetylcholine receptor bound to the agonist iperoxo
PDB Id:  4MQS
Ligand:  iperoxo
Resolution:  3.5Å
Species:  Human
References:  68
Image of receptor 3D structure from RCSB PDB
Description:  Structure of active human M2 muscarinic acetylcholine receptor bound to the agonist iperoxo and allosteric modulator LY2119620
PDB Id:  4MQT
Ligand:  LY2119620
Resolution:  3.7Å
Species:  Human
References:  68
Natural/Endogenous Ligands Click here for help
acetylcholine

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]iperoxo Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Agonist 10.1 pKd 114
pKd 10.1 (Kd 8x10-11 M) [114]
[3H]acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Agonist 8.8 pKd 74
pKd 8.8 [74]
[3H]oxotremorine-M Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist 8.7 pKd 6
pKd 8.7 [6]
NNC 11-1585 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 10.1 pKi 24
pKi 10.1 [24]
NNC 11-1607 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.2 pKi 24
pKi 8.2 [24]
pentylthio-TZTP Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.9 pKi 61
pKi 7.9 [61]
methacholine Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Rn Agonist 7.2 pKi 102,110
pKi 7.2 (Ki 5.9x10-8 M) [102,110]
NNC 11-1314 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.2 pKi 24
pKi 7.2 [24]
xanomeline Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 6.9 – 7.4 pKi 105,147,154
pKi 6.9 – 7.4 [105,147,154]
oxotremorine Small molecule or natural product Click here for species-specific activity table Rn Full agonist 6.5 pKi 67
pKi 6.5 [67]
acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Full agonist 6.4 pKi 67
pKi 6.4 [67]
cevimeline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 6.1 pKi 80
pKi 6.1 (Ki 8.54x10-7 M) [80]
Description: Displacement of [3H]QNB from cloned receptor.
oxotremorine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.0 – 6.6 pKi 61,110
pKi 5.0 – 6.6 [61,110]
arecaidine propargyl ester Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.7 pKi 61
pKi 5.7 [61]
carbachol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Full agonist 5.7 pKi 67
pKi 5.7 [67]
acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 4.3 – 6.5 pKi 23,61,65
pKi 4.3 – 6.5 [23,61,65]
McN-A-343 Small molecule or natural product Click here for species-specific activity table Rn Partial agonist 4.7 – 6.0 pKi 71
pKi 4.7 – 6.0 [71]
arecoline Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.2 pKi 61,100,110
pKi 5.2 [61,100,110]
carbachol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 4.2 – 5.7 pKi 23,61
pKi 4.2 – 5.7 [23,61]
methylfurmethide Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.9 pKi 61
pKi 4.9 [61]
oxotremorine-M Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.9 pKi 61
pKi 4.9 [61]
pilocarpine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 4.9 pKi 61,110
pKi 4.9 [61,110]
furtrethonium Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.5 pKi 61
pKi 4.5 [61]
bethanechol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Full agonist 4.0 pKi 61,110
pKi 4.0 [61,110]
iperoxo Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 9.8 pEC50 114-115
pEC50 9.8 [114-115]
(+)-aceclidine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.2 – 6.4 pEC50 35,46
pEC50 6.2 – 6.4 [35,46]
(-)-aceclidine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.6 – 5.7 pEC50 35,46
pEC50 5.6 – 5.7 [35,46]
[18F]FP-TZTP Small molecule or natural product Ligand is labelled Ligand is radioactive Mm Full agonist - - 59
[59]
View species-specific agonist tables
Agonist Comments
The binding data for McN-A-343 [71] is found on rat heart.
Please consult references [13,75,110,146,153] for further details of the activity of some of the ligands in this list.
Pilocarpine has been found to be a partial agonist [75,153] and a full agonist [146] at the M2 receptor.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
muscarinic toxin 3 Peptide Click here for species-specific activity table Hs Antagonist >6.3 pA2 99
pA2 >6.3 [99]
[3H]QNB Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 10.1 – 10.6 pKd 60,104
pKd 10.1 – 10.6 (Kd 7.94x10-11 – 2.51x10-11 M) [60,104]
[3H]tiotropium Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 10.3 pKd 112
pKd 10.3 [112]
[3H]N-methyl scopolamine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 9.3 – 9.9 pKd 20,52,60,62,66,73,146
pKd 9.3 – 9.9 (Kd 5.2x10-10 – 1.4x10-10 M) [20,52,60,62,66,73,146]
[3H]clidinium Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 9.6 pKd 67
pKd 9.6 [67]
[3H]N-methyl scopolamine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Rn Antagonist 9.5 pKd 124
pKd 9.5 [124]
[3H]clidinium Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Antagonist 9.5 pKd 67
pKd 9.5 [67]
[3H]4NMPB Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Antagonist 9.4 pKd 124
pKd 9.4 [124]
[3H]AF DX-384 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 9.0 pKd 21,89,142
pKd 9.0 [21,89,142]
biperiden Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.2 pKd 9
pKd 8.2 (Kd 6.3x10-9 M) [9]
Cy3B-telenzepine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Hs Antagonist 10.4 pKi 95
pKi 10.4 [95]
tiotropium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.9 – 10.7 pKi 31,107,131,133
pKi 9.9 – 10.7 [31,107,131,133]
umeclidinium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.8 pKi 70,112
pKi 9.8 (Ki 1.5x10-10 M) [70,112]
tripitramine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.6 pKi 81
pKi 9.6 [81]
ipratropium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.3 – 9.8 pKi 52,107
pKi 9.3 – 9.8 [52,107]
revefenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.5 pKi 51
pKi 9.5 (Ki 3.02x10-10 M) [51]
Description: Determined from a radioligand binding assay using membranes from CHO‐K1 cells expressing the hM2 receptor, and displacement of [3H]NMS tracer.
propantheline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.5 pKi 54
pKi 9.5 [54]
THRX160209 Small molecule or natural product Hs Antagonist 9.5 pKi 125
pKi 9.5 [125]
mepenzolic acid Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.2 pKi 155
pKi 9.2 (Ki 6.8x10-10 M) [155]
atropine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 9.0 – 9.1 pKi 64,67
pKi 9.0 – 9.1 [64,67]
dexetimide Small molecule or natural product Approved drug Primary target of this compound Hs Antagonist 8.9 pKi 67
pKi 8.9 [67]
dexetimide Small molecule or natural product Approved drug Rn Antagonist 8.8 pKi 67
pKi 8.8 [67]
Alexa-488-telenzepine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Hs Antagonist 8.8 pKi 95
pKi 8.8 [95]
scopolamine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.7 pKi 9,54
pKi 8.7 [9,54]
SCH 57790 Small molecule or natural product Hs Antagonist 8.6 pKi 69
pKi 8.6 [69]
AE9C90CB Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.6 pKi 121
pKi 8.6 [121]
benzatropine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 8.6 pKi 96
pKi 8.6 (Ki 2.6x10-9 M) [96]
Description: Displacement binding assay using homogenised rat caudate putamen.
atropine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.8 – 9.2 pKi 28,52,54,104
pKi 7.8 – 9.2 [28,52,54,104]
tolterodine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Inverse agonist 8.4 – 8.5 pKi 44,121
pKi 8.4 – 8.5 [44,121]
4-DAMP Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.4 pKi 33
pKi 8.4 [33]
AQ-RA 741 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.4 pKi 33,44
pKi 8.4 [33,44]
4-DAMP Small molecule or natural product Click here for species-specific activity table Rn Antagonist 8.2 pKi 64,67
pKi 8.2 [64,67]
himbacine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.9 – 8.4 pKi 33,63,67,88
pKi 7.9 – 8.4 [33,63,67,88]
AFDX384 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.1 – 8.2 pKi 28,33
pKi 8.1 – 8.2 [28,33]
ethopropazine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 8.1 pKi 15
pKi 8.1 (Ki 7.2x10-9 M) [15]
Description: Displacement of [H]QNB binding in rat hindbrain brain homogenate.
oxybutynin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.9 – 8.1 pKi 30,121
pKi 7.9 – 8.1 [30,121]
amitriptyline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.9 pKi 123
pKi 7.9 (Ki 1.18x10-8 M) [123]
oxybutynin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Inverse agonist 7.9 pKi 30
pKi 7.9 (Ki 1.175x10-8 M) [30]
himbacine Small molecule or natural product Rn Antagonist 7.9 pKi 67
pKi 7.9 [67]
methoctramine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.3 – 8.4 pKi 14,33,37,50,67,94
pKi 7.3 – 8.4 [14,33,37,50,67,94]
hexocyclium Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.6 pKi 14
pKi 7.6 [14]
(S)-dimetindene Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 7.5 pKi 18
pKi 7.5 (Ki 3.02x10-8 M) [18]
Description: Binding to hM2 receptors expressed in CHO cells.
silahexocyclium Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.5 pKi 14
pKi 7.5 [14]
UH-AH 37 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.3 – 7.4 pKi 44,152
pKi 7.3 – 7.4 [44,152]
methoctramine Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.3 pKi 67
pKi 7.3 [67]
darifenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Inverse agonist 7.2 – 7.3 pKi 44,52,121
pKi 7.2 – 7.3 [44,52,121]
tropicamide Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.2 pKi 28
pKi 7.2 [28]
solifenacin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 6.9 – 7.1 pKi 55,121
pKi 6.9 – 7.1 [55,121]
dosulepin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.0 pKi 123
pKi 7.0 (Ki 1.09x10-7 M) [123]
otenzepad Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.7 – 7.2 pKi 14,67
pKi 6.7 – 7.2 [14,67]
imipramine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.9 pKi 67
pKi 6.9 [67]
hexahydrosiladifenidol Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.7 – 6.8 pKi 64,67
pKi 6.7 – 6.8 [64,67]
hexahydrosiladifenidol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.6 – 6.8 pKi 14,37,67
pKi 6.6 – 6.8 [14,37,67]
hexahydrodifenidol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.7 pKi 14
pKi 6.7 [14]
dicyclomine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.6 pKi 14
pKi 6.6 [14]
pirenzepine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 5.3 – 7.4 pKi 64,67,124
pKi 5.3 – 7.4 [64,67,124]
p-F-HHSiD Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 – 6.6 pKi 37,54
pKi 6.1 – 6.6 [37,54]
pirenzepine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.0 – 6.7 pKi 14,33,50,54,63,67,94,152
pKi 6.0 – 6.7 [14,33,50,54,63,67,94,152]
VU0255035 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.2 pKi 119
pKi 6.2 [119]
muscarinic toxin 3 Peptide Click here for species-specific activity table Hs Antagonist <6.0 pKi 63
pKi <6.0 [63]
otenzepad Small molecule or natural product Click here for species-specific activity table Rn Antagonist 4.6 – 7.3 pKi 64,67,124
pKi 4.6 – 7.3 [64,67,124]
lithocholylcholine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.4 pKi 23
pKi 5.4 [23]
guanylpirenzepine Small molecule or natural product Click here for species-specific activity table Rn Antagonist 5.3 pKi 145
pKi 5.3 [145]
muscarinic toxin 7 Peptide Click here for species-specific activity table Hs Antagonist <5.0 pKi 97
pKi <5.0 [97]
levetimide Small molecule or natural product Hs Antagonist 5.0 pKi 67
pKi 5.0 [67]
levetimide Small molecule or natural product Rn Antagonist 4.8 pKi 67
pKi 4.8 [67]
ML381 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <4.5 pKi 42
pKi <4.5 (Ki >3x10-5 M) [42]
aclidinium Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 10.1 pIC50 107,133
pIC50 10.1 [107,133]
glycopyrrolate Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 8.7 – 9.5 pIC50 128,131
pIC50 8.7 – 9.5 [128,131]
solifenacin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 6.2 pIC50 106
pIC50 6.2 (IC50 5.73x10-7 M) [106]
View species-specific antagonist tables
Antagonist Comments
Dexetimide is the optical isomer of levetimide [67].

Biperiden is an approved drug antagonist of muscarinic acetylcholine receptors. We have tagged the M1 subtype as the drug's primary target as affinity is 10-fold higher at this receptor subtype [9].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]dimethyl-W84 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Positive 8.5 pKd 137
pKd 8.5 [137]
C7/3-phth Small molecule or natural product Hs Negative 7.1 pKd 2,25
pKd 7.1 [2,25]
W-84 Small molecule or natural product Hs Negative 6.0 – 7.5 pKd 91,137
pKd 6.0 – 7.5 [91,137]
alcuronium Small molecule or natural product Click here for species-specific activity table Hs Negative 6.1 – 6.9 pKd 2,61,137
pKd 6.1 – 6.9 [2,61,137]
gallamine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Negative 5.9 – 6.3 pKd 26,73
pKd 5.9 – 6.3 [26,73]
WIN 51,708 Small molecule or natural product Click here for species-specific activity table Hs Negative 5.9 pKd 78
pKd 5.9 [78]
KT 5823 Small molecule or natural product Click here for species-specific activity table Hs Positive 5.7 pKd 77
pKd 5.7 [77]
LY2119620 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Positive 5.5 – 5.7 pKd 29,68
pKd 5.5 – 5.7 [29,68]
WIN 62,577 Small molecule or natural product Click here for species-specific activity table Hs Negative 5.3 pKd 78
pKd 5.3 [78]
staurosporine Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Positive 5.1 pKd 77
pKd 5.1 [77]
vincamine Small molecule or natural product Click here for species-specific activity table Hs Neutral 5.1 pKd 61
pKd 5.1 [61]
Gö 7874 Small molecule or natural product Click here for species-specific activity table Hs Negative 5.0 pKd 77
pKd 5.0 [77]
strychnine Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Positive 4.9 – 5.0 pKd 61,73,137
pKd 4.9 – 5.0 [61,73,137]
N-benzyl brucine Small molecule or natural product Click here for species-specific activity table Hs Negative 4.8 pKd 76
pKd 4.8 [76]
N-benzyl brucine Small molecule or natural product Click here for species-specific activity table Hs Positive 4.8 pKd 76
pKd 4.8 [76]
N-chloromethyl-brucine Small molecule or natural product Click here for species-specific activity table Hs Negative 4.6 pKd 76
pKd 4.6 [76]
N-chloromethyl-brucine Small molecule or natural product Click here for species-specific activity table Hs Positive 4.6 pKd 76
pKd 4.6 [76]
brucine Small molecule or natural product Click here for species-specific activity table Hs Positive 4.3 – 4.6 pKd 61,76
pKd 4.3 – 4.6 [61,76]
LY2033298 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Positive 4.4 pKd 141
pKd 4.4 [141]
brucine Small molecule or natural product Click here for species-specific activity table Hs Negative 4.3 pKd 76
pKd 4.3 [76]
vinburnine Small molecule or natural product Click here for species-specific activity table Hs Neutral 4.2 pKd 61
pKd 4.2 [61]
thiochrome Small molecule or natural product Click here for species-specific activity table Hs Neutral 3.9 pKd 74
pKd 3.9 [74]
brucine N-oxide Small molecule or natural product Click here for species-specific activity table Hs Negative 3.5 pKd 76
pKd 3.5 [76]
brucine N-oxide Small molecule or natural product Click here for species-specific activity table Hs Positive 3.5 pKd 76
pKd 3.5 [76]
dimethyl-W84 Small molecule or natural product Hs Positive 8.5 pKi 137
pKi 8.5 [137]
W-84 Small molecule or natural product Hs Positive 7.6 pKi 137
pKi 7.6 [137]
WDuo3 Small molecule or natural product Hs Positive 6.9 pKi 137
pKi 6.9 [137]
gallamine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Negative 5.8 – 7.6 pKi 67,92,137
pKi 5.8 – 7.6 [67,92,137]
gallamine Small molecule or natural product Approved drug Ligand has a PDB structure Rn Negative 5.6 pKi 67
pKi 5.6 [67]
Duo3 Small molecule or natural product Hs Positive 7.1 pEC50 136
pEC50 7.1 [136]
tacrine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Negative 5.7 pIC50 122
pIC50 5.7 (IC50 2.1x10-6 M) [122]
View species-specific allosteric modulator tables
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
References:  87,103
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Gq/G11 family
Adenylyl cyclase stimulation
Phospholipase C stimulation
References:  46,86
Tissue Distribution Click here for help
Ciliary muscle.
Species:  Human
Technique:  In situ hybridisation and Northern blotting.
References:  159
CNS: cerebral cortex, thalamus, brainstem, medulla, hypothalamus.
Species:  Human
Technique:  Radioligand binding.
References:  27
Vestibular system.
Species:  Human
Technique:  RT-PCR.
References:  144
Esophageal smooth muscle.
Species:  Human
Technique:  Radioligand binding.
References:  108
Bladder.
Species:  Human
Technique:  RT-PCR.
References:  139
CNS: forebrain.
Species:  Mouse
Technique:  immunocytochemistry.
References:  53
CNS: cerebral cortex, corpus striatum, hippocampus, thalamus, hypothalamus, midbrain, pons-medulla, cerebellum, spinal cord.
Species:  Mouse
Technique:  Radioligand binding.
References:  98
Intestinal smooth muscle.
Species:  Rat
Technique:  Radioligand binding.
References:  19
CNS: pons.
Species:  Rat
Technique:  Radioligand binding.
References:  4
CNS: hippocampus.
Species:  Rat
Technique:  immunocytochemistry.
References:  79
CNS: caudate putamen.
Species:  Rat
Technique:  in situ hybridisation.
References:  148
Heart: intrinsic neurons.
Species:  Rat
Technique:  in situ hybridisation.
References:  49
Salivary gland: submandibular ganglion.
Species:  Rat
Technique:  Immunohistochemistry.
References:  120
Vestibular system.
Species:  Rat
Technique:  RT-PCR.
References:  144
CNS: basal forebrain, parabigeminal nucleus, pedunculopontine and laterodorsal tegmental nuclei, cranial nerve nuclei.
Species:  Rat
Technique:  in situ hybridisation.
References:  143
CNS: cerebral cortex, hipocampus, corpus striatum, olfactory tubercle, midbrain, pons-medulla, cerebellum.
Species:  Rat
Technique:  Immunoprecipitation.
References:  156
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of cAMP levels in CHO cells transfected with the human M2 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  20,23-24,110
Measurement of cAMP levels in mouse Y1 adrenal cells transfected with the mouse M2 receptor.
Species:  Mouse
Tissue:  Y1 adrenal cells.
Response measured:  Inhibition of cAMP accumulation.
References:  118
Measurement of cAMP levels in JEG-3 cells transfected with the human M2 receptor, using a cAMP response element (CRE)-coupled luciferase construct as the reporter.
Species:  Human
Tissue:  JEG-3 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  87
Measurement of cAMP levels in dissociated rat cortical tissue endogenously expressing the M2 receptor.
Species:  Rat
Tissue:  Cortical tissue.
Response measured:  Inhibition of cAMP accumulation.
References:  1
Measurement of ERK1/2 activity in COS-7 cells transfected with the human M2 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Increase in ERK1/2 activity.
References:  111
Measurement of GIRK channel activity in Xenopus oocytes transfected with the human M2 receptor.
Species:  Human
Tissue:  Xenopus oocytes.
Response measured:  Activation of GIRK channels.
References:  157
Measurement of GIRK channel activity in rat superior cervical ganglion neurons endogenously expressing the M2 receptor.
Species:  Rat
Tissue:  Superior cervical ganglion neurons.
Response measured:  Activation of GIRK channels.
References:  39-40
Measurement of AC activity in rat myocardial homogenates endogenously expressing the M2 receptor.
Species:  Rat
Tissue:  Myocardial homogenates.
Response measured:  Inhibition of AC activity.
References:  36
Measurement of the effects of a ligand on the level, or rate, of binding of GTPγ35S to membranes.
Species:  Human
Tissue:  CHO cells.
Response measured:  The binding of GTPγ35S to G proteins coupled to the receptor.
References:  7,72-75,77-78
Measurement of the effects of a ligand on the rate of hydrolysis of GTP by G proteins in membranes.
Species:  Human
Tissue:  CHO cell membranes.
Response measured:  Generation of 32Pi from [γ-32P]GTP.
References:  75
Physiological Functions Click here for help
Vasodilation.
Species:  Rat
Tissue:  Pulmonary artery.
References:  85
Mediation of colonic motor responses to eating.
Species:  Human
Tissue:  In vivo.
References:  93
Hypertension.
Species:  Rat
Tissue:  In vivo.
References:  101
Stimulation of pancreatic secretion.
Species:  Rat
Tissue:  In vivo.
References:  22
Stimulation of water consumption.
Species:  Rat
Tissue:  In vivo.
References:  48
Control of small intestinal motility.
Species:  Rat
Tissue:  In vivo.
References:  38
Hypotension.
Species:  Rat
Tissue:  In vivo.
References:  130
Bradycardia.
Species:  Rat
Tissue:  In vivo.
References:  130
Thermal automodulator.
Species:  Rat
Tissue:  In vivo.
References:  117
Autoreceptor: modulation of ACh release.
Species:  Human
Tissue:  Bronchi.
References:  90,134
Stimulation of histamine release.
Species:  Rat
Tissue:  Stomach.
References:  113
Spinal analgesia.
Species:  Rat
Tissue:  In vivo.
References:  43
Autoreceptor: modulation of ACh release.
Species:  Rat
Tissue:  Heart.
References:  8
Locomotor activity.
Species:  Rat
Tissue:  In vivo.
References:  12
Modulation of the sleep-wake cycle.
Species:  Rat
Tissue:  In vivo.
References:  56-58
Physiological Consequences of Altering Gene Expression Click here for help
Atrial preparations from M2 receptor knockout mice do not exhibit agonist-induced bradycardia as seen in wild-type atrial preparations.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  16,45,127
M2 receptor knockout mice do not exhibit agonist-induced tremor as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  45
M2 receptor knockout mice exhibit reduced agonist-induced hypothermia as compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  45
M2 receptor knockout mice exhibit reduced agonist-induced antinociception compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  32,45
Smooth muscle preparations (stomach fundus, urinary bladder, trachea, gallbladder) from M2 receptor knockout mice exhibit reduced agonist-induced contractions compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  16,126-127
Hippocampal, cortical and striatal brain slices from M2/M4 double knockout mice lack muscarinic agonist-induced inhibition of acetylcholine release that is seen with wild-type brain slices.
From M2 receptor single knockout mice, the hippocampal and cortical slices exhibit this loss of inhibition of acetylcholine release, but the inhibition remains in the striatal slices.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  158
Skin preparations from M2 receptor knockout mice no longer show muscarinic-induced desensitisation of peripheral nociception.
In addition, the heat-induced release of CGRP which is inhibited by muscarine in wild-type mice is unaltered in M2 knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  5
Tissue from atria, bladder and vas deferens of M2 receptor knockout mice exhibit reduced agonist-induced inhibition of noradrenaline release compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  135
Smooth muscle preparations (ileum, trachea, urinary bladder) from M2 receptor knockout mice exhibit increased relaxant effects of forskolin and isoproterenol against agonist-induced contractions.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  34,83
M2 receptor knockout mice exhibit a reduced muscarinic antagonist-induced increase in hippocampal acetylcholine release compared to wild-type mice.
M2/M4 double knockout mice completely lack this response.
In addition, M2 and M2/M4 knockout mice exhibit an increase in hippocampal acetylcholine release in response to a novel environment.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  140
Lung slices from M2 receptor knockout mice exhibit reduced agonist-induced bronchoconstriction compared to wild-type mice.
This bronchoconstriction is completely abolished in M2/M3 double knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  129
M2 receptor knockout mice do not exhibit agonist-induced or vagally-stimulated bradycardia in vivo as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  41
M2 receptor knockout mice exhibit increased agonist-induced or vagally-stimulated bronchoconstriction in vivo compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  41
M2 receptor knockout mice exhibit impaired behavioural flexibility, working memory and hippocampal plasticity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  116
M2 receptor knockout mice exhibit increased agonist/stress-induced pituitary-adrenal responses.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  109
Smooth muscle from the small intestine of M2 receptor knockout mice do not exhibit any alteration in EFS-induced acetylcholine release.
However, M2/M4 double knockout mice exhibit an increase in acetylcholine release.
Overall, it is thought that both M2 and M4 receptors mediate the autoinhibitory control of acetylcholine release in the mouse ileum, and that each can compensate for loss of the other.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  132
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Chrm2tm1Jwe|Chrm4tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S4/SvJae * 129S6/SvEvTac * CF-1
MGI:88397  MGI:88399  MP:0004994 abnormal brain wave pattern PMID: 16110248 
Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe
involves: 129S4/SvJae * CF-1
MGI:88397  MP:0002206 abnormal CNS synaptic transmission PMID: 15919709 
Chrm2tm1Jwe|Chrm4tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S4/SvJae * 129S6/SvEvTac * CF-1
MGI:88397  MGI:88399  MP:0002206 abnormal CNS synaptic transmission PMID: 15919709 
Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe
involves: 129S4/SvJae * CF-1
MGI:88397  MP:0005085 abnormal gallbladder physiology PMID: 11961069 
Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe
involves: 129S4/SvJae * CF-1
MGI:88397  MP:0001629 abnormal heart rate PMID: 10688600 
Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe
B6.129S4-Chrm2
MGI:88397  MP:0002566 abnormal sexual interaction PMID: 18382674 
Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe
B6.129S4-Chrm2
MGI:88397  MP:0001529 abnormal vocalization PMID: 18382674 
Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe
involves: 129S4/SvJae * CF-1
MGI:88397  MP:0001945 bronchoconstriction PMID: 14645675 
Chrm2tm1Jwe|Chrm3tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe,Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S4/SvJae * 129S6/SvEvTac * CF-1
MGI:88397  MGI:88398  MP:0001945 bronchoconstriction PMID: 14645675 
Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe
involves: 129S4/SvJae * CF-1
MGI:88397  MP:0001262 decreased body weight PMID: 9990086 
Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe
involves: 129S4/SvJae * CF-1
MGI:88397  MP:0001982 decreased chemically-elicited antinociception PMID: 9990086 
Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe
involves: 129S4/SvJae * CF-1
MGI:88397  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 9990086 
Chrm2+|Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2+
involves: 129S4/SvJae * CF-1
MGI:88397  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 9990086 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0000539 distended urinary bladder PMID: 12486155 
Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe
involves: 129S4/SvJae * CF-1
MGI:88397  MP:0009747 impaired behavioral response to xenobiotic PMID: 10688600 
Chrm2+|Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2+
involves: 129S4/SvJae * CF-1
MGI:88397  MP:0009747 impaired behavioral response to xenobiotic PMID: 9990086 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0000742 impaired contractility of ileal smooth muscle PMID: 12486155 
Chrm2tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe
involves: 129S4/SvJae * CF-1
MGI:88397  MP:0000740 impaired smooth muscle contractility PMID: 10688600  11961069 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 12486155 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0002546 mydriasis PMID: 12486155 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0001732 postnatal growth retardation PMID: 12486155 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Alcohol dependence
Disease Ontology: DOID:0050741
OMIM: 103780
General Comments
For reviews on muscarinic receptor knockout mice see [17,84,149-151].

References

Show »

1. Anderson DJ, McKinney M. (1988) Muscarinic M2 receptor-mediated cyclic AMP reduction in mechanically dissociated rat cortex. Brain Res, 475 (1): 28-34. [PMID:2850835]

2. Avlani VA, Gregory KJ, Morton CJ, Parker MW, Sexton PM, Christopoulos A. (2007) Critical role for the second extracellular loop in the binding of both orthosteric and allosteric G protein-coupled receptor ligands. J Biol Chem, 282 (35): 25677-86. [PMID:17591774]

3. Badner JA, Yoon SW, Turner G, Bonner TI, Detera-Wadleigh SD. (1995) Multipoint genetic linkage analysis of the m2 human muscarinic receptor gene. Mamm Genome, 6 (7): 489-90. [PMID:7579899]

4. Baghdoyan HA. (1997) Location and quantification of muscarinic receptor subtypes in rat pons: implications for REM sleep generation. Am J Physiol, 273 (3 Pt 2): R896-904. [PMID:9321865]

5. Bernardini N, Roza C, Sauer SK, Gomeza J, Wess J, Reeh PW. (2002) Muscarinic M2 receptors on peripheral nerve endings: a molecular target of antinociception. J Neurosci, 22 (12): RC229. [PMID:12045234]

6. Berrie CP, Birdsall NJ, Hulme EC, Keen M, Stockton JM. (1984) Solubilization and characterization of guanine nucleotide-sensitive muscarinic agonist binding sites from rat myocardium. Br J Pharmacol, 82 (4): 853-61. [PMID:6478115]

7. Birdsall NJ, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M. (1999) Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: functional studies. Mol Pharmacol, 55 (4): 778-86. [PMID:10101037]

8. Bognar IT, Beinhauer B, Kann P, Fuder H. (1990) Different muscarinic receptors mediate autoinhibition of acetylcholine release and vagally-induced vasoconstriction in the rat isolated perfused heart. Naunyn Schmiedebergs Arch Pharmacol, 341 (4): 279-87. [PMID:2333099]

9. Bolden C, Cusack B, Richelson E. (1992) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J Pharmacol Exp Ther, 260 (2): 576-80. [PMID:1346637]

10. Bonner TI, Modi WS, Seuanez HN, O'Brien SJ. (1991) Chromosomal mapping of the five human genes encoding muscarinic acetylcholine receptors. Cytogenet Cell Genet, 58: 1850-1851.

11. Bonner TI, Young AC, Brann MR, Buckley NJ. (1988) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron, 1 (5): 403-10. [PMID:3272174]

12. Brudzynski SM, McLachlan RS, Girvin JP. (1991) Involvement of M1 and M2 muscarinic receptors of the basal forebrain in cholinergically mediated changes in the rat locomotion. Prog Neuropsychopharmacol Biol Psychiatry, 15 (2): 279-84. [PMID:1871329]

13. Bräuner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P. (1996) Functional partial agonism at cloned human muscarinic acetylcholine receptors. Eur J Pharmacol, 313 (1-2): 145-50. [PMID:8905341]

14. Buckley NJ, Bonner TI, Buckley CM, Brann MR. (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol, 35 (4): 469-76. [PMID:2704370]

15. Burke RE. (1986) The relative selectivity of anticholinergic drugs for the M1 and M2 muscarinic receptor subtypes. Mov Disord, 1 (2): 135-44. [PMID:2904117]

16. Bymaster FP, Carter PA, Zhang L, Falcone JF, Stengel PW, Cohen ML, Shannon HE, Gomeza J, Wess J, Felder CC. (2001) Investigations into the physiological role of muscarinic M2 and M4 muscarinic and M4 receptor subtypes using receptor knockout mice. Life Sci, 68 (22-23): 2473-9. [PMID:11392615]

17. Bymaster FP, McKinzie DL, Felder CC, Wess J. (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res, 28 (3-4): 437-42. [PMID:12675128]

18. Böhme TM, Keim C, Kreutzmann K, Linder M, Dingermann T, Dannhardt G, Mutschler E, Lambrecht G. (2003) Structure-activity relationships of dimethindene derivatives as new M2-selective muscarinic receptor antagonists. J Med Chem, 46 (5): 856-67. [PMID:12593665]

19. Candell LM, Yun SH, Tran LL, Ehlert FJ. (1990) Differential coupling of subtypes of the muscarinic receptor to adenylate cyclase and phosphoinositide hydrolysis in the longitudinal muscle of the rat ileum. Mol Pharmacol, 38 (5): 689-97. [PMID:2172776]

20. Cembala TM, Sherwin JD, Tidmarsh MD, Appadu BL, Lambert DG. (1998) Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 125 (5): 1088-94. [PMID:9846649]

21. Ch'ng SS, Walker AJ, McCarthy M, Le TK, Thomas N, Gibbons A, Udawela M, Kusljic S, Dean B, Gogos A. (2020) The Impact of Removal of Ovarian Hormones on Cholinergic Muscarinic Receptors: Examining Prepulse Inhibition and Receptor Binding. Brain Sci, 10 (2). [PMID:32079174]

22. Chariot J, De la Tour J, Vaille C, Rozé C. (1987) Comparative effects of pirenzepine and atropine on pancreatic secretion in conscious rats. Arch Int Pharmacodyn Ther, 285 (1): 158-65. [PMID:3579423]

23. Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP. (2002) Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther, 303 (1): 29-35. [PMID:12235229]

24. Christopoulos A, Grant MK, Ayoubzadeh N, Kim ON, Sauerberg P, Jeppesen L, El-Fakahany EE. (2001) Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J Pharmacol Exp Ther, 298 (3): 1260-8. [PMID:11504829]

25. Christopoulos A, Sorman JL, Mitchelson F, El-Fakahany EE. (1999) Characterization of the subtype selectivity of the allosteric modulator heptane-1,7-bis-(dimethyl-3'-phthalimidopropyl) ammonium bromide (C7/3-phth) at cloned muscarinic acetylcholine receptors. Biochem Pharmacol, 57 (2): 171-9. [PMID:9890565]

26. Clark AL, Mitchelson F. (1976) The inhibitory effect of gallamine on muscarinic receptors. Br J Pharmacol, 58 (3): 323-31. [PMID:990587]

27. Cortés R, Probst A, Tobler HJ, Palacios JM. (1986) Muscarinic cholinergic receptor subtypes in the human brain. II. Quantitative autoradiographic studies. Brain Res, 362 (2): 239-53. [PMID:3753655]

28. Croy CH, Chan WY, Castetter AM, Watt ML, Quets AT, Felder CC. (2016) Characterization of PCS1055, a novel muscarinic M4 receptor antagonist. Eur J Pharmacol, 782: 70-6. [PMID:27085897]

29. Croy CH, Schober DA, Xiao H, Quets A, Christopoulos A, Felder CC. (2014) Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors. Mol Pharmacol, 86 (1): 106-15. [PMID:24807965]

30. Del Bello F, Barocelli E, Bertoni S, Bonifazi A, Camalli M, Campi G, Giannella M, Matucci R, Nesi M, Pigini M et al.. (2012) 1,4-dioxane, a suitable scaffold for the development of novel M₃ muscarinic receptor antagonists. J Med Chem, 55 (4): 1783-7. [PMID:22243489]

31. Disse B, Reichl R, Speck G, Traunecker W, Ludwig Rominger KL, Hammer R. (1993) Ba 679 BR, a novel long-acting anticholinergic bronchodilator. Life Sci, 52 (5-6): 537-44. [PMID:8441333]

32. Duttaroy A, Gomeza J, Gan JW, Siddiqui N, Basile AS, Harman WD, Smith PL, Felder CC, Levey AI, Wess J. (2002) Evaluation of muscarinic agonist-induced analgesia in muscarinic acetylcholine receptor knockout mice. Mol Pharmacol, 62 (5): 1084-93. [PMID:12391271]

33. Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther, 256 (2): 727-33. [PMID:1994002]

34. Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, Matsui M. (2005) The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther, 313 (1): 368-78. [PMID:15608083]

35. Ehlert FJ, Griffin MT, Glidden PF. (1996) The interaction of the enantiomers of aceclidine with subtypes of the muscarinic receptor. J Pharmacol Exp Ther, 279 (3): 1335-44. [PMID:8968358]

36. Ehlert FJ, Rathbun BE. (1990) Signaling through the muscarinic receptor-adenylate cyclase system of the heart is buffered against GTP over a range of concentrations. Mol Pharmacol, 38 (1): 148-58. [PMID:2370853]

37. Esqueda EE, Gerstin Jr EH, Griffin MT, Ehlert FJ. (1996) Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung. Biochem Pharmacol, 52 (4): 643-58. [PMID:8759038]

38. Fargeas MJ, Fioramonti J, Buéno L. (1987) Central muscarinic control of the pattern of small intestinal motility in rats. Life Sci, 40 (17): 1709-15. [PMID:3561171]

39. Fernandez-Fernandez JM, Wanaverbecq N, Halley P, Caulfield MP, Brown DA. (1999) Selective activation of heterologously expressed G protein-gated K+ channels by M2 muscarinic receptors in rat sympathetic neurones. J Physiol (Lond.), 515 ( Pt 3): 631-7. [PMID:10066893]

40. Fernández-Fernández JM, Abogadie FC, Milligan G, Delmas P, Brown DA. (2001) Multiple pertussis toxin-sensitive G-proteins can couple receptors to GIRK channels in rat sympathetic neurons when expressed heterologously, but only native G(i)-proteins do so in situ. Eur J Neurosci, 14 (2): 283-92. [PMID:11553279]

41. Fisher JT, Vincent SG, Gomeza J, Yamada M, Wess J. (2004) Loss of vagally mediated bradycardia and bronchoconstriction in mice lacking M2 or M3 muscarinic acetylcholine receptors. FASEB J, 18 (6): 711-3. [PMID:14977875]

42. Gentry PR, Kokubo M, Bridges TM, Cho HP, Smith E, Chase P, Hodder PS, Utley TJ, Rajapakse A, Byers F et al.. (2014) Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe. ChemMedChem, 9 (8): 1677-82. [PMID:24692176]

43. Gillberg PG, Gordh Jr T, Hartvig P, Jansson I, Pettersson J, Post C. (1989) Characterization of the antinociception induced by intrathecally administered carbachol. Pharmacol Toxicol, 64 (4): 340-3. [PMID:2748539]

44. Gillberg PG, Sundquist S, Nilvebrant L. (1998) Comparison of the in vitro and in vivo profiles of tolterodine with those of subtype-selective muscarinic receptor antagonists. Eur J Pharmacol, 349 (2-3): 285-92. [PMID:9671109]

45. Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J. (1999) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA, 96 (4): 1692-7. [PMID:9990086]

46. Griffin MT, Figueroa KW, Liller S, Ehlert FJ. (2007) Estimation of agonist activity at G protein-coupled receptors: analysis of M2 muscarinic receptor signaling through Gi/o,Gs, and G15. J Pharmacol Exp Ther, 321 (3): 1193-207. [PMID:17392404]

47. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T et al.. (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature, 482 (7386): 547-51. [PMID:22278061]

48. Hagan JJ, Tonnaer JA, Broekkamp CL. (1987) Cholinergic stimulation of drinking from the lateral hypothalamus: indications for M2 muscarinic receptor mediation. Pharmacol Biochem Behav, 26 (4): 771-9. [PMID:3602034]

49. Hassall CJ, Stanford SC, Burnstock G, Buckley NJ. (1993) Co-expression of four muscarinic receptor genes by the intrinsic neurons of the rat and guinea-pig heart. Neuroscience, 56 (4): 1041-8. [PMID:8284034]

50. Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM. (1997) Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol, 120 (8): 1409-18. [PMID:9113359]

51. Hegde SS, Pulido-Rios MT, Luttmann MA, Foley JJ, Hunsberger GE, Steinfeld T, Lee T, Ji Y, Mammen MM, Jasper JR. (2018) Pharmacological properties of revefenacin (TD-4208), a novel, nebulized long-acting, and lung selective muscarinic antagonist, at human recombinant muscarinic receptors and in rat, guinea pig, and human isolated airway tissues. Pharmacol Res Perspect, 6 (3): e00400. [PMID:29736245]

52. Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe M, Mitsuya M et al.. (2001) Pharmacological properties of (2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: a novel mucarinic antagonist with M(2)-sparing antagonistic activity. J Pharmacol Exp Ther, 297 (2): 790-7. [PMID:11303071]

53. Hohmann CF, Potter ED, Levey AI. (1995) Development of muscarinic receptor subtypes in the forebrain of the mouse. J Comp Neurol, 358 (1): 88-101. [PMID:7560279]

54. Huang F, Buchwald P, Browne CE, Farag HH, Wu WM, Ji F, Hochhaus G, Bodor N. (2001) Receptor binding studies of soft anticholinergic agents. AAPS PharmSci, 3 (4): E30. [PMID:12049493]

55. Ikeda K, Kobayashi S, Suzuki M, Miyata K, Takeuchi M, Yamada T, Honda K. (2002) M(3) receptor antagonism by the novel antimuscarinic agent solifenacin in the urinary bladder and salivary gland. Naunyn Schmiedebergs Arch Pharmacol, 366 (2): 97-103. [PMID:12122494]

56. Imeri L, Bianchi S, Angeli P, Mancia M. (1991) Differential effects of M2 and M3 muscarinic antagonists on the sleep-wake cycle. Neuroreport, 2 (7): 383-5. [PMID:1912471]

57. Imeri L, Bianchi S, Angeli P, Mancia M. (1994) Selective blockade of different brain stem muscarinic receptor subtypes: effects on the sleep-wake cycle. Brain Res, 636 (1): 68-72. [PMID:8156412]

58. Imeri L, Bianchi S, Angeli P, Mancia M. (1996) Muscarinic receptor subtypes in the medial preoptic area and sleep-wake cycles. Neuroreport, 7 (2): 417-20. [PMID:8730795]

59. Jagoda EM, Kiesewetter DO, Shimoji K, Ravasi L, Yamada M, Gomeza J, Wess J, Eckelman WC. (2003) Regional brain uptake of the muscarinic ligand, [18F]FP-TZTP, is greatly decreased in M2 receptor knockout mice but not in M1, M3 and M4 receptor knockout mice. Neuropharmacology, 44 (5): 653-61. [PMID:12668051]

60. Jakubík J, Bacáková L, el-Fakahany EE, Tucek S. (1995) Subtype selectivity of the positive allosteric action of alcuronium at cloned M1-M5 muscarinic acetylcholine receptors. J Pharmacol Exp Ther, 274 (3): 1077-83. [PMID:7562472]

61. Jakubík J, Bacáková L, El-Fakahany EE, Tucek S. (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol, 52 (1): 172-9. [PMID:9224827]

62. Jakubík J, El-Fakahany EE, Dolezal V. (2006) Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors. Mol Pharmacol, 70 (2): 656-66. [PMID:16675658]

63. Jolkkonen M, van Giersbergen PL, Hellman U, Wernstedt C, Karlsson E. (1994) A toxin from the green mamba Dendroaspis angusticeps: amino acid sequence and selectivity for muscarinic m4 receptors. FEBS Lett, 352 (1): 91-4. [PMID:7925952]

64. Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI. (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci, 51 (12): 955-71. [PMID:1325587]

65. Keov P, Valant C, Devine SM, Lane JR, Scammells PJ, Sexton PM, Christopoulos A. (2013) Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M₁ muscarinic acetylcholine receptor. Mol Pharmacol, 84 (3): 425-37. [PMID:23798605]

66. Khattar SK, Bora RS, Priyadarsiny P, Gupta D, Khanna A, Narayanan KL, Babu V, Chugh A, Saini KS. (2006) High level stable expression of pharmacologically active human M1-M5 muscarinic receptor subtypes in mammalian cells. Biotechnol Lett, 28 (2): 121-9. [PMID:16369696]

67. Kovacs I, Yamamura HI, Waite SL, Varga EV, Roeske WR. (1998) Pharmacological comparison of the cloned human and rat M2 muscarinic receptor genes expressed in the murine fibroblast (B82) cell line. J Pharmacol Exp Ther, 284 (2): 500-7. [PMID:9454790]

68. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hübner H, Pardon E, Valant C, Sexton PM et al.. (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 504 (7478): 101-6. [PMID:24256733]

69. Lachowicz JE, Lowe D, Duffy RA, Ruperto V, Taylor LA, Guzik H, Brown J, Berger JG, Tice M, McQuade R et al.. (1999) SCH 57790: a novel M2 receptor selective antagonist. Life Sci, 64 (6-7): 535-9. [PMID:10069520]

70. Lainé DI, McCleland B, Thomas S, Neipp C, Underwood B, Dufour J, Widdowson KL, Palovich MR, Blaney FE, Foley JJ et al.. (2009) Discovery of novel 1-azoniabicyclo[2.2.2]octane muscarinic acetylcholine receptor antagonists. J Med Chem, 52 (8): 2493-505. [PMID:19317446]

71. Lambrecht G, Moser U, Grimm U, Pfaff O, Hermanni U, Hildebrandt C, Waelbroeck M, Christophe J, Mutschler E. (1993) New functionally selective muscarinic agonists. Life Sci, 52 (5-6): 481-8. [PMID:7680092]

72. Lazareno S, Birdsall NJ. (1993) Pharmacological characterization of acetylcholine-stimulated [35S]-GTP gamma S binding mediated by human muscarinic m1-m4 receptors: antagonist studies. Br J Pharmacol, 109 (4): 1120-7. [PMID:8401923]

73. Lazareno S, Birdsall NJ. (1995) Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol, 48 (2): 362-78. [PMID:7651370]

74. Lazareno S, Dolezal V, Popham A, Birdsall NJ. (2004) Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol, 65 (1): 257-66. [PMID:14722259]

75. Lazareno S, Farries T, Birdsall NJ. (1993) Pharmacological characterization of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors m1-m4. Life Sci, 52 (5-6): 449-56. [PMID:8441327]

76. Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJ. (1998) Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies. Mol Pharmacol, 53 (3): 573-89. [PMID:9495826]

77. Lazareno S, Popham A, Birdsall NJ. (2000) Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-(3)H]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol Pharmacol, 58 (1): 194-207. [PMID:10860942]

78. Lazareno S, Popham A, Birdsall NJ. (2002) Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol Pharmacol, 62 (6): 1492-505. [PMID:12435818]

79. Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci, 15 (5 Pt 2): 4077-92. [PMID:7751967]

80. Loudon JM, Bromidge SM, Brown F, Clark MS, Hatcher JP, Hawkins J, Riley GJ, Noy G, Orlek BS. (1997) SB 202026: a novel muscarinic partial agonist with functional selectivity for M1 receptors. J Pharmacol Exp Ther, 283 (3): 1059-68. [PMID:9399977]

81. Maggio R, Barbier P, Bolognesi ML, Minarini A, Tedeschi D, Melchiorre C. (1994) Binding profile of the selective muscarinic receptor antagonist tripitramine. Eur J Pharmacol, 268: 459-462. [PMID:7805774]

82. Matsui M, Araki Y, Karasawa H, Matsubara N, Taketo MM, Seldin MF. (1999) Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet Syst, 74 (1): 15-21. [PMID:10549128]

83. Matsui M, Griffin MT, Shehnaz D, Taketo MM, Ehlert FJ. (2003) Increased relaxant action of forskolin and isoproterenol against muscarinic agonist-induced contractions in smooth muscle from M2 receptor knockout mice. J Pharmacol Exp Ther, 305 (1): 106-13. [PMID:12649358]

84. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ. (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci, 75 (25): 2971-81. [PMID:15474550]

85. McCormack DG, Mak JC, Minette P, Barnes PJ. (1988) Muscarinic receptor subtypes mediating vasodilation in the pulmonary artery. Eur J Pharmacol, 158 (3): 293-7. [PMID:3253104]

86. Michal P, El-Fakahany EE, Dolezal V. (2007) Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins. J Pharmacol Exp Ther, 320 (2): 607-14. [PMID:17065363]

87. Migeon JC, Thomas SL, Nathanson NM. (1995) Differential coupling of m2 and m4 muscarinic receptors to inhibition of adenylyl cyclase by Gi alpha and G(o)alpha subunits. J Biol Chem, 270 (27): 16070-4. [PMID:7608168]

88. Miller JH, Aagaard PJ, Gibson VA, McKinney M. (1992) Binding and functional selectivity of himbacine for cloned and neuronal muscarinic receptors. J Pharmacol Exp Ther, 263 (2): 663-7. [PMID:1331410]

89. Miller JH, Gibson VA, McKinney M. (1991) Binding of [3H]AF-DX 384 to cloned and native muscarinic receptors. J Pharmacol Exp Ther, 259 (2): 601-7. [PMID:1941609]

90. Minette PA, Barnes PJ. (1988) Prejunctional inhibitory muscarinic receptors on cholinergic nerves in human and guinea pig airways. J Appl Physiol, 64 (6): 2532-7. [PMID:3403437]

91. Mohr M, Heller E, Ataie A, Mohr K, Holzgrabe U. (2004) Development of a new type of allosteric modulator of muscarinic receptors: hybrids of the antagonist AF-DX 384 and the hexamethonio derivative W84. J Med Chem, 47 (12): 3324-7. [PMID:15163212]

92. Moo EV, Sexton PM, Christopoulos A, Valant C. (2018) Utility of an "Allosteric Site-Impaired" M2 Muscarinic Acetylcholine Receptor as a Novel Construct for Validating Mechanisms of Action of Synthetic and Putative Endogenous Allosteric Modulators. Mol Pharmacol, 94 (5): 1298-1309. [PMID:30213802]

93. Narducci F, Bassotti G, Daniotti S, Del Soldato P, Pelli MA, Morelli A. (1985) Identification of muscarinic receptor subtype mediating colonic response to eating. Dig Dis Sci, 30 (2): 124-8. [PMID:3838152]

94. Nelson CP, Nahorski SR, Challiss RA. (2006) Constitutive activity and inverse agonism at the M2 muscarinic acetylcholine receptor. J Pharmacol Exp Ther, 316 (1): 279-88. [PMID:16188951]

95. Nenasheva TA, Neary M, Mashanov GI, Birdsall NJ, Breckenridge RA, Molloy JE. (2013) Abundance, distribution, mobility and oligomeric state of M₂ muscarinic acetylcholine receptors in live cardiac muscle. J Mol Cell Cardiol, 57: 129-36. [PMID:23357106]

96. Newman AH, Kline RH, Allen AC, Izenwasser S, George C, Katz JL. (1995) Novel 4'-substituted and 4',4"-disubstituted 3 alpha-(diphenylmethoxy)tropane analogs as potent and selective dopamine uptake inhibitors. J Med Chem, 38 (20): 3933-40. [PMID:7562926]

97. Näsman J, Jolkkonen M, Ammoun S, Karlsson E, Akerman KE. (2000) Recombinant expression of a selective blocker of M(1) muscarinic receptors. Biochem Biophys Res Commun, 271 (2): 435-9. [PMID:10799315]

98. Oki T, Takagi Y, Inagaki S, Taketo MM, Manabe T, Matsui M, Yamada S. (2005) Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res, 133 (1): 6-11. [PMID:15661360]

99. Olianas MC, Ingianni A, Maullu C, Adem A, Karlsson E, Onali P. (1999) Selectivity profile of muscarinic toxin 3 in functional assays of cloned and native receptors. J Pharmacol Exp Ther, 288 (1): 164-70. [PMID:9862767]

100. Ozenil M, Pacher K, Balber T, Vraka C, Roller A, Holzer W, Spreitzer H, Mitterhauser M, Wadsak W, Hacker M et al.. (2020) Enhanced arecoline derivatives as muscarinic acetylcholine receptor M1 ligands for potential application as PET radiotracers. Eur J Med Chem, 204: 112623. [PMID:32717485]

101. Pazos A, Wiederhold KH, Palacios JM. (1986) Central pressor effects induced by muscarinic receptor agonists: evidence for a predominant role of the M2 receptor subtype. Eur J Pharmacol, 125 (1): 63-70. [PMID:3732392]

102. Pei XF, Gupta TH, Badio B, Padgett WL, Daly JW. (1998) 6beta-Acetoxynortropane: a potent muscarinic agonist with apparent selectivity toward M2-receptors. J Med Chem, 41 (12): 2047-55. [PMID:9622546]

103. Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ. (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature, 334 (6181): 434-7. [PMID:2841607]

104. Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ. (1987) Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J, 6 (13): 3923-9. [PMID:3443095]

105. Powers AS, Pham V, Burger WAC, Thompson G, Laloudakis Y, Barnes NW, Sexton PM, Paul SM, Christopoulos A, Thal DM et al.. (2023) Structural basis of efficacy-driven ligand selectivity at GPCRs. Nat Chem Biol, 19 (7): 805-814. [PMID:36782010]

106. Prat M, Buil MA, Fernández MD, Castro J, Monleón JM, Tort L, Casals G, Ferrer M, Huerta JM, Espinosa S et al.. (2011) Discovery of novel quaternary ammonium derivatives of (3R)-quinuclidinyl carbamates as potent and long acting muscarinic antagonists. Bioorg Med Chem Lett, 21 (11): 3457-61. [PMID:21524581]

107. Prat M, Fernández D, Buil MA, Crespo MI, Casals G, Ferrer M, Tort L, Castro J, Monleón JM, Gavaldà A et al.. (2009) Discovery of novel quaternary ammonium derivatives of (3R)-quinuclidinol esters as potent and long-acting muscarinic antagonists with potential for minimal systemic exposure after inhaled administration: identification of (3R)-3-{[hydroxy(di-2-thienyl)acetyl]oxy}-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane bromide (aclidinium bromide). J Med Chem, 52 (16): 5076-92. [PMID:19653626]

108. Preiksaitis HG, Krysiak PS, Chrones T, Rajgopal V, Laurier LG. (2000) Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J Pharmacol Exp Ther, 295 (3): 879-88. [PMID:11082420]

109. Rhodes ME, Billings TE, Czambel RK, Rubin RT. (2005) Pituitary-adrenal responses to cholinergic stimulation and acute mild stress are differentially elevated in male and female M(2) muscarinic receptor knockout mice. J Neuroendocrinol, 17 (12): 817-26. [PMID:16280029]

110. Richards MH, van Giersbergen PL. (1995) Human muscarinic receptors expressed in A9L and CHO cells: activation by full and partial agonists. Br J Pharmacol, 114 (6): 1241-9. [PMID:7620715]

111. Rosenblum K, Futter M, Jones M, Hulme EC, Bliss TV. (2000) ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J Neurosci, 20 (3): 977-85. [PMID:10648702]

112. Salmon M, Luttmann MA, Foley JJ, Buckley PT, Schmidt DB, Burman M, Webb EF, DeHaas CJ, Kotzer CJ, Barrett VJ et al.. (2013) Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases. J Pharmacol Exp Ther, 345 (2): 260-70. [PMID:23435542]

113. Sandvik AK, Kleveland PM, Waldum HL. (1988) Muscarinic M2 stimulation releases histamine in the totally isolated, vascularly perfused rat stomach. Scand J Gastroenterol, 23 (9): 1049-56. [PMID:2470130]

114. Schrage R, Holze J, Klöckner J, Balkow A, Klause AS, Schmitz AL, De Amici M, Kostenis E, Tränkle C, Holzgrabe U et al.. (2014) New insight into active muscarinic receptors with the novel radioagonist [³H]iperoxo. Biochem Pharmacol, 90 (3): 307-19. [PMID:24863257]

115. Schrage R, Seemann WK, Klöckner J, Dallanoce C, Racké K, Kostenis E, De Amici M, Holzgrabe U, Mohr K. (2013) Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor. Br J Pharmacol, 169 (2): 357-70. [PMID:23062057]

116. Seeger T, Fedorova I, Zheng F, Miyakawa T, Koustova E, Gomeza J, Basile AS, Alzheimer C, Wess J. (2004) M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci, 24 (45): 10117-27. [PMID:15537882]

117. Sen AP, Bhattacharya SK. (1991) Thermic response of selective muscarinic agonists and antagonists in rat. Indian J Exp Biol, 29 (2): 131-5. [PMID:1869296]

118. Shapiro RA, Scherer NM, Habecker BA, Subers EM, Nathanson NM. (1988) Isolation, sequence, and functional expression of the mouse M1 muscarinic acetylcholine receptor gene. J Biol Chem, 263 (34): 18397-403. [PMID:2848036]

119. Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM et al.. (2009) A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol Pharmacol, 76 (2): 356-68. [PMID:19407080]

120. Shida T, Tokunaga A, Kondo E, Ueda Y, Ohno K, Saika T, Kiyama H, Tohyama M. (1993) Expression of muscarinic and nicotinic receptor mRNA in the salivary gland of rats: a study by in situ hybridization histochemistry. Brain Res Mol Brain Res, 17 (3-4): 335-9. [PMID:8510505]

121. Sinha S, Gupta S, Malhotra S, Krishna NS, Meru AV, Babu V, Bansal V, Garg M, Kumar N, Chugh A et al.. (2010) AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br J Pharmacol, 160 (5): 1119-27. [PMID:20590605]

122. Sowell Sr JW, Tang Y, Valli MJ, Chapman Jr JM, Usher LA, Vaughan CM, Kosh JW. (1992) Synthesis and cholinergic properties of bis[[(dimethylamino)methyl]furanyl] analogues of ranitidine. J Med Chem, 35 (6): 1102-8. [PMID:1552502]

123. Stanton T, Bolden-Watson C, Cusack B, Richelson E. (1993) Antagonism of the five cloned human muscarinic cholinergic receptors expressed in CHO-K1 cells by antidepressants and antihistaminics. Biochem Pharmacol, 45 (11): 2352-4. [PMID:8100134]

124. Stein R, Pinkas-Kramarski R, Sokolovsky M. (1988) Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover. EMBO J, 7 (10): 3031-5. [PMID:2846274]

125. Steinfeld T, Mammen M, Smith JA, Wilson RD, Jasper JR. (2007) A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol Pharmacol, 72 (2): 291-302. [PMID:17478612]

126. Stengel PW, Cohen ML. (2002) Muscarinic receptor knockout mice: role of muscarinic acetylcholine receptors M(2), M(3), and M(4) in carbamylcholine-induced gallbladder contractility. J Pharmacol Exp Ther, 301 (2): 643-50. [PMID:11961069]

127. Stengel PW, Gomeza J, Wess J, Cohen ML. (2000) M(2) and M(4) receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther, 292 (3): 877-85. [PMID:10688600]

128. Stocks MJ, Alcaraz L, Bailey A, Bowers K, Donald D, Edwards H, Hunt F, Kindon N, Pairaudeau G, Theaker J et al.. (2010) The discovery of new spirocyclic muscarinic M3 antagonists. Bioorg Med Chem Lett, 20 (24): 7458-61. [PMID:21036043]

129. Struckmann N, Schwering S, Wiegand S, Gschnell A, Yamada M, Kummer W, Wess J, Haberberger RV. (2003) Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor-deficient mice. Mol Pharmacol, 64 (6): 1444-51. [PMID:14645675]

130. Sundaram K, Murugaian J, Watson M, Sapru H. (1989) M2 muscarinic receptor agonists produce hypotension and bradycardia when injected into the nucleus tractus solitarii. Brain Res, 477 (1-2): 358-62. [PMID:2467726]

131. Sykes DA, Dowling MR, Leighton-Davies J, Kent TC, Fawcett L, Renard E, Trifilieff A, Charlton SJ. (2012) The Influence of receptor kinetics on the onset and duration of action and the therapeutic index of NVA237 and tiotropium. J Pharmacol Exp Ther, 343 (2): 520-8. [PMID:22854200]

132. Takeuchi T, Fujinami K, Goto H, Fujita A, Taketo MM, Manabe T, Matsui M, Hata F. (2005) Roles of M2 and M4 muscarinic receptors in regulating acetylcholine release from myenteric neurons of mouse ileum. J Neurophysiol, 93 (5): 2841-8. [PMID:15574798]

133. Tanis SP, Plewe MB, Johnson TW, Butler SL, Dalvie D, DeLisle D, Dress KR, Hu Q, Huang B, Kuehler JE et al.. (2010) Azaindole N-methyl hydroxamic acids as HIV-1 integrase inhibitors-II. The impact of physicochemical properties on ADME and PK. Bioorg Med Chem Lett, 20 (24): 7429-34. [PMID:21036042]

134. ten Berge RE, Zaagsma J, Roffel AF. (1996) Muscarinic inhibitory autoreceptors in different generations of human airways. Am J Respir Crit Care Med, 154 (1): 43-9. [PMID:8680697]

135. Trendelenburg AU, Gomeza J, Klebroff W, Zhou H, Wess J. (2003) Heterogeneity of presynaptic muscarinic receptors mediating inhibition of sympathetic transmitter release: a study with M2- and M4-receptor-deficient mice. Br J Pharmacol, 138 (3): 469-80. [PMID:12569072]

136. Tränkle C, Dittmann A, Schulz U, Weyand O, Buller S, Jöhren K, Heller E, Birdsall NJ, Holzgrabe U, Ellis J et al.. (2005) Atypical muscarinic allosteric modulation: cooperativity between modulators and their atypical binding topology in muscarinic M2 and M2/M5 chimeric receptors. Mol Pharmacol, 68 (6): 1597-610. [PMID:16157694]

137. Tränkle C, Weyand O, Voigtländer U, Mynett A, Lazareno S, Birdsall NJ, Mohr K. (2003) Interactions of orthosteric and allosteric ligands with [3H]dimethyl-W84 at the common allosteric site of muscarinic M2 receptors. Mol Pharmacol, 64 (1): 180-90. [PMID:12815174]

138. Tseng J, Erbe CB, Kwitek AE, Jacob HJ, Popper P, Wackym PA. (2002) Radiation hybrid mapping of five muscarinic acetylcholine receptor subtype genes in Rattus norvegicus. Hear Res, 174 (1-2): 86-92. [PMID:12433399]

139. Tyagi S, Tyagi P, Van-le S, Yoshimura N, Chancellor MB, de Miguel F. (2006) Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol, 176 (4 Pt 1): 1673-8. [PMID:16952712]

140. Tzavara ET, Bymaster FP, Felder CC, Wade M, Gomeza J, Wess J, McKinzie DL, Nomikos GG. (2003) Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Mol Psychiatry, 8 (7): 673-9. [PMID:12874603]

141. Valant C, Felder CC, Sexton PM, Christopoulos A. (2012) Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol Pharmacol, 81 (1): 41-52. [PMID:21989256]

142. Valuskova P, Farar V, Forczek S, Krizova I, Myslivecek J. (2018) Autoradiography of 3H-pirenzepine and 3H-AFDX-384 in Mouse Brain Regions: Possible Insights into M1, M2, and M4 Muscarinic Receptors Distribution. Front Pharmacol, 9: 124. [PMID:29515448]

143. Vilaró MT, Palacios JM, Mengod G. (1994) Multiplicity of muscarinic autoreceptor subtypes? Comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the rat brain. Brain Res Mol Brain Res, 21 (1-2): 30-46. [PMID:8164520]

144. Wackym PA, Chen CT, Ishiyama A, Pettis RM, López IA, Hoffman L. (1996) Muscarinic acetylcholine receptor subtype mRNAs in the human and rat vestibular periphery. Cell Biol Int, 20 (3): 187-92. [PMID:8673067]

145. Waelbroeck M, De Neef P, Domenach V, Vandermeers-Piret MC, Vandermeers A. (1996) Binding of the labelled muscarinic toxin 125I-MT1 to rat brain muscarinic M1 receptors. Eur J Pharmacol, 305 (1-3): 187-92. [PMID:8813552]

146. Wang SZ, el-Fakahany EE. (1993) Application of transfected cell lines in studies of functional receptor subtype selectivity of muscarinic agonists. J Pharmacol Exp Ther, 266 (1): 237-43. [PMID:7687290]

147. Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, Jerman J, Middlemiss DN, Riley GJ, Brown AM. (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol, 125 (7): 1413-20. [PMID:9884068]

148. Weiner DM, Levey AI, Brann MR. (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA, 87 (18): 7050-4. [PMID:2402490]

149. Wess J. (2003) Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci, 24 (8): 414-20. [PMID:12915051]

150. Wess J. (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol, 44: 423-50. [PMID:14744253]

151. Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie L, Felder CC, Lamping KG et al.. (2003) M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Recept Channels, 9 (4): 279-90. [PMID:12893539]

152. Wess J, Lambrecht G, Mutschler E, Brann MR, Dörje F. (1991) Selectivity profile of the novel muscarinic antagonist UH-AH 37 determined by the use of cloned receptors and isolated tissue preparations. Br J Pharmacol, 102 (1): 246-50. [PMID:2043926]

153. Widzowski DV, Bialobok P, Kucera KE, Mihut R, Sitar S, Knowles M, Stagnitto M, Howell A, McCreedy S, Machulskis A, Gordon J, Marler M, Wu ESC, Mullen G, Triggle DJ, Blosser J. (1997) Development of a pharmacological target profile for muscarinic agonists. Drug Development Research, 40: 117-132.

154. Wood MD, Murkitt KL, Ho M, Watson JM, Brown F, Hunter AJ, Middlemiss DN. (1999) Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry. Br J Pharmacol, 126 (7): 1620-4. [PMID:10323594]

155. Yamashita Y, Tanaka K, Asano T, Yamakawa N, Kobayashi D, Ishihara T, Hanaya K, Shoji M, Sugai T, Wada M et al.. (2014) Synthesis and biological comparison of enantiomers of mepenzolate bromide, a muscarinic receptor antagonist with bronchodilatory and anti-inflammatory activities. Bioorg Med Chem, 22 (13): 3488-97. [PMID:24844758]

156. Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB. (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol, 43 (2): 149-57. [PMID:8429821]

157. Zhang Q, Pacheco MA, Doupnik CA. (2002) Gating properties of GIRK channels activated by Galpha(o)- and Galpha(i)-coupled muscarinic m2 receptors in Xenopus oocytes: the role of receptor precoupling in RGS modulation. J Physiol (Lond.), 545 (2): 355-73. [PMID:12456817]

158. Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J. (2002) Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci, 22 (5): 1709-17. [PMID:11880500]

159. Zhang X, Hernandez MR, Yang H, Erickson K. (1995) Expression of muscarinic receptor subtype mRNA in the human ciliary muscle. Invest Ophthalmol Vis Sci, 36 (8): 1645-57. [PMID:7541396]

160. Zhou C, Fryer AD, Jacoby DB. (2001) Structure of the human M(2) muscarinic acetylcholine receptor gene and its promoter. Gene, 271 (1): 87-92. [PMID:11410369]

Contributors

Show »

How to cite this page