Top ▲

M5 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 17

Nomenclature: M5 receptor

Family: Acetylcholine receptors (muscarinic)

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 532 15q14 CHRM5 cholinergic receptor muscarinic 5 6
Mouse 7 532 2 57.02 cM Chrm5 cholinergic receptor, muscarinic 5 47
Rat 7 531 3q35 Chrm5 cholinergic receptor, muscarinic 5 6,39,45,67
Previous and Unofficial Names Click here for help
M5R | cholinergic receptor, muscarinic 5 | cholinergic receptor
Database Links Click here for help
Specialist databases
GPCRdb acm5_human (Hs), acm5_mouse (Mm), acm5_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
acetylcholine

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]iperoxo Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Agonist 8.3 pKd 58
pKd 8.3 (Kd 5x10-9 M) [58]
NNC 11-1585 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.3 pKi 17
pKi 8.3 [17]
NNC 11-1607 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.2 pKi 17
pKi 8.2 [17]
NNC 11-1314 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.8 pKi 17
pKi 7.8 [17]
sabcomeline Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 7.1 pKi 82
pKi 7.1 [82]
xanomeline Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 6.7 – 7.4 pKi 32,54,75,82
pKi 6.7 – 7.4 [32,54,75,82]
acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 6.1 pKi 15
pKi 6.1 [15]
milameline Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.4 pKi 82
pKi 5.4 [82]
pilocarpine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 5.0 pKi 4,20,32
pKi 5.0 [4,20,32]
McN-A-343 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 4.9 pKi 56
pKi 4.9 [56]
carbachol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 4.9 pKi 4,32,82
pKi 4.9 [4,32,82]
(+)-aceclidine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.5 pEC50 22
pEC50 5.5 [22]
(-)-aceclidine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.1 pEC50 22
pEC50 5.1 [22]
arecoline Small molecule or natural product Click here for species-specific activity table Hs Agonist - - 53,56
[53,56]
bethanechol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist - - 56
[56]
iperoxo Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist - - 58
[58]
methacholine Small molecule or natural product Approved drug Immunopharmacology Ligand Hs Agonist - - 56
[56]
[3H]acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Agonist - -
Agonist Comments
Please consult references [9,42,56,73] for further details of the activity of some of the ligands in this list.
Oxotremorine has also been found to be a partial agonist at the M5 receptor [56,73] (no binding data available).
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]QNB Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 10.2 – 10.7 pKd 37
pKd 10.2 – 10.7 (Kd 6x10-11 – 2x10-11 M) [37]
[3H]N-methyl scopolamine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 9.3 – 9.7 pKd 14-15,35,37,40,70,73
pKd 9.3 – 9.7 (Kd 4.8x10-10 – 2x10-10 M) [14-15,35,37,40,70,73]
biperiden Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.2 pKd 5
pKd 8.2 (Kd 6.3x10-9 M) [5]
guanylpirenzepine Small molecule or natural product ? Antagonist 6.8 pKd 25
pKd 6.8 (Kd 1.75x10-7 M) [25]
tiotropium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.8 – 10.2 pKi 64-65
pKi 9.8 – 10.2 [64-65]
umeclidinium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.9 pKi 57
pKi 9.9 [57]
aclidinium Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.9 pKi 65
pKi 9.9 [65]
AE9C90CB Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.5 pKi 60
pKi 9.5 [60]
atropine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 9.4 pKi 39
pKi 9.4 [39]
glycopyrrolate Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 8.9 – 9.9 pKi 63-64
pKi 8.9 – 9.9 [63-64]
4-DAMP Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.0 pKi 21
pKi 9.0 [21]
4-DAMP Small molecule or natural product Click here for species-specific activity table Rn Antagonist 8.9 pKi 39
pKi 8.9 [39]
atropine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.3 – 9.3 pKi 18,35,51
pKi 8.3 – 9.3 [18,35,51]
ipratropium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 8.8 pKi 35
pKi 8.8 [35]
scopolamine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.7 pKi 5
pKi 8.7 [5]
silahexocyclium Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.7 pKi 10
pKi 8.7 [10]
tolterodine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.5 – 8.8 pKi 31,60
pKi 8.5 – 8.8 [31,60]
hexocyclium Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.4 pKi 10
pKi 8.4 [10]
UH-AH 37 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.3 pKi 31,81
pKi 8.3 [31,81]
darifenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.9 – 8.6 pKi 31,35,60
pKi 7.9 – 8.6 [31,35,60]
revefenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.2 pKi 34
pKi 8.2 (Ki 6.31x10-9 M) [34]
Description: Determined from a radioligand binding assay using membranes from CHO‐K1 cells expressing the hM5 receptor, and displacement of [3H]NMS tracer.
oxybutynin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.9 pKi 19,60
pKi 7.9 [19,60]
amitriptyline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.8 pKi 62
pKi 7.8 (Ki 1.57x10-8 M) [62]
tripitramine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.5 pKi 46
pKi 7.5 [46]
hexahydrosiladifenidol Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.4 pKi 39
pKi 7.4 [39]
solifenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.2 pKi 60
pKi 7.2 [60]
hexahydrodifenidol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 pKi 10
pKi 7.1 [10]
pirenzepine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 7.1 pKi 39
pKi 7.1 [39]
dosulepin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.0 pKi 62
pKi 7.0 (Ki 9.2x10-8 M) [62]
hexahydrosiladifenidol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.8 – 7.2 pKi 10,24
pKi 6.8 – 7.2 [10,24]
pirenzepine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.8 – 7.1 pKi 33,38,81
pKi 6.8 – 7.1 [33,38,81]
AQ-RA 741 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 – 7.8 pKi 21,31
pKi 6.1 – 7.8 [21,31]
methoctramine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.3 – 7.2 pKi 10,21,24,33
pKi 6.3 – 7.2 [10,21,24,33]
tropicamide Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.4 pKi 18
pKi 6.4 [18]
p-F-HHSiD Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.3 pKi 24
pKi 6.3 [24]
AFDX384 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.3 pKi 21
pKi 6.3 [21]
ML381 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.3 pKi 28
pKi 6.3 [28]
(S)-dimetindene Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 6.1 pKi 13
pKi 6.1 (Ki 7.586x10-7 M) [13]
Description: Binding to hM5 receptors expressed in CHO cells.
muscarinic toxin 3 Peptide Click here for species-specific activity table Hs Antagonist <6.0 pKi 38
pKi <6.0 [38]
himbacine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.4 – 6.5 pKi 21,38,50
pKi 5.4 – 6.5 [21,38,50]
otenzepad Small molecule or natural product Click here for species-specific activity table Rn Antagonist 5.7 pKi 39
pKi 5.7 [39]
otenzepad Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.6 pKi 10
pKi 5.6 [10]
VU0255035 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.6 pKi 59
pKi 5.6 [59]
lithocholylcholine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.2 pKi 15
pKi 5.2 [15]
muscarinic toxin 7 Peptide Click here for species-specific activity table Hs Antagonist <5.0 pKi 52
pKi <5.0 [52]
View species-specific antagonist tables
Antagonist Comments
Biperiden is an approved drug antagonist of muscarinic acetylcholine receptors. We have tagged the M1 subtype as the drug's primary target as affinity is 10-fold higher at this receptor subtype [5].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
amiodarone Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Positive 7.3 pKB 61
pKB 7.3 [61]
ML375 Small molecule or natural product Hs Negative 6.2 – 6.6 pKB 4,11,29
pKB 6.2 – 6.6 [4,11,29]
ML380 Small molecule or natural product Hs Positive 4.8 pKB 4,30
pKB 4.8 [4,30]
N-chloromethyl-brucine Small molecule or natural product Click here for species-specific activity table Hs Negative 4.4 pKd 43
pKd 4.4 [43]
N-benzyl brucine Small molecule or natural product Click here for species-specific activity table Hs Negative 3.7 pKd 43
pKd 3.7 [43]
N-benzyl brucine Small molecule or natural product Click here for species-specific activity table Hs Neutral 3.7 pKd 43
pKd 3.7 [43]
strychnine Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Negative 3.6 pKd 41
pKd 3.6 [41]
brucine Small molecule or natural product Click here for species-specific activity table Hs Negative 2.9 pKd 43
pKd 2.9 [43]
brucine N-oxide Small molecule or natural product Click here for species-specific activity table Hs Negative 2.3 pKd 43
pKd 2.3 [43]
brucine N-oxide Small molecule or natural product Click here for species-specific activity table Hs Positive 2.3 pKd 43
pKd 2.3 [43]
VU0238429 Small molecule or natural product Hs Positive 5.9 pEC50 7
pEC50 5.9 (EC50 1.16x10-6 M) [7]
VU0119498 Small molecule or natural product Click here for species-specific activity table Hs Positive 5.4 pEC50 7
pEC50 5.4 (EC50 4.08x10-6 M) [7]
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  8
Tissue Distribution Click here for help
Ciliary muscle.
Species:  Human
Technique:  In situ hybridisation and Northern blotting.
References:  89
Esophageal smooth muscle.
Species:  Human
Technique:  Radioligand binding.
References:  55
Vestibular system.
Species:  Human
Technique:  RT-PCR.
References:  71
Bladder.
Species:  Human
Technique:  RT-PCR.
References:  68
Vestibular system.
Species:  Rat
Technique:  RT-PCR.
References:  71
CNS: basal forebrain, parabigeminal nucleus.
Species:  Rat
Technique:  in situ hybridisation.
References:  69
CNS: cerebral cortex, hippocampus, corpus striatum, olfactory tubercle, midbrain, pons-medulla, cerebellum.
Species:  Rat
Technique:  Immunoprecipitation.
References:  86
CNS: substantia nigra, pars compacta and vental tegmental area.
Species:  Rat
Technique:  in situ hybridisation.
References:  77
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of IP1 levels in murine fibroblast cells (B82) transfected with the rat M5 receptor.
Species:  Rat
Tissue:  B82 cells.
Response measured:  Stimulation of IP1 accumulation.
References:  39
Measurement of PLC activity and Ca2+ levels in murine L cells transfected with the rat M5 receptor.
Species:  Rat
Tissue:  Murine L cells.
Response measured:  Stimulation of PLC activity and Ca2+ mobilisation.
References:  44
Measurement of the levels of IPs in CHO cells transfected with the human M5 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of IPs accumulation.
References:  76
Measurement of IP1 levels in CHO cells transfected with the human M5 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of IP1 accumulation.
References:  56
Measurement of Ca2+ levels in Sf9 cells transfected with the rat M5 receptor.
Species:  Rat
Tissue:  Sf9 cells.
Response measured:  Ca2+ mobilisation.
References:  36
Measurement of PI hydrolysis in CHO cells transfected with the human M5 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of PI hydrolysis.
References:  17
Measurement of NO synthetase activity in CHO cells transfected with the M5 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Activation of nitric oxide synthetase.
References:  74
Measurement of ERK1/2 activity.
Species:  Human
Tissue: 
Response measured:  Increase in ERK1/2 activity.
References:  83
Physiological Functions Click here for help
Modulation of dopaminergic neurotransmission.
Species:  Rat
Tissue:  In vivo (nucleus accumbens/striatum).
References:  49
Stimulation of gastric acid secretion.
Species:  Mouse
Tissue:  In vivo (stomach).
References:  1
Vasodilation.
Species:  Human
Tissue:  Intracortical arterioles.
References:  23
Physiological Consequences of Altering Gene Expression Click here for help
Striatal slices from M5 receptor knockout mice exhibit a decrease in agonist-induced potentiation of dopamine release.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  85,88
M5 receptor knockout mice exhibit impaired gastric acid secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  1
M5 receptor knockout mice exhibit a lack of agonist-induced cerebral blood vessel dilation, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  85
M5 receptor knockout mice exhibit a reduction in the reinforcing effects and withdrawal symptoms of morphine.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  3
M5 receptor knockout mice exhibit a reduction in the reinforcing effects and withdrawal symptoms of cocaine.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  26,66
M5 receptor knockout mice exhibit an increase in antagonist-induced locomotion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  16
M5 receptor knockout mice exhibit an abolished late phase activation of dopaminergic neurons.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  27,87
M5 receptor knockout mice exhibit an increase in D2 receptor expression in some brain areas, a decrease in amphetamine-induced locomotion and an increase in latent inhibition.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  72
M5 muscarinic receptor knockout mice show significantly reduced cerebral blood flow and exhibit impairments in hippocampus-dependent learning and hippocampal neuronal plasticity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  2
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Chrm5tm1Jwe Chrm5tm1Jwe/Chrm5tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:109248  MP:0001905 abnormal dopamine level PMID: 11707605 
Chrm5tm1Minm Chrm5tm1Minm/Chrm5tm1Minm
B6.129X1-Chrm5
MGI:109248  MP:0002503 abnormal histamine physiology PMID: 15691866 
Chrm5tm1Jabe Chrm5tm1Jabe/Chrm5tm1Jabe
involves: C57BL/6
MGI:109248  MP:0010149 abnormal synaptic dopamine release PMID: 20664521 
Chrm5tm1Jwe Chrm5tm1Jwe/Chrm5tm1Jwe
B6.129S6-Chrm5
MGI:109248  MP:0010149 abnormal synaptic dopamine release PMID: 20664521 
Chrm5tm1Jwe Chrm5tm1Jwe/Chrm5tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:109248  MP:0001613 abnormal vasodilation PMID: 11707605 
Chrm5tm1Yeo Chrm5tm1Yeo/Chrm5tm1Yeo
involves: 129X1/SvJ * CD-1
MGI:109248  MP:0001529 abnormal vocalization PMID: 18382674 
Chrm5tm1Minm Chrm5tm1Minm/Chrm5tm1Minm
B6.129X1-Chrm5
MGI:109248  MP:0000505 decreased digestive secretion PMID: 15691866 
Chrm1tm1Kano|Chrm5tm1Minm Chrm1tm1Kano/Chrm1tm1Kano,Chrm5tm1Minm/Chrm5tm1Minm
involves: 129X1/SvJ * C57BL/6
MGI:109248  MGI:88396  MP:0000505 decreased digestive secretion PMID: 15691866 
Chrm5tm1Yeo Chrm5tm1Yeo/Chrm5tm1Yeo
Not Specified
MGI:109248  MP:0000623 decreased salivation PMID: 11900778 
Chrm5tm1Yeo Chrm5tm1Yeo/Chrm5tm1Yeo
Not Specified
MGI:109248  MP:0005111 hyperdipsia PMID: 11900778 
Chrm5tm1Yeo Chrm5tm1Yeo/Chrm5tm1Yeo
involves: 129X1/SvJ * CD-1
MGI:109248  MP:0009750 impaired behavioral response to addictive substance PMID: 18382674 
General Comments
For reviews on muscarinic receptor knockout mice see [12,48,78-80].
For a review specifically on M5 receptor knockout mice see [84].

References

Show »

1. Aihara T, Nakamura Y, Taketo MM, Matsui M, Okabe S. (2005) Cholinergically stimulated gastric acid secretion is mediated by M(3) and M(5) but not M(1) muscarinic acetylcholine receptors in mice. Am J Physiol Gastrointest Liver Physiol, 288 (6): G1199-207. [PMID:15691866]

2. Araya R, Noguchi T, Yuhki M, Kitamura N, Higuchi M, Saido TC, Seki K, Itohara S, Kawano M, Tanemura K et al.. (2006) Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol Dis, 24 (2): 334-44. [PMID:16956767]

3. Basile AS, Fedorova I, Zapata A, Liu X, Shippenberg T, Duttaroy A, Yamada M, Wess J. (2002) Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci USA, 99 (17): 11452-7. [PMID:12154229]

4. Berizzi AE, Gentry PR, Rueda P, Den Hoedt S, Sexton PM, Langmead CJ, Christopoulos A. (2016) Molecular Mechanisms of Action of M5 Muscarinic Acetylcholine Receptor Allosteric Modulators. Mol Pharmacol, 90 (4): 427-36. [PMID:27461343]

5. Bolden C, Cusack B, Richelson E. (1992) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J Pharmacol Exp Ther, 260 (2): 576-80. [PMID:1346637]

6. Bonner TI, Young AC, Brann MR, Buckley NJ. (1988) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron, 1 (5): 403-10. [PMID:3272174]

7. Bridges TM, Marlo JE, Niswender CM, Jones CK, Jadhav SB, Gentry PR, Plumley HC, Weaver CD, Conn PJ, Lindsley CW. (2009) Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J Med Chem, 52 (11): 3445-8. [PMID:19438238]

8. Bräuner-Osborne H, Brann MR. (1996) Pharmacology of muscarinic acetylcholine receptor subtypes (m1-m5): high throughput assays in mammalian cells. Eur J Pharmacol, 295 (1): 93-102. [PMID:8925880]

9. Bräuner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P. (1996) Functional partial agonism at cloned human muscarinic acetylcholine receptors. Eur J Pharmacol, 313 (1-2): 145-50. [PMID:8905341]

10. Buckley NJ, Bonner TI, Buckley CM, Brann MR. (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol, 35 (4): 469-76. [PMID:2704370]

11. Burger WAC, Gentry PR, Berizzi AE, Vuckovic Z, van der Westhuizen ET, Thompson G, Yeasmin M, Lindsley CW, Sexton PM, Langmead CJ et al.. (2021) Identification of a Novel Allosteric Site at the M5 Muscarinic Acetylcholine Receptor. ACS Chem Neurosci, 12 (16): 3112-3123. [PMID:34351123]

12. Bymaster FP, McKinzie DL, Felder CC, Wess J. (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res, 28 (3-4): 437-42. [PMID:12675128]

13. Böhme TM, Keim C, Kreutzmann K, Linder M, Dingermann T, Dannhardt G, Mutschler E, Lambrecht G. (2003) Structure-activity relationships of dimethindene derivatives as new M2-selective muscarinic receptor antagonists. J Med Chem, 46 (5): 856-67. [PMID:12593665]

14. Cembala TM, Sherwin JD, Tidmarsh MD, Appadu BL, Lambert DG. (1998) Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 125 (5): 1088-94. [PMID:9846649]

15. Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP. (2002) Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther, 303 (1): 29-35. [PMID:12235229]

16. Chintoh A, Fulton J, Koziel N, Aziz M, Sud M, Yeomans JS. (2003) Role of cholinergic receptors in locomotion induced by scopolamine and oxotremorine-M. Pharmacol Biochem Behav, 76 (1): 53-61. [PMID:13679217]

17. Christopoulos A, Grant MK, Ayoubzadeh N, Kim ON, Sauerberg P, Jeppesen L, El-Fakahany EE. (2001) Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J Pharmacol Exp Ther, 298 (3): 1260-8. [PMID:11504829]

18. Croy CH, Chan WY, Castetter AM, Watt ML, Quets AT, Felder CC. (2016) Characterization of PCS1055, a novel muscarinic M4 receptor antagonist. Eur J Pharmacol, 782: 70-6. [PMID:27085897]

19. Del Bello F, Barocelli E, Bertoni S, Bonifazi A, Camalli M, Campi G, Giannella M, Matucci R, Nesi M, Pigini M et al.. (2012) 1,4-dioxane, a suitable scaffold for the development of novel M₃ muscarinic receptor antagonists. J Med Chem, 55 (4): 1783-7. [PMID:22243489]

20. Dong GZ, Kameyama K, Rinken A, Haga T. (1995) Ligand binding properties of muscarinic acetylcholine receptor subtypes (m1-m5) expressed in baculovirus-infected insect cells. J Pharmacol Exp Ther, 274 (1): 378-84. [PMID:7616422]

21. Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther, 256 (2): 727-33. [PMID:1994002]

22. Ehlert FJ, Griffin MT, Glidden PF. (1996) The interaction of the enantiomers of aceclidine with subtypes of the muscarinic receptor. J Pharmacol Exp Ther, 279 (3): 1335-44. [PMID:8968358]

23. Elhusseiny A, Hamel E. (2000) Muscarinic--but not nicotinic--acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cereb Blood Flow Metab, 20 (2): 298-305. [PMID:10698067]

24. Esqueda EE, Gerstin Jr EH, Griffin MT, Ehlert FJ. (1996) Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung. Biochem Pharmacol, 52 (4): 643-58. [PMID:8759038]

25. Ferrari-Dileo G, Waelbroeck M, Mash DC, Flynn DD. (1994) Selective labeling and localization of the M4 (m4) muscarinic receptor subtype. Mol Pharmacol, 46 (6): 1028-35. [PMID:7808421]

26. Fink-Jensen A, Fedorova I, Wörtwein G, Woldbye DP, Rasmussen T, Thomsen M, Bolwig TG, Knitowski KM, McKinzie DL, Yamada M et al.. (2003) Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res, 74 (1): 91-6. [PMID:13130510]

27. Forster GL, Yeomans JS, Takeuchi J, Blaha CD. (2002) M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci, 22 (1): RC190. [PMID:11756520]

28. Gentry PR, Kokubo M, Bridges TM, Cho HP, Smith E, Chase P, Hodder PS, Utley TJ, Rajapakse A, Byers F et al.. (2014) Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe. ChemMedChem, 9 (8): 1677-82. [PMID:24692176]

29. Gentry PR, Kokubo M, Bridges TM, Kett NR, Harp JM, Cho HP, Smith E, Chase P, Hodder PS, Niswender CM et al.. (2013) Discovery of the first M5-selective and CNS penetrant negative allosteric modulator (NAM) of a muscarinic acetylcholine receptor: (S)-9b-(4-chlorophenyl)-1-(3,4-difluorobenzoyl)-2,3-dihydro-1H-imidazo[2,1-a]isoindol-5(9bH)-one (ML375). J Med Chem, 56 (22): 9351-5. [PMID:24164599]

30. Gentry PR, Kokubo M, Bridges TM, Noetzel MJ, Cho HP, Lamsal A, Smith E, Chase P, Hodder PS, Niswender CM et al.. (2014) Development of a highly potent, novel M5 positive allosteric modulator (PAM) demonstrating CNS exposure: 1-((1H-indazol-5-yl)sulfoneyl)-N-ethyl-N-(2-(trifluoromethyl)benzyl)piperidine-4-carboxamide (ML380). J Med Chem, 57 (18): 7804-10. [PMID:25147929]

31. Gillberg PG, Sundquist S, Nilvebrant L. (1998) Comparison of the in vitro and in vivo profiles of tolterodine with those of subtype-selective muscarinic receptor antagonists. Eur J Pharmacol, 349 (2-3): 285-92. [PMID:9671109]

32. Grant MK, El-Fakahany EE. (2005) Persistent binding and functional antagonism by xanomeline at the muscarinic M5 receptor. J Pharmacol Exp Ther, 315 (1): 313-9. [PMID:16002459]

33. Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM. (1997) Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol, 120 (8): 1409-18. [PMID:9113359]

34. Hegde SS, Pulido-Rios MT, Luttmann MA, Foley JJ, Hunsberger GE, Steinfeld T, Lee T, Ji Y, Mammen MM, Jasper JR. (2018) Pharmacological properties of revefenacin (TD-4208), a novel, nebulized long-acting, and lung selective muscarinic antagonist, at human recombinant muscarinic receptors and in rat, guinea pig, and human isolated airway tissues. Pharmacol Res Perspect, 6 (3): e00400. [PMID:29736245]

35. Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe M, Mitsuya M et al.. (2001) Pharmacological properties of (2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: a novel mucarinic antagonist with M(2)-sparing antagonistic activity. J Pharmacol Exp Ther, 297 (2): 790-7. [PMID:11303071]

36. Hu Y, Rajan L, Schilling WP. (1994) Ca2+ signaling in Sf9 insect cells and the functional expression of a rat brain M5 muscarinic receptor. Am J Physiol, 266 (6 Pt 1): C1736-43. [PMID:8023903]

37. Jakubík J, Bacáková L, el-Fakahany EE, Tucek S. (1995) Subtype selectivity of the positive allosteric action of alcuronium at cloned M1-M5 muscarinic acetylcholine receptors. J Pharmacol Exp Ther, 274 (3): 1077-83. [PMID:7562472]

38. Jolkkonen M, van Giersbergen PL, Hellman U, Wernstedt C, Karlsson E. (1994) A toxin from the green mamba Dendroaspis angusticeps: amino acid sequence and selectivity for muscarinic m4 receptors. FEBS Lett, 352 (1): 91-4. [PMID:7925952]

39. Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI. (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci, 51 (12): 955-71. [PMID:1325587]

40. Khattar SK, Bora RS, Priyadarsiny P, Gupta D, Khanna A, Narayanan KL, Babu V, Chugh A, Saini KS. (2006) High level stable expression of pharmacologically active human M1-M5 muscarinic receptor subtypes in mammalian cells. Biotechnol Lett, 28 (2): 121-9. [PMID:16369696]

41. Lazareno S, Birdsall NJ. (1995) Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol, 48 (2): 362-78. [PMID:7651370]

42. Lazareno S, Farries T, Birdsall NJ. (1993) Pharmacological characterization of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors m1-m4. Life Sci, 52 (5-6): 449-56. [PMID:8441327]

43. Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJ. (1998) Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies. Mol Pharmacol, 53 (3): 573-89. [PMID:9495826]

44. Liao CF, Schilling WP, Birnbaumer M, Birnbaumer L. (1990) Cellular responses to stimulation of the M5 muscarinic acetylcholine receptor as seen in murine L cells. J Biol Chem, 265 (19): 11273-84. [PMID:2162842]

45. Liao CF, Themmen AP, Joho R, Barberis C, Birnbaumer M, Birnbaumer L. (1989) Molecular cloning and expression of a fifth muscarinic acetylcholine receptor. J Biol Chem, 264 (13): 7328-37. [PMID:2540186]

46. Maggio R, Barbier P, Bolognesi ML, Minarini A, Tedeschi D, Melchiorre C. (1994) Binding profile of the selective muscarinic receptor antagonist tripitramine. Eur J Pharmacol, 268: 459-462. [PMID:7805774]

47. Matsui M, Araki Y, Karasawa H, Matsubara N, Taketo MM, Seldin MF. (1999) Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet Syst, 74 (1): 15-21. [PMID:10549128]

48. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ. (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci, 75 (25): 2971-81. [PMID:15474550]

49. Miller AD, Blaha CD. (2005) Midbrain muscarinic receptor mechanisms underlying regulation of mesoaccumbens and nigrostriatal dopaminergic transmission in the rat. Eur J Neurosci, 21 (7): 1837-46. [PMID:15869479]

50. Miller JH, Aagaard PJ, Gibson VA, McKinney M. (1992) Binding and functional selectivity of himbacine for cloned and neuronal muscarinic receptors. J Pharmacol Exp Ther, 263 (2): 663-7. [PMID:1331410]

51. Moriya H, Takagi Y, Nakanishi T, Hayashi M, Tani T, Hirotsu I. (1999) Affinity profiles of various muscarinic antagonists for cloned human muscarinic acetylcholine receptor (mAChR) subtypes and mAChRs in rat heart and submandibular gland. Life Sci, 64 (25): 2351-8. [PMID:10374898]

52. Näsman J, Jolkkonen M, Ammoun S, Karlsson E, Akerman KE. (2000) Recombinant expression of a selective blocker of M(1) muscarinic receptors. Biochem Biophys Res Commun, 271 (2): 435-9. [PMID:10799315]

53. Ozenil M, Pacher K, Balber T, Vraka C, Roller A, Holzer W, Spreitzer H, Mitterhauser M, Wadsak W, Hacker M et al.. (2020) Enhanced arecoline derivatives as muscarinic acetylcholine receptor M1 ligands for potential application as PET radiotracers. Eur J Med Chem, 204: 112623. [PMID:32717485]

54. Powers AS, Pham V, Burger WAC, Thompson G, Laloudakis Y, Barnes NW, Sexton PM, Paul SM, Christopoulos A, Thal DM et al.. (2023) Structural basis of efficacy-driven ligand selectivity at GPCRs. Nat Chem Biol, 19 (7): 805-814. [PMID:36782010]

55. Preiksaitis HG, Krysiak PS, Chrones T, Rajgopal V, Laurier LG. (2000) Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J Pharmacol Exp Ther, 295 (3): 879-88. [PMID:11082420]

56. Richards MH, van Giersbergen PL. (1995) Human muscarinic receptors expressed in A9L and CHO cells: activation by full and partial agonists. Br J Pharmacol, 114 (6): 1241-9. [PMID:7620715]

57. Salmon M, Luttmann MA, Foley JJ, Buckley PT, Schmidt DB, Burman M, Webb EF, DeHaas CJ, Kotzer CJ, Barrett VJ et al.. (2013) Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases. J Pharmacol Exp Ther, 345 (2): 260-70. [PMID:23435542]

58. Schrage R, Holze J, Klöckner J, Balkow A, Klause AS, Schmitz AL, De Amici M, Kostenis E, Tränkle C, Holzgrabe U et al.. (2014) New insight into active muscarinic receptors with the novel radioagonist [³H]iperoxo. Biochem Pharmacol, 90 (3): 307-19. [PMID:24863257]

59. Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM et al.. (2009) A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol Pharmacol, 76 (2): 356-68. [PMID:19407080]

60. Sinha S, Gupta S, Malhotra S, Krishna NS, Meru AV, Babu V, Bansal V, Garg M, Kumar N, Chugh A et al.. (2010) AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br J Pharmacol, 160 (5): 1119-27. [PMID:20590605]

61. Stahl E, Ellis J. (2010) Novel allosteric effects of amiodarone at the muscarinic M5 receptor. J Pharmacol Exp Ther, 334 (1): 214-22. [PMID:20348203]

62. Stanton T, Bolden-Watson C, Cusack B, Richelson E. (1993) Antagonism of the five cloned human muscarinic cholinergic receptors expressed in CHO-K1 cells by antidepressants and antihistaminics. Biochem Pharmacol, 45 (11): 2352-4. [PMID:8100134]

63. Stocks MJ, Alcaraz L, Bailey A, Bowers K, Donald D, Edwards H, Hunt F, Kindon N, Pairaudeau G, Theaker J et al.. (2010) The discovery of new spirocyclic muscarinic M3 antagonists. Bioorg Med Chem Lett, 20 (24): 7458-61. [PMID:21036043]

64. Sykes DA, Dowling MR, Leighton-Davies J, Kent TC, Fawcett L, Renard E, Trifilieff A, Charlton SJ. (2012) The Influence of receptor kinetics on the onset and duration of action and the therapeutic index of NVA237 and tiotropium. J Pharmacol Exp Ther, 343 (2): 520-8. [PMID:22854200]

65. Tanis SP, Plewe MB, Johnson TW, Butler SL, Dalvie D, DeLisle D, Dress KR, Hu Q, Huang B, Kuehler JE et al.. (2010) Azaindole N-methyl hydroxamic acids as HIV-1 integrase inhibitors-II. The impact of physicochemical properties on ADME and PK. Bioorg Med Chem Lett, 20 (24): 7429-34. [PMID:21036042]

66. Thomsen M, Woldbye DP, Wörtwein G, Fink-Jensen A, Wess J, Caine SB. (2005) Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci, 25 (36): 8141-9. [PMID:16148222]

67. Tseng J, Erbe CB, Kwitek AE, Jacob HJ, Popper P, Wackym PA. (2002) Radiation hybrid mapping of five muscarinic acetylcholine receptor subtype genes in Rattus norvegicus. Hear Res, 174 (1-2): 86-92. [PMID:12433399]

68. Tyagi S, Tyagi P, Van-le S, Yoshimura N, Chancellor MB, de Miguel F. (2006) Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol, 176 (4 Pt 1): 1673-8. [PMID:16952712]

69. Vilaró MT, Palacios JM, Mengod G. (1994) Multiplicity of muscarinic autoreceptor subtypes? Comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the rat brain. Brain Res Mol Brain Res, 21 (1-2): 30-46. [PMID:8164520]

70. Vuckovic Z, Gentry PR, Berizzi AE, Hirata K, Varghese S, Thompson G, van der Westhuizen ET, Burger WAC, Rahmani R, Valant C et al.. (2019) Crystal structure of the M5 muscarinic acetylcholine receptor. Proc Natl Acad Sci USA, 116 (51): 26001-26007. [PMID:31772027]

71. Wackym PA, Chen CT, Ishiyama A, Pettis RM, López IA, Hoffman L. (1996) Muscarinic acetylcholine receptor subtype mRNAs in the human and rat vestibular periphery. Cell Biol Int, 20 (3): 187-92. [PMID:8673067]

72. Wang H, Ng K, Hayes D, Gao X, Forster G, Blaha C, Yeomans J. (2004) Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology, 29 (12): 2126-39. [PMID:15213703]

73. Wang SZ, el-Fakahany EE. (1993) Application of transfected cell lines in studies of functional receptor subtype selectivity of muscarinic agonists. J Pharmacol Exp Ther, 266 (1): 237-43. [PMID:7687290]

74. Wang SZ, Lee SY, Zhu SZ, el-Fakahany EE. (1996) Differential coupling of m1, m3, and m5 muscarinic receptors to activation of neuronal nitric oxide synthase. Pharmacology, 53 (5): 271-80. [PMID:8990485]

75. Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, Jerman J, Middlemiss DN, Riley GJ, Brown AM. (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol, 125 (7): 1413-20. [PMID:9884068]

76. Watson N, Daniels DV, Ford AP, Eglen RM, Hegde SS. (1999) Comparative pharmacology of recombinant human M3 and M5 muscarinic receptors expressed in CHO-K1 cells. Br J Pharmacol, 127 (2): 590-6. [PMID:10385263]

77. Weiner DM, Levey AI, Brann MR. (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA, 87 (18): 7050-4. [PMID:2402490]

78. Wess J. (2003) Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci, 24 (8): 414-20. [PMID:12915051]

79. Wess J. (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol, 44: 423-50. [PMID:14744253]

80. Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie L, Felder CC, Lamping KG et al.. (2003) M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Recept Channels, 9 (4): 279-90. [PMID:12893539]

81. Wess J, Lambrecht G, Mutschler E, Brann MR, Dörje F. (1991) Selectivity profile of the novel muscarinic antagonist UH-AH 37 determined by the use of cloned receptors and isolated tissue preparations. Br J Pharmacol, 102 (1): 246-50. [PMID:2043926]

82. Wood MD, Murkitt KL, Ho M, Watson JM, Brown F, Hunter AJ, Middlemiss DN. (1999) Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry. Br J Pharmacol, 126 (7): 1620-4. [PMID:10323594]

83. Wotta DR, Wattenberg EV, Langason RB, el-Fakahany EE. (1998) M1, M3 and M5 muscarinic receptors stimulate mitogen-activated protein kinase. Pharmacology, 56 (4): 175-86. [PMID:9566019]

84. Yamada M, Basile AS, Fedorova I, Zhang W, Duttaroy A, Cui Y, Lamping KG, Faraci FM, Deng CX, Wess J. (2003) Novel insights into M5 muscarinic acetylcholine receptor function by the use of gene targeting technology. Life Sci, 74 (2-3): 345-53. [PMID:14607263]

85. Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, McKinzie DL, Felder CC, Deng CX, Faraci FM et al.. (2001) Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA, 98 (24): 14096-101. [PMID:11707605]

86. Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB. (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol, 43 (2): 149-57. [PMID:8429821]

87. Yeomans J, Forster G, Blaha C. (2001) M5 muscarinic receptors are needed for slow activation of dopamine neurons and for rewarding brain stimulation. Life Sci, 68 (22-23): 2449-56. [PMID:11392612]

88. Zhang W, Yamada M, Gomeza J, Basile AS, Wess J. (2002) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J Neurosci, 22 (15): 6347-52. [PMID:12151512]

89. Zhang X, Hernandez MR, Yang H, Erickson K. (1995) Expression of muscarinic receptor subtype mRNA in the human ciliary muscle. Invest Ophthalmol Vis Sci, 36 (8): 1645-57. [PMID:7541396]

Contributors

Show »

How to cite this page