Top ▲

A3 receptor

Click here for help

Immunopharmacology Ligand target has curated data in GtoImmuPdb

Target id: 21

Nomenclature: A3 receptor

Family: Adenosine receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 318 1p13.2 ADORA3 adenosine A3 receptor 1,68,78,81
Mouse 7 319 3 46.45 cM Adora3 adenosine A3 receptor 109
Rat 7 320 2q34 Adora3 adenosine A3 receptor 113
Previous and Unofficial Names Click here for help
Adenosine receptor A3 | TGPCR1 | A3AR | ARA3
Database Links Click here for help
Specialist databases
GPCRdb aa3r_human (Hs), aa3r_mouse (Mm), aa3r_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
adenosine

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I]AB-MECA Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist 9.0 – 9.1 pKd 74,97
pKd 9.0 – 9.1 (Kd 1x10-9 – 6x10-10 M) [74,97]
[3H]HEMADO Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist 9.0 pKd 55
pKd 9.0 [55]
[125I]AB-MECA Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Full agonist 8.9 pKd 73
pKd 8.9 [73]
[3H]NECA Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Full agonist 7.9 – 8.2 pKd 26,56
pKd 7.9 – 8.2 [26,56]
[125I]APNEA Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Full agonist 7.8 pKd 113
pKd 7.8 [113]
Cl-IB-MECA Small molecule or natural product Click here for species-specific activity table Mm Agonist 9.7 pKi 61
pKi 9.7 (Ki 1.8x10-10 M) [61]
MRS3558 Small molecule or natural product Click here for species-specific activity table Hs Agonist 9.5 pKi 46
pKi 9.5 (Ki 2.9x10-10 M) [46]
Cl-IB-MECA Small molecule or natural product Click here for species-specific activity table Rn Agonist 9.5 pKi 61
pKi 9.5 (Ki 3.3x10-10 M) [61]
(R,S)-PHPNECA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.4 pKi 101
pKi 9.4 [101]
2-phenylethylyl-adenosine derivative Small molecule or natural product Hs Agonist 9.4 pKi 100
pKi 9.4 (Ki 4.4x10-10 M) [100]
MRS3558 Small molecule or natural product Click here for species-specific activity table Rn Agonist 9.0 pKi 61
pKi 9.0 (Ki 1x10-9 M) [61]
HEMADO Small molecule or natural product Click here for species-specific activity table Hs Agonist 9.0 pKi 55,101
pKi 9.0 (Ki 1.1x10-9 M) [55,101]
piclidenoson Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 8.7 – 9.2 pKi 26,32,56,97
pKi 8.7 – 9.2 [26,32,56,97]
MRS3558 Small molecule or natural product Click here for species-specific activity table Mm Agonist 8.8 pKi 61
pKi 8.8 (Ki 1.49x10-9 M) [61]
MRS5151 Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.6 pKi 66
pKi 8.6 (Ki 2.38x10-9 M) [66]
compound 6c [PMID: 34435786] Small molecule or natural product Hs Agonist 8.6 pKi 59
pKi 8.6 (Ki 2.4x10-9 M) [59]
2-hexynyl-NECA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.6 pKi 101
pKi 8.6 [101]
MRS5698 Small molecule or natural product Hs Agonist 8.5 pKi 90
pKi 8.5 [90]
Cl-IB-MECA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.0 – 8.9 pKi 10,47,52
pKi 8.0 – 8.9 [10,47,52]
CP608,039 Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.2 pKi 91
pKi 8.2 (Ki 5.8x10-9 M) [91]
PENECA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.2 pKi 101
pKi 8.2 [101]
I-ABA Small molecule or natural product Hs Full agonist 8.0 pKi 81
pKi 8.0 [81]
MRE 3008F20 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.0 pKi 97
pKi 8.0 [97]
NECA Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.5 – 8.4 pKi 9,33,47,81,97,104
pKi 7.5 – 8.4 [9,33,47,81,97,104]
AB-MECA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.7 pKi 56,97
pKi 7.7 [56,97]
MRS5151 Small molecule or natural product Click here for species-specific activity table Mm Agonist 7.6 pKi 66
pKi 7.6 (Ki 2.44x10-8 M) [66]
(R)-PIA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.1 – 8.1 pKi 33,47,56,81,97
pKi 7.1 – 8.1 [33,47,56,81,97]
CCPA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.4 pKi 46,56
pKi 7.4 [46,56]
apadenoson Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.3 pKi 46
pKi 7.3 (Ki 4.5x10-8 M) [46]
cyclopentyladenosine Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.0 – 7.4 pKi 33,46,56,81
pKi 7.0 – 7.4 [33,46,56,81]
(S)-PIA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.3 – 7.4 pKi 56,81,97
pKi 6.3 – 7.4 [56,81,97]
MPC-MECA Small molecule or natural product Hs Full agonist 6.8 pKi 97
pKi 6.8 [97]
NECA Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Full agonist 6.6 – 6.9 pKi 64,73
pKi 6.6 – 6.9 [64,73]
N(6)-cyclohexyladenosine Small molecule or natural product Click here for species-specific activity table Rn Agonist 6.8 pKi 92
pKi 6.8 (Ki 1.76x10-7 M) [92]
(R)-PIA Small molecule or natural product Click here for species-specific activity table Rn Full agonist 6.6 – 6.8 pKi 16,73
pKi 6.6 – 6.8 [16,73]
CCPA Small molecule or natural product Click here for species-specific activity table Rn Agonist 6.6 pKi 61
pKi 6.6 (Ki 2.37x10-7 M) [61]
CGS 21680 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 6.0 – 7.2 pKi 9,33,46,56,97
pKi 6.0 – 7.2 [9,33,46,56,97]
adenosine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Agonist 6.5 pKi 29-30,104
pKi 6.5 (Ki 2.9x10-7 M) [29-30,104]
CGS 21680 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Agonist 6.2 pKi 61
pKi 6.2 (Ki 5.84x10-7 M) [61]
TCPA Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.2 pKi 6
pKi 6.2 (Ki 6x10-7 M) [6]
binodenoson Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.0 pKi 46
pKi 6.0 (Ki 9.03x10-7 M) [46]
GS9667 Small molecule or natural product Click here for species-specific activity table Hs Agonist <6.0 pKi 22
pKi <6.0 (Ki >1x10-6 M) [22]
N(6)-cyclohexyladenosine Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.0 pKi 79
pKi 6.0 (Ki 1.025x10-6 M) [79]
2-chloroadenosine Small molecule or natural product Click here for species-specific activity table Rn Agonist 5.7 pKi 92
pKi 5.7 (Ki 1.89x10-6 M) [92]
2'-Me-CCPA Small molecule or natural product Rn Agonist 5.3 pKi 28
pKi 5.3 (Ki 5x10-6 M) [28]
adenosine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Agonist 5.2 pKi 104
pKi 5.2 (Ki 6.5x10-6 M) [104]
BAY 60-6583 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist <5.0 pKi 57
pKi <5.0 (Ki >1x10-5 M) [57]
regadenoson Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist <5.0 pKi 46
pKi <5.0 (Ki >1x10-5 M) [46]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]MRE 3008F20 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 9.1 pKd 4,97
pKd 9.1 [4,97]
PSB-11 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.3 pKd 69
pKd 8.3 (Kd 4.9x10-9 M) [69]
[3H]PSB-11 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 8.3 pKd 69
pKd 8.3 [69]
KF26777 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.7 pKi 80
pKi 9.7 (Ki 2x10-10 M) [80]
PSB-10 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.4 pKi 71
pKi 9.4 (Ki 4.41x10-10 M) [71]
MRE 3010F20 Small molecule or natural product Hs Antagonist 9.3 pKi 97
pKi 9.3 [97]
MRE 3008F20 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.0 – 9.5 pKi 46,96-97
pKi 9.0 – 9.5 [46,96-97]
MRS1220 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.2 – 9.2 pKi 47,54,87,107
pKi 8.2 – 9.2 (Ki 6.31x10-9 – 6.3x10-10 M) [47,54,87,107]
PSB-11 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.6 pKi 75
pKi 8.6 (Ki 2.34x10-9 M) [75]
MRS1177 Small molecule or natural product Hs Antagonist 8.5 pKi 54
pKi 8.5 [54]
VUF5574 Small molecule or natural product Hs Antagonist 8.4 pKi 94
pKi 8.4 (Ki 4.03x10-9 M) [94]
MRS1186 Small molecule or natural product Hs Antagonist 8.1 pKi 54
pKi 8.1 [54]
MRS1505 Small molecule or natural product Hs Antagonist 8.1 pKi 60
pKi 8.1 [60]
LUF7602 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.0 pKi 106
pKi 8.0 (Ki 1x10-8 M) [106]
Description: Displacement of [3H]PSB-11 binding from the hA3AR (in membranes from stably transfected CHO cells) following preincubation for 4 h,
LJ-4517 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.8 pKi 85
pKi 7.8 (Ki 1.56x10-8 M) [85]
VUF8504 Small molecule or natural product Hs Antagonist 7.8 pKi 93
pKi 7.8 [93]
xanthine amine congener Small molecule or natural product Ligand has a PDB structure Rn Antagonist 7.7 pKi 73
pKi 7.7 [73]
I-ABOPX Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.7 pKi 81
pKi 7.7 [81]
MRS1476 Small molecule or natural product Hs Antagonist 7.7 pKi 60
pKi 7.7 [60]
MRS1523 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.7 pKi 60
pKi 7.7 (Ki 1.99x10-8 M) [60]
MRS1191 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.5 pKi 47-48,61
pKi 7.5 [47-48,61]
MRS1486 Small molecule or natural product Hs Antagonist 7.5 pKi 60
pKi 7.5 [60]
CGS 15943 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.0 – 7.9 pKi 54,56,74,97
pKi 7.0 – 7.9 [54,56,74,97]
BW-A1433 Small molecule or natural product Rn Antagonist 7.4 pKi 73
pKi 7.4 [73]
BW-A1433 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.3 pKi 81
pKi 7.3 [81]
xanthine amine congener Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.0 – 7.4 pKi 56,81,97
pKi 7.0 – 7.4 [56,81,97]
MRS1097 Small molecule or natural product Hs Antagonist 7.0 pKi 47,95
pKi 7.0 [47,95]
MRS1523 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.9 pKi 61
pKi 6.9 (Ki 1.13x10-7 M) [61]
VUF8507 Small molecule or natural product Hs Antagonist 6.7 pKi 93
pKi 6.7 [93]
derenofylline Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.7 pKi 49
pKi 6.7 (Ki 2x10-7 M) [49]
MRS1042 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.5 pKi 50
pKi 6.5 [50]
MRS1041 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.4 pKi 50
pKi 6.4 [50]
MRS1754 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.2 pKi 53
pKi 6.2 (Ki 5.7x10-7 M) [53]
MRS1067 Small molecule or natural product Hs Antagonist 6.2 pKi 47,50
pKi 6.2 [47,50]
LUF5981 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.2 pKi 12
pKi 6.2 (Ki 6.37x10-7 M) [12]
MRS1523 Small molecule or natural product Click here for species-specific activity table Mm Antagonist 6.1 pKi 61
pKi 6.1 (Ki 7.31x10-7 M) [61]
ZM-241385 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 6.1 pKi 46
pKi 6.1 (Ki 7.43x10-7 M) [46]
MRS1093 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 pKi 50
pKi 6.1 [50]
MRS1088 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 pKi 50
pKi 6.1 [50]
DPCPX Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.4 – 6.6 pKi 2,39,56,81,97,102
pKi 5.4 – 6.6 (Ki 3.96x10-6 – 2.43x10-7 M) [2,39,56,81,97,102]
MRE 2029F20 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <6.0 pKi 5
pKi <6.0 (Ki >1x10-6 M) [5]
vipadenant Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Antagonist 6.0 pKi 35
pKi 6.0 (Ki 1.005x10-6 M) [35]
ST-1535 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <6.0 pKi 67
pKi <6.0 (Ki >1x10-6 M) [67]
preladenant Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist <6.0 pKi 70
pKi <6.0 (Ki >1x10-6 M) [70]
ATL802 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <6.0 pKi 53
pKi <6.0 (Ki >1x10-6 M) [53]
DPCPX Small molecule or natural product Click here for species-specific activity table Rn Antagonist 4.4 – 7.6 pKi 2,73,102
pKi 4.4 – 7.6 [2,73,102]
LAS38096 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.0 pKi 20,99
pKi 6.0 (Ki 1.043x10-6 M) [20,99]
CVT-6883 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.0 pKi 21
pKi 6.0 (Ki 1.07x10-6 M) [21]
SCH 58261 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.9 pKi 46
pKi 5.9 (Ki 1.2x10-6 M) [46]
MRS928 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.9 pKi 50
pKi 5.9 [50]
MRS1191 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 5.8 pKi 60-61
pKi 5.8 [60-61]
dexniguldipine Small molecule or natural product Hs Antagonist 5.7 pKi 95
pKi 5.7 [95]
PSB36 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.6 pKi 102
pKi 5.6 (Ki 2.3x10-6 M) [102]
galangin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.5 pKi 50
pKi 5.5 [50]
sakuranetin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.5 pKi 50
pKi 5.5 [50]
nicardipine Small molecule or natural product Approved drug Hs Antagonist 5.5 pKi 95
pKi 5.5 [95]
rolofylline Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.4 pKi 51
pKi 5.4 (Ki 4.39x10-6 M) [51]
istradefylline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.3 pKi 31
pKi 5.3 (Ki 4.47x10-6 M) [31]
PSB36 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 5.2 pKi 102
pKi 5.2 (Ki 6.5x10-6 M) [102]
SCH442416 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <5.0 pKi 46
pKi <5.0 (Ki >1x10-5 M) [46]
PSB603 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <5.0 pKi 8
pKi <5.0 (Ki >1x10-5 M) [8]
PSB1115 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist <5.0 pKi 39
pKi <5.0 (Ki >1x10-5 M) [39]
tonapofylline Small molecule or natural product Click here for species-specific activity table Hs Antagonist <5.0 pKi 51
pKi <5.0 (Ki >1x10-5 M) [51]
FK-453 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.0 pKi 46
pKi 5.0 (Ki 1x10-5 M) [46]
CSC Small molecule or natural product Click here for species-specific activity table Rn Antagonist <5.0 pKi 92
pKi <5.0 (Ki >1x10-5 M) [92]
MSX-2 Small molecule or natural product Click here for species-specific activity table Hs Antagonist <5.0 pKi 83
pKi <5.0 (Ki >1x10-5 M) [83]
ATL802 Small molecule or natural product Click here for species-specific activity table Mm Antagonist <5.0 pKi 53
pKi <5.0 (Ki >1x10-5 M) [53]
caffeine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 4.9 pKi 44
pKi 4.9 (Ki 1.33x10-5 M) [44]
flavone Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 4.8 pKi 50
pKi 4.8 [50]
theophylline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Antagonist 4.1 – 4.7 pKi 44,56
pKi 4.1 – 4.7 (Ki 8.64x10-5 – 2.23x10-5 M) [44,56]
flavanone Small molecule or natural product Hs Antagonist 4.3 pKi 50
pKi 4.3 [50]
visnagin Small molecule or natural product Click here for species-specific activity table Hs Antagonist 4.2 pKi 50
pKi 4.2 [50]
theophylline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Rn Antagonist 4.0 – 4.1 pKi 45,92
pKi 4.0 – 4.1 (Ki 1x10-4 – 8.5x10-5 M) [45,92]
caffeine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist <4.0 pKi 8
pKi <4.0 (Ki >1x10-4 M) [8]
View species-specific antagonist tables
Antagonist Comments
Istradefylline pKi values at human receptor subtypes A1, A2B and A3 are derived from unpublished data (Müller et al).
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
LUF6000 Small molecule or natural product Hs Positive - - 37
[37]
LUF6096 Small molecule or natural product Hs Positive - - 40
[40]
MRS8054 Small molecule or natural product Hs Positive - - 24
[24]
Immunopharmacology Comments
Agonist stimulation of the A2A and A3 receptors down-regulates production of the pro-inflammatory mediators TNF-α and IL-8 in human synoviocytes [98], suggesting a role in controlling arthritic joint inflammation.
This protein contains an immunoglobulin (Ig)-like domain that resembles the antibody variable domain, that has been coined the 'V-set domain'. The genes for all human V-set domain containing proteins are listed in HGNC gene group 590.
Cell Type Associations
Immuno Cell Type:  T cells
Cell Ontology Term:   type I NK T cell (CL:0000921)
Comment:  A3 receptor is expressed by mouse iNKT cells.
References:  72
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  Immune regulation
Immuno Process:  Cellular signalling
Immuno Process:  Chemotaxis & migration
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
References:  76,113
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Phospholipase C stimulation
References:  62,112
Tissue Distribution Click here for help
Liver, lung, placenta.
Species:  Human
Technique:  Northern blotting.
References:  68
CNS: corpus callosum, substantia nigra, thalamus, subthalamic nucleus, spinal cord, hippocampus.
Species:  Human
Technique:  Northern blotting.
References:  1
Adrenal cortex, adrenal medulla > spleen, small intestine.
Species:  Human
Technique:  Northern blotting.
References:  1
Jejunum, ileum, colon.
Species:  Human
Technique:  RT-PCR.
References:  14
Lung, liver, kidney, heart.
Species:  Human
Technique:  Northern blotting.
References:  78
Liver, lung > brain, aorta.
Species:  Human
Technique:  Northern blotting.
References:  81
Lung mast cells.
Species:  Mouse
Technique:  RT-PCR.
References:  112
Testes: spermatocytes, round spermatids, elongating spermatids > Leydig cells.
Species:  Rat
Technique:  in situ hybridisation.
References:  77
Brain: hippocampus.
Species:  Rat
Technique:  Western blotting.
References:  63
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of IP3 levels in HEK 293 cells transfected with the human A3 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  PTX-sensitive increase in IP3 level.
References:  62
Measurement of cAMP levels in CHO cells transfected with the human A3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  81
Measurement of cAMP levels in COS cells transfected with the rat A3 receptor.
Species:  Rat
Tissue:  COS cells.
Response measured:  PTX-sensitive inhibition of cAMP accumulation.
References:  113
Measurement of extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation in CHO cells transfected with the human A1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Phosphorylation of ERK1/2.
References:  38,84
Measurement of cAMP levels and p42/p44 MAPK phosphorylation in a murine dendritic cell line, XS-106, which endogenously expresses A3 receptors.
Species:  Mouse
Tissue:  XS-106 cells.
Response measured:  Inhibition of cAMP and stimulation of p42/p44 MAPK phosphorylation.
References:  18
Measurement of PKB activity in cardiomyocytes endogenously expressing the A3 receptor.
Species:  Rat
Tissue:  Cardiomyocytes.
Response measured:  PKB phosphorylation via Gi/o.
References:  34
Cell number count of CHO cells transfected with the human A3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Reduction of cell number.
References:  10
Measurement of eosinophil peroxidase and superoxide anion release from human eosinophils endogenously expressing the human A3 receptor.
Species:  Human
Tissue:  Eosinophils.
Response measured:  Release of of eosinophil peroxidase and superoxide anion .
References:  23
Physiological Functions Click here for help
Mast cell activation.
Species:  Mouse
Tissue:  Lung mast cells.
References:  112
Inhibition of noradrenaline release from peripheral sympathetic nerve terminals.
Species:  Rat
Tissue:  Mesenteric artery.
References:  19
Preconditioning.
Species:  Rat
Tissue:  Heart.
References:  17
Coronary vasodilation.
Species:  Rat
Tissue:  Heart.
References:  41
Protection from reperfusion/reoxygenation injury.
Species:  Rat
Tissue:  Heart.
References:  65
Localised inflammatory response in peripheral tissues.
Species:  Mouse
Tissue:  In vivo (hind paw).
References:  103
Regulation of intraocular pressure.
Species:  Mouse
Tissue:  In vivo (eye).
References:  3
Preconditioning.
Species:  Mouse
Tissue:  Heart.
References:  108
Modulation of synaptic plasticity.
Species:  Rat
Tissue:  Hippocampus.
References:  15
Modulation of ischemia/reperfusion injury.
Species:  Mouse
Tissue:  In vivo.
References:  11,36
Hypotension.
Species:  Rat
Tissue:  In vivo.
References:  86
Mast cell degranulation.
Species:  Rat
Tissue:  Mast cells.
References:  27
Physiological Consequences of Altering Gene Expression Click here for help
A3 knockout mice exhibit no potentiation of antigen-dependent degranulation of bone marrow-derived mast cells, as with the wild-type mice, and decreased inhibition of TNFα production.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  82
A3 receptor knockout mice exhibit decreased adenosine-induced airway responsiveness.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  88
A3 receptor knockout mice exhibit protection from ischemic or myoglobinuric renal failure.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  58
A3 receptor knockout mice exhibit defective localised inflammatory responses.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  103
A3 receptor knockout mice exhibit reduced intraocular pressure.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  3
Overexpression of the A3 receptor gene by the SM22 alpha promoter resulted in lethality at an early stage of embryo development.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  111
A3 receptor knockout mice exhibit resistance to cardiac ischemia-reperfusion injury.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  11,36
A3 receptor knockout mice exhibit increased cAMP levels in the heart and vascular smooth muscle, as well as a decrease in blood pressure.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  110
A3 receptor knockout mice exhibit defective cutaneous vascular permeability.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  89
A3 receptor knockout mice exhibit great carbon monoxide-induced neuronal damage, slightly increased locomotor activity and altered response to painful stimuli.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  25
Adenosine A3 receptor KO mice exhibit a 20% decrease of their blood platelet count.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  42
Neutrophils lacking A3 receptors show decreased chemotaxis
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  13
Adenosine A3 receptor KO mice show changes in diurnal rhythm and temperature regulation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  105
Adenosine A3 receptor KO male mice show an increase in overall motor activity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  7
A3 KO mice show decreased mast cell activation
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  43
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adora3tm1Jbsn Adora3tm1Jbsn/Adora3tm1Jbsn
either: (involves: 129P2/OlaHsd * C57BL/6 * DBA/2) or (involves: 129P2/OlaHsd * C57BL/6)
MGI:104847  MP:0002423 abnormal mast cell physiology PMID: 10660615 
Adora3tm1Jbsn Adora3tm1Jbsn/Adora3tm1Jbsn
either: (involves: 129P2/OlaHsd * C57BL/6 * DBA/2) or (involves: 129P2/OlaHsd * C57BL/6)
MGI:104847  MP:0008561 decreased tumor necrosis factor secretion PMID: 10660615 
General Comments
For a review of the effects of adenosine receptor knockout on nervous system function see reference [30].

References

Show »

1. Atkinson MR, Townsend-Nicholson A, Nicholl JK, Sutherland GR, Schofield PR. (1997) Cloning, characterisation and chromosomal assignment of the human adenosine A3 receptor (ADORA3) gene. Neurosci Res, 29: 73-79. [PMID:9293494]

2. Auchampach JA, Jin X, Wan TC, Caughey GH, Linden J. (1997) Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol, 52 (5): 846-60. [PMID:9351976]

3. Avila MY, Stone RA, Civan MM. (2002) Knockout of A3 adenosine receptors reduces mouse intraocular pressure. Invest Ophthalmol Vis Sci, 43 (9): 3021-6. [PMID:12202525]

4. Baraldi PG, Cacciari B, Romagnoli R, Varani K, Merighi S, Gessi S, Borea PA, Leung E, Hickey SL, Spalluto G. (2000) Synthesis and preliminary biological evaluation of [3H]-MRE 3008-F20: the first high affinity radioligand antagonist for the human A3 adenosine receptors. Bioorg Med Chem Lett, 10 (3): 209-11. [PMID:10698437]

5. Baraldi PG, Tabrizi MA, Preti D, Bovero A, Romagnoli R, Fruttarolo F, Zaid NA, Moorman AR, Varani K, Gessi S et al.. (2004) Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists. J Med Chem, 47 (6): 1434-47. [PMID:14998332]

6. Beukers MW, Wanner MJ, Von Frijtag Drabbe Künzel JK, Klaasse EC, IJzerman AP, Koomen GJ. (2003) N6-cyclopentyl-2-(3-phenylaminocarbonyltriazene-1-yl)adenosine (TCPA), a very selective agonist with high affinity for the human adenosine A1 receptor. J Med Chem, 46 (8): 1492-503. [PMID:12672250]

7. Björklund O, Halldner-Henriksson L, Yang J, Eriksson TM, Jacobson MA, Daré E, Fredholm BB. (2008) Decreased behavioral activation following caffeine, amphetamine and darkness in A3 adenosine receptor knock-out mice. Physiol Behav, 95 (5): 668-76. [PMID:18930070]

8. Borrmann T, Hinz S, Bertarelli DC, Li W, Florin NC, Scheiff AB, Müller CE. (2009) 1-alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J Med Chem, 52 (13): 3994-4006. [PMID:19569717]

9. Bosch MP, Campos F, Niubó I, Rosell G, Díaz JL, Brea J, Loza MI, Guerrero A. (2004) Synthesis and biological activity of new potential agonists for the human adenosine A2A receptor. J Med Chem, 47 (16): 4041-53. [PMID:15267242]

10. Brambilla R, Cattabeni F, Ceruti S, Barbieri D, Franceschi C, Kim YC, Jacobson KA, Klotz KN, Lohse MJ, Abbracchio MP. (2000) Activation of the A3 adenosine receptor affects cell cycle progression and cell growth. Naunyn Schmiedebergs Arch Pharmacol, 361 (3): 225-34. [PMID:10731034]

11. Cerniway RJ, Yang Z, Jacobson MA, Linden J, Matherne GP. (2001) Targeted deletion of A(3) adenosine receptors improves tolerance to ischemia-reperfusion injury in mouse myocardium. Am J Physiol Heart Circ Physiol, 281 (4): H1751-8. [PMID:11557567]

12. Chang LC, von Frijtag Drabbe Künzel JK, Mulder-Krieger T, Westerhout J, Spangenberg T, Brussee J, Ijzerman AP. (2007) 2,6,8-trisubstituted 1-deazapurines as adenosine receptor antagonists. J Med Chem, 50 (4): 828-34. [PMID:17300165]

13. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG. (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science, 314 (5806): 1792-5. [PMID:17170310]

14. Christofi FL, Zhang H, Yu JG, Guzman J, Xue J, Kim M, Wang YZ, Cooke HJ. (2001) Differential gene expression of adenosine A1, A2a, A2b, and A3 receptors in the human enteric nervous system. J Comp Neurol, 439 (1): 46-64. [PMID:11579381]

15. Costenla AR, Lopes LV, de Mendonça A, Ribeiro JA. (2001) A functional role for adenosine A3 receptors: modulation of synaptic plasticity in the rat hippocampus. Neurosci Lett, 302 (1): 53-7. [PMID:11278110]

16. Daly JW, Padgett WL, Secunda SI, Thompson RD, Olsson RA. (1993) Structure-activity relationships for 2-substituted adenosines at A1 and A2 adenosine receptors. Pharmacology, 46 (2): 91-100. [PMID:8441759]

17. Das S, Cordis GA, Maulik N, Das DK. (2005) Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol Heart Circ Physiol, 288 (1): H328-35. [PMID:15345477]

18. Dickenson JM, Reeder S, Rees B, Alexander S, Kendall D. (2003) Functional expression of adenosine A2A and A3 receptors in the mouse dendritic cell line XS-106. Eur J Pharmacol, 474 (1): 43-51. [PMID:12909194]

19. Donoso MV, Aedo F, Huidobro-Toro JP. (2006) The role of adenosine A2A and A3 receptors on the differential modulation of norepinephrine and neuropeptide Y release from peripheral sympathetic nerve terminals. J Neurochem, 96 (6): 1680-95. [PMID:16539684]

20. Eastwood P, Gonzalez J, Paredes S, Nueda A, Domenech T, Alberti J, Vidal B. (2010) Discovery of N-(5,6-diarylpyridin-2-yl)amide derivatives as potent and selective A(2B) adenosine receptor antagonists. Bioorg Med Chem Lett, 20 (5): 1697-700. [PMID:20137946]

21. Elzein E, Kalla RV, Li X, Perry T, Gimbel A, Zeng D, Lustig D, Leung K, Zablocki J. (2008) Discovery of a novel A2B adenosine receptor antagonist as a clinical candidate for chronic inflammatory airway diseases. J Med Chem, 51 (7): 2267-78. [PMID:18321039]

22. Elzein E, Zablocki J. (2008) A1 adenosine receptor agonists and their potential therapeutic applications. Expert Opin Investig Drugs, 17 (12): 1901-10. [PMID:19012505]

23. Ezeamuzie CI, Philips E. (1999) Adenosine A3 receptors on human eosinophils mediate inhibition of degranulation and superoxide anion release. Br J Pharmacol, 127 (1): 188-94. [PMID:10369472]

24. Fallot LB, Suresh RR, Fisher CL, Salmaso V, O'Connor RD, Kaufman N, Gao ZG, Auchampach JA, Jacobson KA. (2022) Structure-Activity Studies of 1H-Imidazo[4,5-c]quinolin-4-amine Derivatives as A3 Adenosine Receptor Positive Allosteric Modulators. J Med Chem, 65 (22): 15238-15262. [PMID:36367749]

25. Fedorova IM, Jacobson MA, Basile A, Jacobson KA. (2003) Behavioral characterization of mice lacking the A3 adenosine receptor: sensitivity to hypoxic neurodegeneration. Cell Mol Neurobiol, 23 (3): 431-47. [PMID:12825837]

26. Feoktistov I, Garland EM, Goldstein AE, Zeng D, Belardinelli L, Wells JN, Biaggioni I. (2001) Inhibition of human mast cell activation with the novel selective adenosine A(2B) receptor antagonist 3-isobutyl-8-pyrrolidinoxanthine (IPDX)(2). Biochem Pharmacol, 62 (9): 1163-73. [PMID:11705449]

27. Fozard JR, Pfannkuche HJ, Schuurman HJ. (1996) Mast cell degranulation following adenosine A3 receptor activation in rats. Eur J Pharmacol, 298 (3): 293-7. [PMID:8846829]

28. Franchetti P, Cappellacci L, Marchetti S, Trincavelli L, Martini C, Mazzoni MR, Lucacchini A, Grifantini M. (1998) 2'-C-Methyl analogues of selective adenosine receptor agonists: synthesis and binding studies. J Med Chem, 41 (10): 1708-15. [PMID:9572897]

29. Fredholm BB. (1995) Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol, 76 (2): 93-101. [PMID:7746802]

30. Fredholm BB, Chen JF, Masino SA, Vaugeois JM. (2005) Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol, 45: 385-412. [PMID:15822182]

31. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev, 63 (1): 1-34. [PMID:21303899]

32. Gallo-Rodriguez C, Ji XD, Melman N, Siegman BD, Sanders LH, Orlina J, Fischer B, Pu Q, Olah ME, van Galen PJ et al.. (1994) Structure-activity relationships of N6-benzyladenosine-5'-uronamides as A3-selective adenosine agonists. J Med Chem, 37 (5): 636-46. [PMID:8126704]

33. Gao ZG, Mamedova LK, Chen P, Jacobson KA. (2004) 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors. Biochem Pharmacol, 68 (10): 1985-93. [PMID:15476669]

34. Germack R, Griffin M, Dickenson JM. (2004) Activation of protein kinase B by adenosine A1 and A3 receptors in newborn rat cardiomyocytes. J Mol Cell Cardiol, 37 (5): 989-99. [PMID:15522276]

35. Gillespie RJ, Bamford SJ, Botting R, Comer M, Denny S, Gaur S, Griffin M, Jordan AM, Knight AR, Lerpiniere J et al.. (2009) Antagonists of the human A(2A) adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. J Med Chem, 52 (1): 33-47. [PMID:19072055]

36. Guo Y, Bolli R, Bao W, Wu WJ, Black Jr RG, Murphree SS, Salvatore CA, Jacobson MA, Auchampach JA. (2001) Targeted deletion of the A3 adenosine receptor confers resistance to myocardial ischemic injury and does not prevent early preconditioning. J Mol Cell Cardiol, 33 (4): 825-30. [PMID:11273734]

37. Göblyös A, Gao ZG, Brussee J, Connestari R, Santiago SN, Ye K, Ijzerman AP, Jacobson KA. (2006) Structure-activity relationships of new 1H-imidazo[4,5-c]quinolin-4-amine derivatives as allosteric enhancers of the A3 adenosine receptor. J Med Chem, 49 (11): 3354-61. [PMID:16722654]

38. Hammarberg C, Fredholm BB, Schulte G. (2004) Adenosine A3 receptor-mediated regulation of p38 and extracellular-regulated kinase ERK1/2 via phosphatidylinositol-3'-kinase. Biochem Pharmacol, 67: 129-134. [PMID:14667935]

39. Hayallah AM, Sandoval-Ramírez J, Reith U, Schobert U, Preiss B, Schumacher B, Daly JW, Müller CE. (2002) 1,8-disubstituted xanthine derivatives: synthesis of potent A2B-selective adenosine receptor antagonists. J Med Chem, 45 (7): 1500-10. [PMID:11906291]

40. Heitman LH, Göblyös A, Zweemer AM, Bakker R, Mulder-Krieger T, van Veldhoven JP, de Vries H, Brussee J, Ijzerman AP. (2009) A series of 2,4-disubstituted quinolines as a new class of allosteric enhancers of the adenosine A3 receptor. J Med Chem, 52 (4): 926-31. [PMID:19161279]

41. Hinschen AK, Rose'Meyer RB, Headrick JP. (2003) Adenosine receptor subtypes mediating coronary vasodilation in rat hearts. J Cardiovasc Pharmacol, 41 (1): 73-80. [PMID:12500024]

42. Hofer M, Pospíšil M, Dušek L, Hoferová Z, Weiterová L, Komůrková D. (2013) Erythropoiesis- and thrombopoiesis-characterizing parameters in adenosine A3 receptor knock-out mice. Physiol Res, 62 (3): 305-11. [PMID:23489188]

43. Hua X, Chason KD, Fredholm BB, Deshpande DA, Penn RB, Tilley SL. (2008) Adenosine induces airway hyperresponsiveness through activation of A3 receptors on mast cells. J Allergy Clin Immunol, 122 (1): 107-13, 113.e1-7. [PMID:18472152]

44. Jacobson KA IJzerman AP, Linden J. (1999) 1,3-Dialkylxanthine derivatives having high potency as antagonists at human A2B adenosine receptors. Drug Dev Res, (47): 45-53.

45. Jacobson KA, Fischer B, Ji XD. (1995) "Cleavable trifunctional" approach to receptor affinity labeling: chemical regeneration of binding to A1-adenosine receptors. Bioconjug Chem, 6 (3): 255-63. [PMID:7632796]

46. Jacobson KA, Gao ZG. (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov, 5 (3): 247-64. [PMID:16518376]

47. Jacobson KA, Park KS, Jiang JL, Kim YC, Olah ME, Stiles GL, Ji XD. (1997) Pharmacological characterization of novel A3 adenosine receptor-selective antagonists. Neuropharmacology, 36 (9): 1157-65. [PMID:9364471]

48. Jiang JL, van Rhee AM, Melman N, Ji XD, Jacobson KA. (1996) 6-phenyl-1,4-dihydropyridine derivatives as potent and selective A3 adenosine receptor antagonists. J Med Chem, 39 (23): 4667-75. [PMID:8917655]

49. Kalk P, Eggert B, Relle K, Godes M, Heiden S, Sharkovska Y, Fischer Y, Ziegler D, Bielenberg GW, Hocher B. (2007) The adenosine A1 receptor antagonist SLV320 reduces myocardial fibrosis in rats with 5/6 nephrectomy without affecting blood pressure. Br J Pharmacol, 151 (7): 1025-32. [PMID:17558436]

50. Karton Y, Jiang JL, Ji XD, Melman N, Olah ME, Stiles GL, Jacobson KA. (1996) Synthesis and biological activities of flavonoid derivatives as A3 adenosine receptor antagonists. J Med Chem, 39 (12): 2293-301. [PMID:8691424]

51. Kiesman WF, Zhao J, Conlon PR, Dowling JE, Petter RC, Lutterodt F, Jin X, Smits G, Fure M, Jayaraj A et al.. (2006) Potent and orally bioavailable 8-bicyclo[2.2.2]octylxanthines as adenosine A1 receptor antagonists. J Med Chem, 49 (24): 7119-31. [PMID:17125264]

52. Kim HO, Ji XD, Siddiqi SM, Olah ME, Stiles GL, Jacobson KA. (1994) 2-Substitution of N6-benzyladenosine-5'-uronamides enhances selectivity for A3 adenosine receptors. J Med Chem, 37 (21): 3614-21. [PMID:7932588]

53. Kim YC, Ji X, Melman N, Linden J, Jacobson KA. (2000) Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A(2B) adenosine receptors. J Med Chem, 43 (6): 1165-72. [PMID:10737749]

54. Kim YC, Ji XD, Jacobson KA. (1996) Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) are selective for the human A3 receptor subtype. J Med Chem, 39 (21): 4142-8. [PMID:8863790]

55. Klotz KN, Falgner N, Kachler S, Lambertucci C, Vittori S, Volpini R, Cristalli G. (2007) [3H]HEMADO--a novel tritiated agonist selective for the human adenosine A3 receptor. Eur J Pharmacol, 556 (1-3): 14-8. [PMID:17126322]

56. Klotz KN, Hessling J, Hegler J, Owman C, Kull B, Fredholm BB, Lohse MJ. (1998) Comparative pharmacology of human adenosine receptor subtypes - characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol, 357 (1): 1-9. [PMID:9459566]

57. Kuno A, Critz SD, Cui L, Solodushko V, Yang XM, Krahn T, Albrecht B, Philipp S, Cohen MV, Downey JM. (2007) Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A2b-dependent signaling during early reperfusion. J Mol Cell Cardiol, 43 (3): 262-71. [PMID:17632123]

58. Lee HT, Ota-Setlik A, Xu H, D'Agati VD, Jacobson MA, Emala CW. (2003) A3 adenosine receptor knockout mice are protected against ischemia- and myoglobinuria-induced renal failure. Am J Physiol Renal Physiol, 284 (2): F267-73. [PMID:12388399]

59. Lee Y, Hou X, Lee JH, Nayak A, Alexander V, Sharma PK, Chang H, Phan K, Gao ZG, Jacobson KA et al.. (2021) Subtle Chemical Changes Cross the Boundary between Agonist and Antagonist: New A3 Adenosine Receptor Homology Models and Structural Network Analysis Can Predict This Boundary. J Med Chem, 64 (17): 12525-12536. [PMID:34435786]

60. Li AH, Moro S, Melman N, Ji XD, Jacobson KA. (1998) Structure-activity relationships and molecular modeling of 3, 5-diacyl-2,4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. J Med Chem, 41 (17): 3186-201. [PMID:9703464]

61. Liang BT, Urso R, Sambraski E, Jacobson KA. (2010) . In A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics. Edited by Borea PA (Springer) . [ISBN:9789048131440]

62. Linden J, Thai T, Figler H, Jin X, Robeva AS. (1999) Characterization of human A(2B) adenosine receptors: radioligand binding, western blotting, and coupling to G(q) in human embryonic kidney 293 cells and HMC-1 mast cells. Mol Pharmacol, 56 (4): 705-13. [PMID:10496952]

63. Lopes LV, Rebola N, Pinheiro PC, Richardson PJ, Oliveira CR, Cunha RA. (2003) Adenosine A3 receptors are located in neurons of the rat hippocampus. Neuroreport, 14 (12): 1645-8. [PMID:14502093]

64. Müller CE, Stein B. (1996) Adenosine receptor antagonists: structures and potential therapeutic applications. Curr Pharm Des, 2: 501-530.

65. Maddock HL, Mocanu MM, Yellon DM. (2002) Adenosine A(3) receptor activation protects the myocardium from reperfusion/reoxygenation injury. Am J Physiol Heart Circ Physiol, 283 (4): H1307-13. [PMID:12234780]

66. Melman A, Gao ZG, Kumar D, Wan TC, Gizewski E, Auchampach JA, Jacobson KA. (2008) Design of (N)-methanocarba adenosine 5'-uronamides as species-independent A3 receptor-selective agonists. Bioorg Med Chem Lett, 18 (9): 2813-9. [PMID:18424135]

67. Minetti P, Tinti MO, Carminati P, Castorina M, Di Cesare MA, Di Serio S, Gallo G, Ghirardi O, Giorgi F, Giorgi L et al.. (2005) 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and analogues as A2A adenosine receptor antagonists. Design, synthesis, and pharmacological characterization. J Med Chem, 48 (22): 6887-96. [PMID:16250647]

68. Murrison EM, Goodson SJ, Edbrooke MR, Harris CA. (1996) Cloning and characterisation of the human adenosine A3 receptor gene. FEBS Lett, 384 (3): 243-6. [PMID:8617363]

69. Müller CE, Diekmann M, Thorand M, Ozola V. (2002) [(3)H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([(3)H]PSB-11), a novel high-affinity antagonist radioligand for human A(3) adenosine receptors. Bioorg Med Chem Lett, 12 (3): 501-3. [PMID:11814828]

70. Müller CE, Ferré S. (2007) Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. Recent Pat CNS Drug Discov, 2 (1): 1-21. [PMID:18221214]

71. Müller CE, Thorand M, Qurishi R, Diekmann M, Jacobson KA, Padgett WL, Daly JW. (2002) Imidazo[2,1-i]purin-5-ones and related tricyclic water-soluble purine derivatives: potent A(2A)- and A(3)-adenosine receptor antagonists. J Med Chem, 45 (16): 3440-50. [PMID:12139454]

72. Nowak M, Lynch L, Yue S, Ohta A, Sitkovsky M, Balk SP, Exley MA. (2010) The A2aR adenosine receptor controls cytokine production in iNKT cells. Eur J Immunol, 40 (3): 682-7. [PMID:20039304]

73. Olah ME, Jacobson KA, Stiles GL. (1994) Role of the second extracellular loop of adenosine receptors in agonist and antagonist binding. Analysis of chimeric A1/A3 adenosine receptors. J Biol Chem, 269 (40): 24692-8. [PMID:7929142]

74. Ongini E, Dionisotti S, Gessi S, Irenius E, Fredholm BB. (1999) Comparison of CGS 15943, ZM 241385 and SCH 58261 as antagonists at human adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol, 359 (1): 7-10. [PMID:9933143]

75. Ozola V, Thorand M, Diekmann M, Qurishi R, Schumacher B, Jacobson KA, Müller CE. (2003) 2-Phenylimidazo[2,1-i]purin-5-ones: structure-activity relationships and characterization of potent and selective inverse agonists at Human A3 adenosine receptors. Bioorg Med Chem, 11 (3): 347-56. [PMID:12517430]

76. Palmer TM, Gettys TW, Stiles GL. (1995) Differential interaction with and regulation of multiple G-proteins by the rat A3 adenosine receptor. J Biol Chem, 270 (28): 16895-902. [PMID:7622506]

77. Rivkees SA. (1994) Localization and characterization of adenosine receptor expression in rat testis. Endocrinology, 135 (6): 2307-13. [PMID:7988413]

78. Sajjadi FG, Firestein GS. (1993) cDNA cloning and sequence analysis of the human A3 adenosine receptor. Biochim Biophys Acta, 1179 (1): 105-7. [PMID:8399349]

79. Sajjadi FG, Takabayashi K, Foster AC, Domingo RC, Firestein GS. (1996) Inhibition of TNF-alpha expression by adenosine: role of A3 adenosine receptors. J Immunol, 156 (9): 3435-42. [PMID:8617970]

80. Saki M, Tsumuki H, Nonaka H, Shimada J, Ichimura M. (2002) KF26777 (2-(4-bromophenyl)-7,8-dihydro-4-propyl-1H-imidazo[2,1-i]purin-5(4H)-one dihydrochloride), a new potent and selective adenosine A3 receptor antagonist. Eur J Pharmacol, 444 (3): 133-41. [PMID:12063073]

81. Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG. (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci USA, 90 (21): 10365-9. [PMID:8234299]

82. Salvatore CA, Tilley SL, Latour AM, Fletcher DS, Koller BH, Jacobson MA. (2000) Disruption of the A(3) adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem, 275 (6): 4429-34. [PMID:10660615]

83. Sauer R, Maurinsh J, Reith U, Fülle F, Klotz KN, Müller CE. (2000) Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists. J Med Chem, 43 (3): 440-8. [PMID:10669571]

84. Schulte G, Fredholm BB. (2000) Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol, 58 (3): 477-82. [PMID:10953039]

85. Shiriaeva A, Park D, Kim G, Lee Y, Hou X, Jarhad DB, Kim G, Yu J, Hyun YE, Kim W et al.. (2022) GPCR Agonist-to-Antagonist Conversion: Enabling the Design of Nucleoside Functional Switches for the A2A Adenosine Receptor. J Med Chem, 65 (17): 11648-11657. [PMID:35977382]

86. Stella L, de Novellis V, Marabese I, Berrino L, Maione S, Filippelli A, Rossi F. (1998) The role of A3 adenosine receptors in central regulation of arterial blood pressure. Br J Pharmacol, 125 (3): 437-40. [PMID:9806324]

87. Sullivan GW, Rieger JM, Scheld WM, Macdonald TL, Linden J. (2001) Cyclic AMP-dependent inhibition of human neutrophil oxidative activity by substituted 2-propynylcyclohexyl adenosine A(2A) receptor agonists. Br J Pharmacol, 132 (5): 1017-26. [PMID:11226132]

88. Tilley SL, Tsai M, Williams CM, Wang ZS, Erikson CJ, Galli SJ, Koller BH. (2003) Identification of A3 receptor- and mast cell-dependent and -independent components of adenosine-mediated airway responsiveness in mice. J Immunol, 171 (1): 331-7. [PMID:12817015]

89. Tilley SL, Wagoner VA, Salvatore CA, Jacobson MA, Koller BH. (2000) Adenosine and inosine increase cutaneous vasopermeability by activating A(3) receptors on mast cells. J Clin Invest, 105 (3): 361-7. [PMID:10675362]

90. Tosh DK, Deflorian F, Phan K, Gao ZG, Wan TC, Gizewski E, Auchampach JA, Jacobson KA. (2012) Structure-guided design of A(3) adenosine receptor-selective nucleosides: combination of 2-arylethynyl and bicyclo[3.1.0]hexane substitutions. J Med Chem, 55 (10): 4847-60. [PMID:22559880]

91. Tracey WR, Magee WP, Oleynek JJ, Hill RJ, Smith AH, Flynn DM, Knight DR. (2003) Novel N6-substituted adenosine 5'-N-methyluronamides with high selectivity for human adenosine A3 receptors reduce ischemic myocardial injury. Am J Physiol Heart Circ Physiol, 285 (6): H2780-7. [PMID:12919933]

92. van Galen PJ, van Bergen AH, Gallo-Rodriguez C, Melman N, Olah ME, IJzerman AP, Stiles GL, Jacobson KA. (1994) A binding site model and structure-activity relationships for the rat A3 adenosine receptor. Mol Pharmacol, 45 (6): 1101-11. [PMID:8022403]

93. van Muijlwijk-Koezen JE, Timmerman H, Link R, van der Goot H, Ijzerman AP. (1998) A novel class of adenosine A3 receptor ligands. 2. Structure affinity profile of a series of isoquinoline and quinazoline compounds. J Med Chem, 41 (21): 3994-4000. [PMID:9767637]

94. van Muijlwijk-Koezen JE, Timmerman H, van der Goot H, Menge WM, Frijtag Von Drabbe Künzel J, de Groote M, IJzerman AP. (2000) Isoquinoline and quinazoline urea analogues as antagonists for the human adenosine A(3) receptor. J Med Chem, 43 (11): 2227-38. [PMID:10841801]

95. van Rhee AM, Jiang JL, Melman N, Olah ME, Stiles GL, Jacobson KA. (1996) Interaction of 1,4-dihydropyridine and pyridine derivatives with adenosine receptors: selectivity for A3 receptors. J Med Chem, 39 (15): 2980-9. [PMID:8709132]

96. Varani K, Gessi S, Merighi S, Vincenzi F, Cattabriga E, Benini A, Klotz KN, Baraldi PG, Tabrizi MA, Lennan SM et al.. (2005) Pharmacological characterization of novel adenosine ligands in recombinant and native human A2B receptors. Biochem Pharmacol, 70 (11): 1601-12. [PMID:16219300]

97. Varani K, Merighi S, Gessi S, Klotz KN, Leung E, Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Borea PA. (2000) [(3)H]MRE 3008F20: a novel antagonist radioligand for the pharmacological and biochemical characterization of human A(3) adenosine receptors. Mol Pharmacol, 57 (5): 968-75. [PMID:10779381]

98. Varani K, Vincenzi F, Tosi A, Targa M, Masieri FF, Ongaro A, De Mattei M, Massari L, Borea PA. (2010) Expression and functional role of adenosine receptors in regulating inflammatory responses in human synoviocytes. Br J Pharmacol, 160 (1): 101-15. [PMID:20331607]

99. Vidal B, Nueda A, Esteve C, Domenech T, Benito S, Reinoso RF, Pont M, Calbet M, López R, Cadavid MI et al.. (2007) Discovery and characterization of 4'-(2-furyl)-N-pyridin-3-yl-4,5'-bipyrimidin-2'-amine (LAS38096), a potent, selective, and efficacious A2B adenosine receptor antagonist. J Med Chem, 50 (11): 2732-6. [PMID:17469811]

100. Volpini R, Buccioni M, Dal Ben D, Lambertucci C, Lammi C, Marucci G, Ramadori AT, Klotz KN, Cristalli G. (2009) Synthesis and biological evaluation of 2-alkynyl-N6-methyl-5'-N-methylcarboxamidoadenosine derivatives as potent and highly selective agonists for the human adenosine A3 receptor. J Med Chem, 52 (23): 7897-900. [PMID:19839592]

101. Volpini R, Costanzi S, Lambertucci C, Taffi S, Vittori S, Klotz KN, Cristalli G. (2002) N(6)-alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A(3) receptor and a starting point for searching A(2B) ligands. J Med Chem, 45 (15): 3271-9. [PMID:12109910]

102. Weyler S, Fülle F, Diekmann M, Schumacher B, Hinz S, Klotz KN, Müller CE. (2006) Improving potency, selectivity, and water solubility of adenosine A1 receptor antagonists: xanthines modified at position 3 and related pyrimido[1,2,3-cd]purinediones. ChemMedChem, 1 (8): 891-902. [PMID:16902942]

103. Wu WP, Hao JX, Halldner-Henriksson L, Xu XJ, Jacobson MA, Wiesenfeld-Hallin Z, Fredholm BB. (2002) Decreased inflammatory pain due to reduced carrageenan-induced inflammation in mice lacking adenosine A3 receptors. Neuroscience, 114 (3): 523-7. [PMID:12220556]

104. Yan L, Burbiel JC, Maass A, Müller CE. (2003) Adenosine receptor agonists: from basic medicinal chemistry to clinical development. Expert Opin Emerg Drugs, 8 (2): 537-76. [PMID:14662005]

105. Yang JN, Wang Y, Garcia-Roves PM, Björnholm M, Fredholm BB. (2010) Adenosine A(3) receptors regulate heart rate, motor activity and body temperature. Acta Physiol (Oxf), 199 (2): 221-30. [PMID:20121716]

106. Yang X, van Veldhoven JPD, Offringa J, Kuiper BJ, Lenselink EB, Heitman LH, van der Es D, IJzerman AP. (2019) Development of Covalent Ligands for G Protein-Coupled Receptors: A Case for the Human Adenosine A3 Receptor. J Med Chem, 62 (7): 3539-3552. DOI: 10.1021/acs.jmedchem.8b02026 [PMID:30869893]

107. Yates L, Clark JH, Martin TJ, James S, Broadley KJ, Kidd EJ. (2006) Radioligand binding and functional responses of ligands for human recombinant adenosine A(3) receptors. Auton Autacoid Pharmacol, 26 (2): 191-200. [PMID:16553647]

108. Zhao TC, Kukreja RC. (2002) Late preconditioning elicited by activation of adenosine A(3) receptor in heart: role of NF- kappa B, iNOS and mitochondrial K(ATP) channel. J Mol Cell Cardiol, 34 (3): 263-77. [PMID:11945020]

109. Zhao Z, Francis C, Ravid K. (1999) Characterization of the mouse A3 adenosine receptor gene: exon/intron organization and promoter activity. Genomics, 57: 152-155. [PMID:10191095]

110. Zhao Z, Makaritsis K, Francis CE, Gavras H, Ravid K. (2000) A role for the A3 adenosine receptor in determining tissue levels of cAMP and blood pressure: studies in knock-out mice. Biochim Biophys Acta, 1500 (3): 280-90. [PMID:10699369]

111. Zhao Z, Yaar R, Ladd D, Cataldo LM, Ravid K. (2002) Overexpression of A3 adenosine receptors in smooth, cardiac, and skeletal muscle is lethal to embryos. Microvasc Res, 63 (1): 61-9. [PMID:11749073]

112. Zhong H, Shlykov SG, Molina JG, Sanborn BM, Jacobson MA, Tilley SL, Blackburn MR. (2003) Activation of murine lung mast cells by the adenosine A3 receptor. J Immunol, 171 (1): 338-45. [PMID:12817016]

113. Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O. (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci USA, 89 (16): 7432-6. [PMID:1323836]

Contributors

Show »

How to cite this page