Top ▲

LPA3 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 274

Nomenclature: LPA3 receptor

Family: Lysophospholipid (LPA) receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 353 1p22.3 LPAR3 lysophosphatidic acid receptor 3
Mouse 7 354 3 71.03 cM Lpar3 lysophosphatidic acid receptor 3
Rat 7 354 2q44 Lpar3 lysophosphatidic acid receptor 3
Previous and Unofficial Names Click here for help
Edg7 | LPA receptor 3 | endothelial differentiation gene 7, lysophosphatidic acid G-protein-coupled receptor 7
Database Links Click here for help
Specialist databases
GPCRdb lpar3_human (Hs), lpar3_mouse (Mm), lpar3_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
farnesyl diphosphate
farnesyl monophosphate
LPA

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
LPA Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Hs Agonist 6.7 pKd 2
pKd 6.7 [2]
α-fluoromethylenephosphonate Small molecule or natural product Hs Agonist 9.3 pEC50 32
pEC50 9.3 [32]
T13 Small molecule or natural product Click here for species-specific activity table Mm Agonist 9.3 pEC50 17
pEC50 9.3 (EC50 5x10-10 M) [17]
2-oleoyl-LPA Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.0 pEC50 3
pEC50 8.0 [3]
CpY Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.7 pEC50 10
pEC50 7.7 (EC50 2x10-8 M) [10]
alkyl OMPT Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.2 pEC50 26
pEC50 7.2 [26]
CpX Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.2 pEC50 10
pEC50 7.2 (EC50 6.3x10-8 M) [10]
OMPT Small molecule or natural product Hs Agonist 7.2 pEC50 12
pEC50 7.2 [12]
LPA Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Mm Agonist 6.6 pEC50 17
pEC50 6.6 (EC50 2.53x10-7 M) [17]
oleoyl-thiophosphate Small molecule or natural product Click here for species-specific activity table Mm Partial agonist 6.3 pEC50 7
pEC50 6.3 (EC50 5.46x10-7 M) [7]
NAEPA Small molecule or natural product Click here for species-specific activity table Mm Agonist <5.3 pEC50 17
pEC50 <5.3 (EC50 >5x10-6 M) [17]
dioctanoylglycerol pyrophosphate Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 7.0 pIC50 9
pIC50 7.0 (IC50 1.06x10-7 M) [9]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
farnesyl monophosphate Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Antagonist 7.3 pKd 18
pKd 7.3 [18]
farnesyl diphosphate Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Hs Antagonist 6.8 pKd 18
pKd 6.8 [18]
dodecyl-thiophosphate Small molecule or natural product Click here for species-specific activity table Mm Antagonist 7.9 pKi 7
pKi 7.9 (Ki 1.3x10-8 M) [7]
dodecylphosphate Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 pKi 29
pKi 7.1 [29]
Ki16425 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.4 pKi 22
pKi 6.4 (Ki 3.6x10-7 M) [22]
VPC12249 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.4 pKi 14
pKi 6.4 [14]
dioctanoylglycerol pyrophosphate Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.5 – 7.0 pKi 9,22
pKi 5.5 – 7.0 (Ki 3.33x10-6 M) [9,22]
farnesyl diphosphate Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Hs Antagonist 6.8 pIC50 31
pIC50 6.8 [31]
AM966 Small molecule or natural product Click here for species-specific activity table Mm Antagonist 6.8 pIC50 27
pIC50 6.8 [27]
VPC32183 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.8 pIC50 13
pIC50 6.8 (IC50 1.75x10-7 M) [13]
pIC50 6.8 [13]
farnesyl monophosphate Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Antagonist 6.3 pIC50 31
pIC50 6.3 [31]
H2L5186303 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.9 pIC50 8
pIC50 5.9 (IC50 1.23x10-6 M) [8]
VPC12249 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.2 – 6.4 pIC50 14,17
pIC50 5.2 – 6.4 (IC50 6.4x10-6 – 4.28x10-7 M) [14,17]
AM966 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.7 pIC50 27
pIC50 5.7 [27]
compound 12 [PMID: 19800804] Small molecule or natural product Mm Antagonist 5.5 pIC50 8
pIC50 5.5 (IC50 2.992x10-6 M) [8]
VPC32179 Small molecule or natural product Click here for species-specific activity table Hs Antagonist - - 13
[13]
View species-specific antagonist tables
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family
Gq/G11 family
Adenylyl cyclase inhibition
Phospholipase A2 stimulation
Comments:  Others include: phosphatidylinositol-3-kinase, RAS, and MAP kinase activation. For a detailed review please see [5].
References:  16
Tissue Distribution Click here for help
Heart, testis, prostate, pancreas, lung, ovary, brain
Species:  Human
Technique:  Northern blot
References:  15
Lung, kidney, uterus, oviduct, and testis, small intestine, brain, heart, stomach, placenta, spleen, thymus, embryonic heart, embryonic mesonephros, embryonic otic vesicle
Species:  Mouse
Technique:  Northern blot and in situ hybridisation
References:  21,23,33
Kidney, testis
Species:  Rat
Technique:  Northern blot
References:  15
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Neurite elongation
Species:  Rat
Tissue:  Neuroblastoma (B103 cell line)
Response measured: 
References:  16
Physiological Functions Click here for help
Maintenance of proper embryo implantation and spacing
Species:  Mouse
Tissue:  Uterus
References:  6,11,33
LPA,sub>3 acts as a germ cell survival factor during spermatogenesis.
Species:  Mouse
Tissue:  Testes
References:  34
Proliferation of mouse endometrial stromal cells in culture is highly sensitive to lysophosphatidic acid signaling.
Species:  Mouse
Tissue:  Endometrial stromal cells.
References:  1
Physiological Consequences of Altering Gene Expression Click here for help
Mice with receptor deletion have altered embryo implantation and spacing
Species:  Mouse
Tissue:  Uterus
Technique:  Gene knockouts
References:  6,11,33
Mice with LPA1/LPA2/LPA3 triple deletion show testosterone-dependent reduction in mating activity and sperm production.
Species:  Mouse
Tissue:  Testes
Technique:  Gene knockouts
References:  34
LPA-induced hydrocephalus was blocked in LPA1 and LPA3 KO mice.
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockout
References:  20
Neonatal mice with LPA3 deletion have decreased cardiac function and number of proliferating cardiomyocytes.
Species:  Mouse
Tissue:  Heart
Technique:  Gene knockout
References:  30
Diabetic neuropathic pain was blocked in LPA1 and LPA3 KO mice.
Species:  Mouse
Tissue: 
Technique:  Gene knockout
References:  28
Mice with LPAA3 deletion have impaired ability to suppress NETS production and thrombosis during the development of sepsis.
Species:  Mouse
Tissue: 
Technique:  Gene knockout
References:  25
Physiological Consequences of Altering Gene Expression Comments
Zebrafish with LPA3 deletion show premature aging phenotypes in multiple organs and shortened lifespans, suggesting implications for Hutchinson-Gilford progeria syndrome [4]. LPA3-null zebrafish display increased circadian rhythm locomotor activity, behavioral alterations, and impaired memory retention [19].
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Lpar3tm1Jch Lpar3tm1Jch/Lpar3tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1929469  MP:0001727 abnormal embryo implantation PMID: 15875025 
Lpar3tm1Jch Lpar3tm1Jch/Lpar3tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1929469  MP:0001711 abnormal placenta morphology PMID: 15875025 
Lpar3tm1Jch Lpar3tm1Jch/Lpar3tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1929469  MP:0001935 decreased litter size PMID: 15875025 
Lpar3tm1Jch Lpar3tm1Jch/Lpar3tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1929469  MP:0009815 decreased prostaglandin level PMID: 15875025 
Lpar3tm1Jch Lpar3tm1Jch/Lpar3tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1929469  MP:0002293 long gestation period PMID: 15875025 
Gene Expression and Pathophysiology Comments
Pharmacological blockade of LPA3 reduces renal ischemia-reperfusion injury in a mouse model, suggesting that LPA3 antagonism may represent a novel intervention for the treatment of ischemic damage in acute renal failure [24].

References

Show »

1. Aikawa S, Kano K, Inoue A, Aoki J. (2017) Proliferation of mouse endometrial stromal cells in culture is highly sensitive to lysophosphatidic acid signaling. Biochem Biophys Res Commun, 484 (1): 202-208. [PMID:28073697]

2. Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, Tsujimoto M, Arai H, Inoue K. (1999) Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem, 274 (39): 27776-85. [PMID:10488122]

3. Bandoh K, Aoki J, Taira A, Tsujimoto M, Arai H, Inoue K. (2000) Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. Structure-activity relationship of cloned LPA receptors. FEBS Lett, 478 (1-2): 159-65. [PMID:10922489]

4. Chen WM, Chiang JC, Lin YC, Lin YN, Chuang PY, Chang YC, Chen CC, Wu KY, Hsieh JC, Chen SK et al.. (2020) Lysophosphatidic acid receptor LPA3 prevents oxidative stress and cellular senescence in Hutchinson-Gilford progeria syndrome. Aging Cell, 19 (1): e13064. [PMID:31714004]

5. Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J. (2010) LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol, 50: 157-86. [PMID:20055701]

6. Diao H, Aplin JD, Xiao S, Chun J, Li Z, Chen S, Ye X. (2011) Altered spatiotemporal expression of collagen types I, III, IV, and VI in Lpar3-deficient peri-implantation mouse uterus. Biol Reprod, 84 (2): 255-65. [PMID:20864640]

7. Durgam GG, Virag T, Walker MD, Tsukahara R, Yasuda S, Liliom K, van Meeteren LA, Moolenaar WH, Wilke N, Siess W et al.. (2005) Synthesis, structure-activity relationships, and biological evaluation of fatty alcohol phosphates as lysophosphatidic acid receptor ligands, activators of PPARgamma, and inhibitors of autotaxin. J Med Chem, 48 (15): 4919-30. [PMID:16033271]

8. Fells JI, Tsukahara R, Liu J, Tigyi G, Parrill AL. (2009) Structure-based drug design identifies novel LPA3 antagonists. Bioorg Med Chem, 17 (21): 7457-64. [PMID:19800804]

9. Fischer DJ, Nusser N, Virag T, Yokoyama K, Wang Da, Baker DL, Bautista D, Parrill AL, Tigyi G. (2001) Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol Pharmacol, 60 (4): 776-84. [PMID:11562440]

10. Guillot E, Le Bail JC, Paul P, Fourgous V, Briand P, Partiseti M, Cornet B, Janiak P, Philippo C. (2020) Lysophosphatidic Acid Receptor Agonism: Discovery of Potent Nonlipid Benzofuran Ethanolamine Structures. J Pharmacol Exp Ther, 374 (2): 283-294. [PMID:32409422]

11. Hama K, Aoki J, Inoue A, Endo T, Amano T, Motoki R, Kanai M, Ye X, Chun J, Matsuki N et al.. (2007) Embryo spacing and implantation timing are differentially regulated by LPA3-mediated lysophosphatidic acid signaling in mice. Biol Reprod, 77 (6): 954-9. [PMID:17823089]

12. Hasegawa Y, Erickson JR, Goddard GJ, Yu S, Liu S, Cheng KW, Eder A, Bandoh K, Aoki J, Jarosz R et al.. (2003) Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. J Biol Chem, 278 (14): 11962-9. [PMID:12554733]

13. Heasley BH, Jarosz R, Lynch KR, Macdonald TL. (2004) Initial structure-activity relationships of lysophosphatidic acid receptor antagonists: discovery of a high-affinity LPA1/LPA3 receptor antagonist. Bioorg Med Chem Lett, 14 (11): 2735-40. [PMID:15125924]

14. Heise CE, Santos WL, Schreihofer AM, Heasley BH, Mukhin YV, Macdonald TL, Lynch KR. (2001) Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist. Mol Pharmacol, 60 (6): 1173-80. [PMID:11723223]

15. Im DS, Heise CE, Harding MA, George SR, O'Dowd BF, Theodorescu D, Lynch KR. (2000) Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, expressed in prostate. Mol Pharmacol, 57 (4): 753-9. [PMID:10727522]

16. Ishii I, Contos JJ, Fukushima N, Chun J. (2000) Functional comparisons of the lysophosphatidic acid receptors, LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol Pharmacol, 58 (5): 895-902. [PMID:11040035]

17. Kano K, Arima N, Ohgami M, Aoki J. (2008) LPA and its analogs-attractive tools for elucidation of LPA biology and drug development. Curr Med Chem, 15 (21): 2122-31. [PMID:18781939]

18. Liliom K, Tsukahara T, Tsukahara R, Zelman-Femiak M, Swiezewska E, Tigyi G. (2006) Farnesyl phosphates are endogenous ligands of lysophosphatidic acid receptors: inhibition of LPA GPCR and activation of PPARs. Biochim Biophys Acta, 1761 (12): 1506-14. [PMID:17092771]

19. Lin YN, Audira G, Malhotra N, Ngoc Anh NT, Siregar P, Lu JH, Lee H, Hsiao CD. (2020) A Novel Function of the Lysophosphatidic Acid Receptor 3 (LPAR3) Gene in Zebrafish on Modulating Anxiety, Circadian Rhythm Locomotor Activity, and Short-Term Memory. Int J Mol Sci, 21 (8). [PMID:32325720]

20. Lummis NC, Sánchez-Pavón P, Kennedy G, Frantz AJ, Kihara Y, Blaho VA, Chun J. (2019) LPA1/3 overactivation induces neonatal posthemorrhagic hydrocephalus through ependymal loss and ciliary dysfunction. Sci Adv, 5 (10): eaax2011. [PMID:31633020]

21. McGiffert C, Contos JJ, Friedman B, Chun J. (2002) Embryonic brain expression analysis of lysophospholipid receptor genes suggests roles for s1p(1) in neurogenesis and s1p(1-3) in angiogenesis. FEBS Lett, 531 (1): 103-8. [PMID:12401212]

22. Ohta H, Sato K, Murata N, Damirin A, Malchinkhuu E, Kon J, Kimura T, Tobo M, Yamazaki Y, Watanabe T, Yagi M, Sato M, Suzuki R, Murooka H, Sakai T, Nishitoba T, Im DS, Nochi H, Tamoto K, Tomura H, Okajima F. (2003) Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol, 64 (4): 994-1005. [PMID:14500756]

23. Ohuchi H, Hamada A, Matsuda H, Takagi A, Tanaka M, Aoki J, Arai H, Noji S. (2008) Expression patterns of the lysophospholipid receptor genes during mouse early development. Dev Dyn, 237 (11): 3280-94. [PMID:18924241]

24. Okusa MD, Ye H, Huang L, Sigismund L, Macdonald T, Lynch KR. (2003) Selective blockade of lysophosphatidic acid LPA3 receptors reduces murine renal ischemia-reperfusion injury. Am J Physiol Renal Physiol, 285 (3): F565-74. [PMID:12770838]

25. Pei S, Xu C, Pei J, Bai R, Peng R, Li T, Zhang J, Cong X, Chun J, Wang F et al.. (2022) Lysophosphatidic Acid Receptor 3 Suppress Neutrophil Extracellular Traps Production and Thrombosis During Sepsis. Front Immunol, 13: 844781. [PMID:35464399]

26. Qian L, Xu Y, Simper T, Jiang G, Aoki J, Umezu-Goto M, Arai H, Yu S, Mills GB, Tsukahara R et al.. (2006) Phosphorothioate analogues of alkyl lysophosphatidic acid as LPA3 receptor-selective agonists. ChemMedChem, 1 (3): 376-83. [PMID:16892372]

27. Swaney JS, Chapman C, Correa LD, Stebbins KJ, Bundey RA, Prodanovich PC, Fagan P, Baccei CS, Santini AM, Hutchinson JH et al.. (2010) A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br J Pharmacol, 160 (7): 1699-713. [PMID:20649573]

28. Ueda H, Neyama H, Matsushita Y. (2020) Lysophosphatidic Acid Receptor 1- and 3-Mediated Hyperalgesia and Hypoalgesia in Diabetic Neuropathic Pain Models in Mice. Cells, 9 (8). [PMID:32824296]

29. Virag T, Elrod DB, Liliom K, Sardar VM, Parrill AL, Yokoyama K, Durgam G, Deng W, Miller DD, Tigyi G. (2003) Fatty alcohol phosphates are subtype-selective agonists and antagonists of lysophosphatidic acid receptors. Mol Pharmacol, 63 (5): 1032-42. [PMID:12695531]

30. Wang F, Liu S, Pei J, Cai L, Liu N, Liang T, Dong X, Cong X, Chun J, Chen J et al.. (2020) LPA3-mediated lysophosphatidic acid signaling promotes postnatal heart regeneration in mice. Theranostics, 10 (24): 10892-10907. [PMID:33042260]

31. Williams JR, Khandoga AL, Goyal P, Fells JI, Perygin DH, Siess W, Parrill AL, Tigyi G, Fujiwara Y. (2009) Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate receptor indicates role in human platelet activation. J Biol Chem, 284 (25): 17304-19. [PMID:19366702]

32. Xu Y, Aoki J, Shimizu K, Umezu-Goto M, Hama K, Takanezawa Y, Yu S, Mills GB, Arai H, Qian L et al.. (2005) Structure-activity relationships of fluorinated lysophosphatidic acid analogues. J Med Chem, 48 (9): 3319-27. [PMID:15857137]

33. Ye X, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK, Suzuki H, Amano T, Kennedy G, Arai H et al.. (2005) LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature, 435 (7038): 104-8. [PMID:15875025]

34. Ye X, Skinner MK, Kennedy G, Chun J. (2008) Age-dependent loss of sperm production in mice via impaired lysophosphatidic acid signaling. Biol Reprod, 79 (2): 328-36. [PMID:18448840]

Contributors

Show »

How to cite this page