Top ▲

GluA2

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 445

Nomenclature: GluA2

Family: Ionotropic glutamate receptors

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 3 1 883 4q32.1 GRIA2 glutamate ionotropic receptor AMPA type subunit 2 43,63
Mouse 3 1 883 3 E3 Gria2 glutamate receptor, ionotropic, AMPA2 (alpha 2) 55
Rat 3 1 883 2q33 Gria2 glutamate ionotropic receptor AMPA type subunit 2 6,32,47,60
Previous and Unofficial Names Click here for help
GluR2 | GluRB | HBGR2 | AMPA-selective glutamate receptor 2 | glutamate receptor
Database Links Click here for help
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  AMPA subtype ionotropic glutamate receptor in complex with competitive antagonist ZK 200775
PDB Id:  3KG2
Ligand:  fanapanel
Resolution:  3.55Å
Species:  Rat
References:  59
Image of receptor 3D structure from RCSB PDB
Description:  Isolated ligand binding domain dimer of GluA2 ionotropic glutamate receptor in complex with glutamate, LY 404187 and ZK 200775
PDB Id:  3KGC
Ligand:  LY404187
Resolution:  1.55Å
Species:  Rat
References:  59
Image of receptor 3D structure from RCSB PDB
Description:  Electron density map of GluA2em in complex with quisqualate and LY451646
PDB Id:  4UQK
Ligand:  quisqualate
Resolution:  0.0Å
Species:  Rat
References:  44
Natural/Endogenous Ligands Click here for help
L-glutamic acid

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
(S)-5-fluorowillardiine Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist - -
[3H]AMPA Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist - -
AMPA Small molecule or natural product Click here for species-specific activity table Hs Full agonist - -
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
talampanel Small molecule or natural product Rn Antagonist 7.5 – 7.8 pKi 70
pKi 7.5 – 7.8 (Ki 3x10-8 – 1.5x10-8 M) [70]
[3H]CNQX Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist - -
ATPO Small molecule or natural product Click here for species-specific activity table Hs Antagonist - -
GYKI53655 Small molecule or natural product Click here for species-specific activity table Hs Antagonist - -
GYKI53784 Small molecule or natural product Click here for species-specific activity table Hs Antagonist - -
active isomer, non-competitive
tezampanel Small molecule or natural product Click here for species-specific activity table Hs Antagonist - -
NBQX Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist - -
4‐BCCA Small molecule or natural product Hs Antagonist - - 73
[73]
View species-specific antagonist tables
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Use-dependent Value Parameter Concentration range (M) Voltage-dependent (mV) Reference
extracellular argiotoxin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs - no - - - no

Not voltage dependent
Channel Blocker Comments
GluA2 is also blocked by intracellular polyamines.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Voltage-dependent (mV) Reference
LY404187 Small molecule or natural product Click here for species-specific activity table Hs Positive 6.8 pEC50 - no 45
pEC50 6.8 (EC50 1.5x10-7 M) [45]
Not voltage dependent
LY392098 Small molecule or natural product Click here for species-specific activity table Hs Positive 6.7 pEC50 - no 45
pEC50 6.7 (EC50 2.2x10-7 M) [45]
Not voltage dependent
cyclothiazide Small molecule or natural product Approved drug Click here for species-specific activity table Hs Positive 5.7 pEC50 - no 45
pEC50 5.7 (EC50 2.24x10-6 M) [45]
Not voltage dependent
aniracetam Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Positive - - - no

Not voltage dependent
CX516 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Positive - - - no

Not voltage dependent
CX546 Small molecule or natural product Click here for species-specific activity table Hs Positive - - - no

Not voltage dependent
IDRA-21 Small molecule or natural product Click here for species-specific activity table Hs Positive - - - no

Not voltage dependent
LY503430 Small molecule or natural product Click here for species-specific activity table Hs Positive - - - no

Not voltage dependent
piracetam Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Positive - - - no

Not voltage dependent
S18986 Small molecule or natural product Click here for species-specific activity table Hs Positive - - - no

Not voltage dependent
Allosteric Modulator Comments
Piracetam and aniracetam are examples of pyrrolidinones. Cyclothiazide, S18986, and IDRA-21 are examples of benzothiadiazides. CX516 and CX546 are examples of benzylpiperidines. LY392098, LY404187 and LY503430 are examples of biarylpropylsulfonamides.
Immuno Process Associations
Immuno Process:  Antigen presentation
Tissue Distribution Click here for help
Dorsolateral prefrontal cortex
Species:  Human
Technique:  Quantitative RT-PCR.
References:  20
Skin
Species:  Human
Technique:  PCR, Western Blotting
References:  67
Thalamus
Species:  Human
Technique:  Quantitative PCR
References:  19
Cortex, white matter
Species:  Human
Technique:  Immunohistochemistry
References:  66
Medial temporal lobe (hippocampus, entorhinal cortex, perirhinal cortex)
Species:  Human
Technique:  In situ hybridisation
References:  4
Occipital cortex
Species:  Human
Technique:  Immunohistochemistry
References:  20
Retina
Species:  Human
Technique:  Immunohistochemistry
References:  56
Spinal cord
Species:  Human
Technique:  Quantitative RT-PCR with laser capture microdissection
References:  31
Basal forebrain
Species:  Mouse
Technique:  Immunohistochemistry
References:  75
Spinal cord
Species:  Mouse
Technique:  Immunohistochemistry
References:  7-9,49
Vestibular and spiral ganglia
Species:  Mouse
Technique:  Immunohistochemistry
References:  50
Hippocampus
Species:  Mouse
Technique:  Immunohistochemistry
References:  57,74
Substantia nigra
Species:  Mouse
Technique:  Immunohistochemistry
References:  71
Cerebellum, cerebral cortex, cerebral white matter, spinal cord
Species:  Rat
Technique:  Quantitative RT-PCR with laser capture microdissection
References:  62
Lateral amygdala
Species:  Rat
Technique:  Electron microscopy
References:  51
Nucleus tractus solitarii
Species:  Rat
Technique:  Immunohistochemistry
References:  1,36-37
Medulla oblongata
Species:  Rat
Technique:  Immunohistochemistry
References:  15
Cortex, white matter
Species:  Rat
Technique:  Immunohistochemistry
References:  65
Cerebellum
Species:  Rat
Technique:  Immunohistochemistry
References:  18
Neostriatum
Species:  Rat
Technique:  Electron microscopy
References:  21
Motor nucleus
Species:  Rat
Technique:  Immunohistochemistry, electron microscopy
References:  52
Brain stem nuclei
Species:  Rat
Technique:  Immunohistochemistry
References:  38
Pineal gland
Species:  Rat
Technique:  Immunohistochemistry
References:  30
Bone
Species:  Rat
Technique:  Immunohistochemistry
References:  64
Striatum
Species:  Rat
Technique:  Immunohistochemistry
References:  16
Spinal cord
Species:  Rat
Technique:  Immunohistochemistry
References:  7-8,40-41,49,68
Trigeminal ganglia
Species:  Rat
Technique:  Immunohistochemistry
References:  14
Vestibular nucleus
Species:  Rat
Technique:  Immunohistochemistry
References:  69
Basolateral amygdala
Species:  Rat
Technique:  Immunohistochemistry
References:  24
Spinal cord
Species:  Rat
Technique:  Electron microscopy
References:  2,40-41
Retina
Species:  Rat
Technique:  Immunohistochemistry
References:  17,29,58
Hippocampus
Species:  Rat
Technique:  Immunohistochemistry
References:  24
Hippocampus
Species:  Rat
Technique:  in situ hybridization.
References:  53
Olfactory bulb
Species:  Rat
Technique:  RT-PCR
References:  25
Ventral cochlear nucleus
Species:  Rat
Technique:  Immunohistochemistry
References:  42
Dorsal cochlear nucleus
Species:  Rat
Technique:  Electron microscopy
References:  54
Dentate gyrus (hippocampus)
Species:  Rat
Technique:  Electron microscopy
References:  22,48
Inferior olive
Species:  Rat
Technique:  Immunohistochemistry
References:  13
Inferior salivatory nucleus
Species:  Rat
Technique:  Immunohistochemistry
References:  33
Dorsal root ganglion
Species:  Rat
Technique:  Immunohistochemistry
References:  72
Central cervical nucleus
Species:  Rat
Technique:  Immunohistochemistry, electron microscopy
References:  52
Geniculate ganglion
Species:  Rat
Technique:  Immunohistochemistry
References:  12
Physiological Consequences of Altering Gene Expression Click here for help
Induction of seizure and death by 3 weeks in mice harbouring a Q/R site editing-incompetent GluA2 allele ( C57BL/6 mice)
Species:  Mouse
Tissue: 
Technique:  targeting of intron 11 of GluA2 gene in mouse embryonic stem cells for replacement of the ECS element by loxP
References:  10
Biologically Significant Variants Click here for help
Type:  Splice variant
Species:  Rat
Description:  ‘flip’ isoform
Amino acids:  883
Nucleotide accession: 
Protein accession: 
References:  6,32,47,60
Type:  Splice variant
Species:  Human
Description:  ‘flip’ isoform
Amino acids:  883
Nucleotide accession: 
Protein accession: 
References:  32,43,63
Type:  Splice variant
Species:  Human
Description:  ‘flop’ isoform
Amino acids:  883
Nucleotide accession: 
Protein accession: 
References:  32,43,63
Type:  Splice variant
Species:  Rat
Description:  ‘flop’ isoform
Amino acids:  883
Nucleotide accession: 
Protein accession: 
References:  6,32,47,60
Type:  Splice variant
Species:  Mouse
Description:  ’flip’ isoform (long)
Amino acids:  883
Nucleotide accession: 
Protein accession: 
References:  35,55
Type:  Splice variant
Species:  Mouse
Description:  ‘flop’ isoform (long)
Amino acids:  883
Nucleotide accession: 
Protein accession: 
References:  35,55
Type:  Splice variant
Species:  Mouse
Description:  GluA2 (short)
Amino acids:  767
Nucleotide accession: 
Protein accession: 
References:  35
Biologically Significant Variant Comments
Structure: a GluA2 subunit consists of 1 extracellular N-terminal domain, 1 ligand binding domain (S1 (a domain of the N-terminal region) + S2 (a domain of the extracellular loop between M3 and M4)), 3 membrane-spanning domains (M1, M3, M4), 1 cytoplasmic re-entrant loop (M2) and 1 C-terminal intracellular domain. GluA2 exists as several splice variants: 2 C-terminal splice variants: a minor one with a long C-terminal domain (GluA2L) and the predominant variant with a short C-terminal domain. GluA2 exists as alternatively spliced ‘flip’ and ‘flop’ isoforms which differ with respect to a cassette of 35 amino acids in the extracellular loop between M3 and M4 [32,60]. Tetrameric receptors assembled from the ‘flip’ isoform enter the desensitized state more slowly, and recover more quickly, than those formed from the ‘flop’ isoform [34,46,60]. In addition, RNA editing by adenosine deaminase type 2 (CAG->CIG), which occurs in virtually all GluA2 subunits, changes residue 607 within the channel pore from glutamine to arginine (at the ‘Q/R site’) [61]. GluA1, GluA3 and GluA4 are not subject to this form of editing and thus retain glutamine at the Q/R site. AMPA receptors that lack edited GluA2 subunits are (i) of relatively high single channel conductance [5]; (ii) permeable to Ca2+ [11,26], (iii) blocked by intracellular polyamines, causing inward rectification at depolarized potentials and (iv) blocked by extracellular argiotoxin and Joro spider toxins [27]. Q/R editing also influences the oligomerisation and trafficking of GluA2 subunits [23]. RNA editing (AGA->IGA) also occurs at a codon for arginine (unedited), or glycine (edited) at a locus with the extracellular loop that immediately precedes the alternatively spliced ‘flip’ and ‘flop’ modules. Edited channels recover from desensitization at a faster rate than those that are unedited [39]. GluA2 may express with long, or short, C-termini as a consequence of alternative splicing, the short form is predominant in mouse brain [35].
General Comments
For general reviews please see:[3,28]

References

Show »

1. Aicher SA, Sharma S, Mitchell JL. (2002) Co-localization of AMPA receptor subunits in the nucleus of the solitary tract in the rat. Brain Res, 958 (2): 454-8. [PMID:12470884]

2. Antal M, Fukazawa Y, Eördögh M, Muszil D, Molnár E, Itakura M, Takahashi M, Shigemoto R. (2008) Numbers, densities, and colocalization of AMPA- and NMDA-type glutamate receptors at individual synapses in the superficial spinal dorsal horn of rats. J Neurosci, 28 (39): 9692-701. [PMID:18815255]

3. Bassani S, Valnegri P, Beretta F, Passafaro M. (2009) The GLUR2 subunit of AMPA receptors: synaptic role. Neuroscience, 158 (1): 55-61. [PMID:18977416]

4. Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH. (2007) Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology, 32 (9): 1888-902. [PMID:17299517]

5. Bochet P, Audinat E, Lambolez B, Crépel F, Rossier J, Iino M, Tsuzuki K, Ozawa S. (1994) Subunit composition at the single-cell level explains functional properties of a glutamate-gated channel. Neuron, 12 (2): 383-8. [PMID:7509161]

6. Boulter J, Hollmann M, O'Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S. (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science, 249 (4972): 1033-7. [PMID:2168579]

7. Brand-Schieber E, Lowery SL, Werner P. (2004) Select ionotropic glutamate AMPA/kainate receptors are expressed at the astrocyte-vessel interface. Brain Res, 1007 (1-2): 178-82. [PMID:15064149]

8. Brand-Schieber E, Werner P. (2003) (+/-)-Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate receptor subunit expression in mouse versus rat spinal cord white matter: similarities in astrocytes but differences in oligodendrocytes. Neurosci Lett, 345 (2): 126-30. [PMID:12821187]

9. Brand-Schieber E, Werner P. (2003) AMPA/kainate receptors in mouse spinal cord cell-specific display of receptor subunits by oligodendrocytes and astrocytes and at the nodes of Ranvier. Glia, 42 (1): 12-24. [PMID:12594733]

10. Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R. (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science, 270 (5242): 1677-80. [PMID:7502080]

11. Burnashev N, Monyer H, Seeburg PH, Sakmann B. (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron, 8 (1): 189-98. [PMID:1370372]

12. Caicedo A, Zucchi B, Pereira E, Roper SD. (2004) Rat gustatory neurons in the geniculate ganglion express glutamate receptor subunits. Chem Senses, 29 (6): 463-71. [PMID:15269118]

13. Chen LW, Tse YC, Li C, Guan ZL, Lai CH, Yung KK, Shum DK, Chan YS. (2006) Differential expression of NMDA and AMPA/KA receptor subunits in the inferior olive of postnatal rats. Brain Res, 1067 (1): 103-14. [PMID:16376317]

14. Chun YH, Frank D, Lee JS, Zhang Y, Auh QS, Ro JY. (2008) Peripheral AMPA receptors contribute to muscle nociception and c-fos activation. Neurosci Res, 62 (2): 97-104. [PMID:18655811]

15. Corbett EK, Saha S, Deuchars J, McWilliam PN, Batten TF. (2003) Ionotropic glutamate receptor subunit immunoreactivity of vagal preganglionic neurones projecting to the rat heart. Auton Neurosci, 105 (2): 105-17. [PMID:12798207]

16. Deng YP, Xie JP, Wang HB, Lei WL, Chen Q, Reiner A. (2007) Differential localization of the GluR1 and GluR2 subunits of the AMPA-type glutamate receptor among striatal neuron types in rats. J Chem Neuroanat, 33 (4): 167-92. [PMID:17446041]

17. Dijk F, Kamphuis W. (2004) Ischemia-induced alterations of AMPA-type glutamate receptor subunit. Expression patterns in the rat retina--an immunocytochemical study. Brain Res, 997 (2): 207-21. [PMID:14706873]

18. Douyard J, Shen L, Huganir RL, Rubio ME. (2007) Differential neuronal and glial expression of GluR1 AMPA receptor subunit and the scaffolding proteins SAP97 and 4.1N during rat cerebellar development. J Comp Neurol, 502 (1): 141-56. [PMID:17335044]

19. Dracheva S, Byne W, Chin B, Haroutunian V. (2008) Ionotropic glutamate receptor mRNA expression in the human thalamus: absence of change in schizophrenia. Brain Res, 1214: 23-34. [PMID:18462708]

20. Dracheva S, McGurk SR, Haroutunian V. (2005) mRNA expression of AMPA receptors and AMPA receptor binding proteins in the cerebral cortex of elderly schizophrenics. J Neurosci Res, 79 (6): 868-78. [PMID:15696539]

21. Fujiyama F, Kuramoto E, Okamoto K, Hioki H, Furuta T, Zhou L, Nomura S, Kaneko T. (2004) Presynaptic localization of an AMPA-type glutamate receptor in corticostriatal and thalamostriatal axon terminals. Eur J Neurosci, 20 (12): 3322-30. [PMID:15610164]

22. Fux CM, Krug M, Dityatev A, Schuster T, Schachner M. (2003) NCAM180 and glutamate receptor subtypes in potentiated spine synapses: an immunogold electron microscopic study. Mol Cell Neurosci, 24 (4): 939-50. [PMID:14697660]

23. Greger IH, Khatri L, Kong X, Ziff EB. (2003) AMPA receptor tetramerization is mediated by Q/R editing. Neuron, 40 (4): 763-74. [PMID:14622580]

24. Gryder DS, Castaneda DC, Rogawski MA. (2005) Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala. J Neurochem, 94 (6): 1728-38. [PMID:16045445]

25. Horning MS, Kwon B, Blakemore LJ, Spencer CM, Goltz M, Houpt TA, Trombley PQ. (2004) Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunit expression in rat olfactory bulb. Neurosci Lett, 372 (3): 230-4. [PMID:15542246]

26. Hume RI, Dingledine R, Heinemann SF. (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science, 253 (5023): 1028-31. [PMID:1653450]

27. Iino M, Koike M, Isa T, Ozawa S. (1996) Voltage-dependent blockage of Ca(2+)-permeable AMPA receptors by joro spider toxin in cultured rat hippocampal neurones. J Physiol (Lond.), 496 ( Pt 2): 431-7. [PMID:8910227]

28. Isaac JT, Ashby M, McBain CJ. (2007) The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron, 54 (6): 859-71. [PMID:17582328]

29. Kamphuis W, Klooster J, Dijk F. (2003) Expression of AMPA-type glutamate receptor subunit (GluR2) in ON-bipolar neurons in the rat retina. J Comp Neurol, 455 (2): 172-86. [PMID:12454983]

30. Kaur C, Sivakumar V, Ling EA. (2005) Expression of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) GluR2/3 receptors in the developing rat pineal gland. J Pineal Res, 39 (3): 294-301. [PMID:16150111]

31. Kawahara Y, Kwak S, Sun H, Ito K, Hashida H, Aizawa H, Jeong SY, Kanazawa I. (2003) Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J Neurochem, 85 (3): 680-9. [PMID:12694394]

32. Keinänen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH. (1990) A family of AMPA-selective glutamate receptors. Science, 249 (4968): 556-60. [PMID:2166337]

33. Kim M, Chiego DJ, Bradley RM. (2008) Ionotropic glutamate receptor expression in preganglionic neurons of the rat inferior salivatory nucleus. Auton Neurosci, 138 (1-2): 83-90. [PMID:18096442]

34. Koike M, Tsukada S, Tsuzuki K, Kijima H, Ozawa S. (2000) Regulation of kinetic properties of GluR2 AMPA receptor channels by alternative splicing. J Neurosci, 20 (6): 2166-74. [PMID:10704491]

35. Köhler M, Kornau HC, Seeburg PH. (1994) The organization of the gene for the functionally dominant alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B. J Biol Chem, 269 (26): 17367-70. [PMID:7545935]

36. Lachamp P, Balland B, Tell F, Crest M, Kessler JP. (2003) Synaptic localization of the glutamate receptor subunit GluR2 in the rat nucleus tractus solitarii. Eur J Neurosci, 17 (4): 892-6. [PMID:12603280]

37. Linja MJ, Visakorpi T. (2004) Alterations of androgen receptor in prostate cancer. J Steroid Biochem Mol Biol, 92 (4): 255-64. [PMID:15663988]

38. Liu Q, Wong-Riley MT. (2005) Postnatal developmental expressions of neurotransmitters and receptors in various brain stem nuclei of rats. J Appl Physiol, 98 (4): 1442-57. [PMID:15618314]

39. Lomeli H, Mosbacher J, Melcher T, Höger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH. (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science, 266 (5191): 1709-13. [PMID:7992055]

40. Lu CR, Hwang SJ, Phend KD, Rustioni A, Valtschanoff JG. (2002) Primary afferent terminals in spinal cord express presynaptic AMPA receptors. J Neurosci, 22 (21): 9522-9. [PMID:12417676]

41. Lu CR, Willcockson HH, Phend KD, Lucifora S, Darstein M, Valtschanoff JG, Rustioni A. (2005) Ionotropic glutamate receptors are expressed in GABAergic terminals in the rat superficial dorsal horn. J Comp Neurol, 486 (2): 169-78. [PMID:15844209]

42. Martínez L, Nascimento AS, Nunes FM, Phillips K, Aparicio R, Dias SM, Figueira AC, Lin JH, Nguyen P, Apriletti JW, Neves FA, Baxter JD, Webb P, Skaf MS, Polikarpov I. (2009) Gaining ligand selectivity in thyroid hormone receptors via entropy. Proc Natl Acad Sci USA,. [PMID:19926848]

43. McNamara JO, Eubanks JH, McPherson JD, Wasmuth JJ, Evans GA, Heinemann SF. (1992) Chromosomal localization of human glutamate receptor genes. J Neurosci, 12 (7): 2555-62. [PMID:1319477]

44. Meyerson JR, Kumar J, Chittori S, Rao P, Pierson J, Bartesaghi A, Mayer ML, Subramaniam S. (2014) Structural mechanism of glutamate receptor activation and desensitization. Nature, 514 (7522): 328-34. [PMID:25119039]

45. Miu P, Jarvie KR, Radhakrishnan V, Gates MR, Ogden A, Ornstein PL, Zarrinmayeh H, Ho K, Peters D, Grabell J et al.. (2001) Novel AMPA receptor potentiators LY392098 and LY404187: effects on recombinant human AMPA receptors in vitro. Neuropharmacology, 40 (8): 976-83. [PMID:11406188]

46. Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP. (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science, 266 (5187): 1059-62. [PMID:7973663]

47. Nakanishi N, Shneider NA, Axel R. (1990) A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron, 5 (5): 569-81. [PMID:1699567]

48. Peddie CJ, Davies HA, Colyer FM, Stewart MG, Rodríguez JJ. (2008) Colocalisation of serotonin2A receptors with the glutamate receptor subunits NR1 and GluR2 in the dentate gyrus: an ultrastructural study of a modulatory role. Exp Neurol, 211 (2): 561-73. [PMID:18439999]

49. Polgár E, Watanabe M, Hartmann B, Grant SG, Todd AJ. (2008) Expression of AMPA receptor subunits at synapses in laminae I-III of the rodent spinal dorsal horn. Mol Pain, 4: 5. [PMID:18215271]

50. Puyal J, Sage C, Demêmes D, Dechesne CJ. (2002) Distribution of alpha-amino-3-hydroxy-5-methyl-4 isoazolepropionic acid and N-methyl-D-aspartate receptor subunits in the vestibular and spiral ganglia of the mouse during early development. Brain Res Dev Brain Res, 139 (1): 51-7. [PMID:12414093]

51. Radley JJ, Farb CR, He Y, Janssen WG, Rodrigues SM, Johnson LR, Hof PR, LeDoux JE, Morrison JH. (2007) Distribution of NMDA and AMPA receptor subunits at thalamo-amygdaloid dendritic spines. Brain Res, 1134 (1): 87-94. [PMID:17207780]

52. Ragnarson B, Ornung G, Grant G, Ottersen OP, Ulfhake B. (2003) Glutamate and AMPA receptor immunoreactivity in Ia synapses with motoneurons and neurons of the central cervical nucleus. Exp Brain Res, 149 (4): 447-57. [PMID:12677325]

53. Ritter LM, Vazquez DM, Meador-Woodruff JH. (2002) Ontogeny of ionotropic glutamate receptor subunit expression in the rat hippocampus. Brain Res Dev Brain Res, 139 (2): 227-36. [PMID:12480137]

54. Rubio ME. (2006) Redistribution of synaptic AMPA receptors at glutamatergic synapses in the dorsal cochlear nucleus as an early response to cochlear ablation in rats. Hear Res, 216-217: 154-67. [PMID:16644159]

55. Sakimura K, Bujo H, Kushiya E, Araki K, Yamazaki M, Yamazaki M, Meguro H, Warashina A, Numa S, Mishina M. (1990) Functional expression from cloned cDNAs of glutamate receptor species responsive to kainate and quisqualate. FEBS Lett, 272 (1-2): 73-80. [PMID:1699805]

56. Santiago AR, Hughes JM, Kamphuis W, Schlingemann RO, Ambrósio AF. (2008) Diabetes changes ionotropic glutamate receptor subunit expression level in the human retina. Brain Res, 1198: 153-9. [PMID:18258217]

57. Schauwecker PE. (2003) Differences in ionotropic glutamate receptor subunit expression are not responsible for strain-dependent susceptibility to excitotoxin-induced injury. Brain Res Mol Brain Res, 112 (1-2): 70-81. [PMID:12670704]

58. Semkova I, Huemmeke M, Ho MS, Merkl B, Abari E, Paulsson M, Joussen AM, Plomann M. (2010) Retinal localization of the glutamate receptor GluR2 and GluR2-regulating proteins in diabetic rats. Exp Eye Res, 90 (2): 244-53. [PMID:19878674]

59. Sobolevsky AI, Rosconi MP, Gouaux E. (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature, 462 (7274): 745-56. [PMID:19946266]

60. Sommer B, Keinänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T, Sakmann B, Seeburg PH. (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science, 249 (4976): 1580-5. [PMID:1699275]

61. Sommer B, Köhler M, Sprengel R, Seeburg PH. (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell, 67 (1): 11-9. [PMID:1717158]

62. Sun H, Kawahara Y, Ito K, Kanazawa I, Kwak S. (2005) Expression profile of AMPA receptor subunit mRNA in single adult rat brain and spinal cord neurons in situ. Neurosci Res, 52 (3): 228-34. [PMID:15927724]

63. Sun W, Ferrer-Montiel AV, Schinder AF, McPherson JP, Evans GA, Montal M. (1992) Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors. Proc Natl Acad Sci USA, 89 (4): 1443-7. [PMID:1311100]

64. Szczesniak AM, Gilbert RW, Mukhida M, Anderson GI. (2005) Mechanical loading modulates glutamate receptor subunit expression in bone. Bone, 37 (1): 63-73. [PMID:15922681]

65. Talos DM, Fishman RE, Park H, Folkerth RD, Follett PL, Volpe JJ, Jensen FE. (2006) Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J Comp Neurol, 497 (1): 42-60. [PMID:16680782]

66. Talos DM, Follett PL, Folkerth RD, Fishman RE, Trachtenberg FL, Volpe JJ, Jensen FE. (2006) Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex. J Comp Neurol, 497 (1): 61-77. [PMID:16680761]

67. Tan PH, Yang LC, Chiang PT, Jang JS, Chung HC, Kuo CH. (2008) Inflammation-induced up-regulation of ionotropic glutamate receptor expression in human skin. Br J Anaesth, 100 (3): 380-4. [PMID:18238837]

68. Todd AJ, Polgár E, Watt C, Bailey ME, Watanabe M. (2009) Neurokinin 1 receptor-expressing projection neurons in laminae III and IV of the rat spinal cord have synaptic AMPA receptors that contain GluR2, GluR3 and GluR4 subunits. Eur J Neurosci, 29 (4): 718-26. [PMID:19200070]

69. Tse YC, Lai CH, Lai SK, Liu JX, Yung KK, Shum DK, Chan YS. (2008) Developmental expression of NMDA and AMPA receptor subunits in vestibular nuclear neurons that encode gravity-related horizontal orientations. J Comp Neurol, 508 (2): 343-64. [PMID:18335497]

70. Wang C, Niu L. (2013) Mechanism of inhibition of the GluA2 AMPA receptor channel opening by talampanel and its enantiomer: the stereochemistry of the 4-methyl group on the diazepine ring of 2,3-benzodiazepine derivatives. ACS Chem Neurosci, 4 (4): 635-44. [PMID:23402301]

71. Wang YQ, Hu HJ, Cao R, Chen LW. (2005) Differential co-localization of neurokinin-3 receptor and NMDA/AMPA receptor subunits in neurons of the substantia nigra of C57/BL mice. Brain Res, 1053 (1-2): 207-12. [PMID:16038885]

72. Willcockson H, Valtschanoff J. (2008) AMPA and NMDA glutamate receptors are found in both peptidergic and non-peptidergic primary afferent neurons in the rat. Cell Tissue Res, 334 (1): 17-23. [PMID:18679721]

73. Yelshanskaya MV, Singh AK, Narangoda C, Williams RSB, Kurnikova MG, Sobolevsky AI. (2022) Structural basis of AMPA receptor inhibition by trans-4-butylcyclohexane carboxylic acid. Br J Pharmacol, 179 (14): 3628-3644. [PMID:32959886]

74. Yoneyama M, Kitayama T, Taniura H, Yoneda Y. (2004) Immunohistochemical detection by immersion fixation with Carnoy solution of particular non-N-methyl-D-aspartate receptor subunits in murine hippocampus. Neurochem Int, 44 (6): 413-22. [PMID:14687606]

75. Zhang JP, Wei LC, Cao R, Chen LW. (2006) Differential co-expression of AMPA receptor subunits in substance P receptor-containing neurons of basal forebrain regions of C57/BL mice. Neurochem Int, 49 (3): 319-26. [PMID:16580093]

Contributors

Show »

How to cite this page