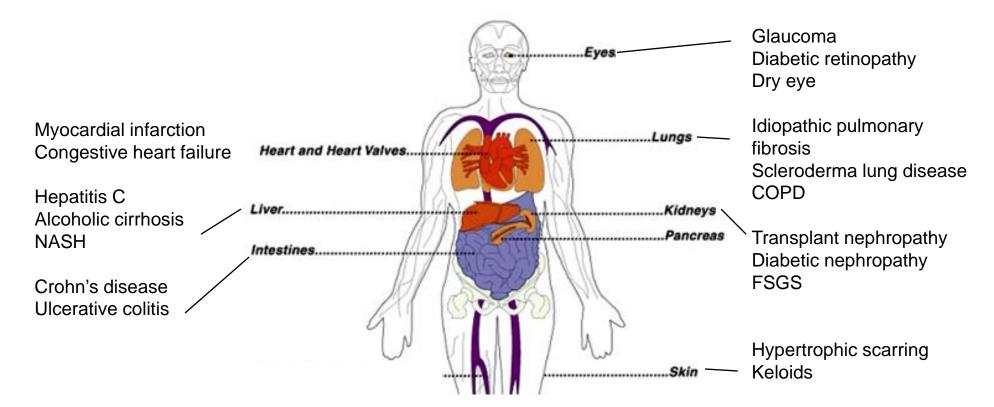
Overview of drug targets for fibrosis


Rick Neubig, MD, PhD Professor and Chair Department of Pharmacology & Toxicology Michigan State University East Lansing, MI, USA

> NC-IUPHAR Fibrosis Symposium 20th November 2020

Disclosures

• I am Founder and President of FibrosIX Inc. which has an SBIR grant to develop the CCG-203971 family of compounds an option to license them from The University of Michigan and Michigan State University.

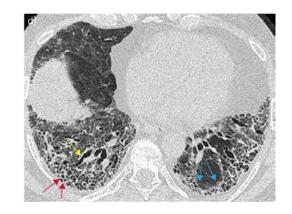
Diseases of fibrosis affect many organs

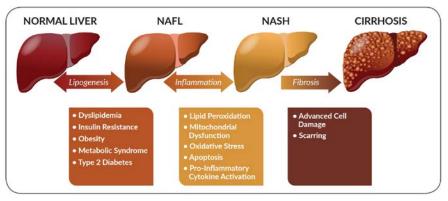
Systemic fibrotic diseases

Scleroderma/Systemic Sclerosis Nephrogenic systemic fibrosis Cystic fibrosis Chronic Graft vs. Host Disease

Injury-associated fibrosis

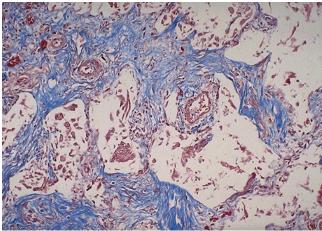
Post-surgical fibrosis Burn-induced scarring and contractures Radiation-induced fibrosis


• Scleroderma or Systemic sclerosis (SSc)

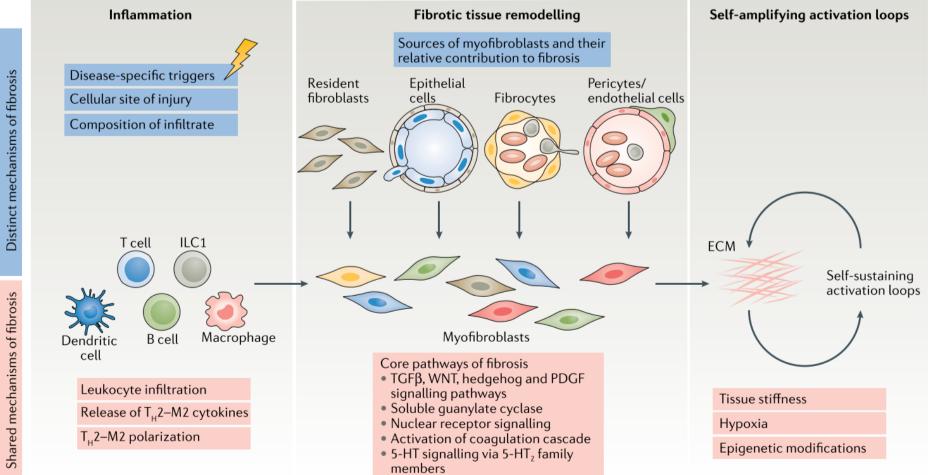

- Rare autoimmune disease of the skin 4:1 females
- Despite high morbidity and mortality
- NO effective therapeutics exists

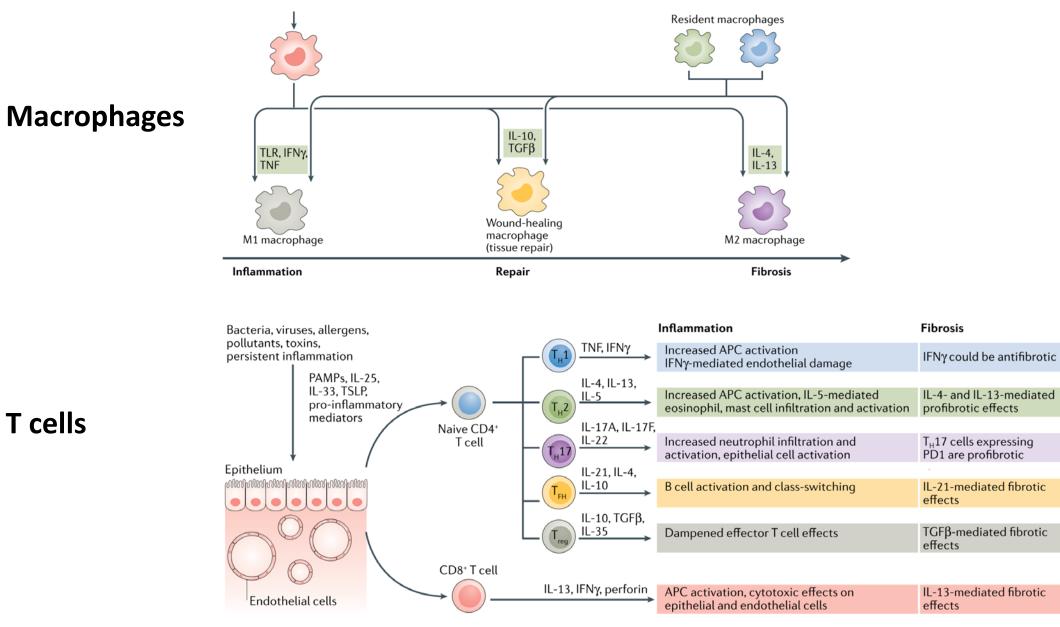
Idiopathic Pulmonary Fibrosis (IPF)

- Mortality
 - 50% at 2 years
 - 80% at 5 years
- Non-alcoholic steatohepatitis (NASH) and Cirrhosis
 - Common
 - 30-40 percent of adults in the United States have NAFLD. About 3 to 12 percent of adults in the United States have NASH.
 - Patients with NASH and bridging fibrosis have 20% chance of progressing to cirrhosis.



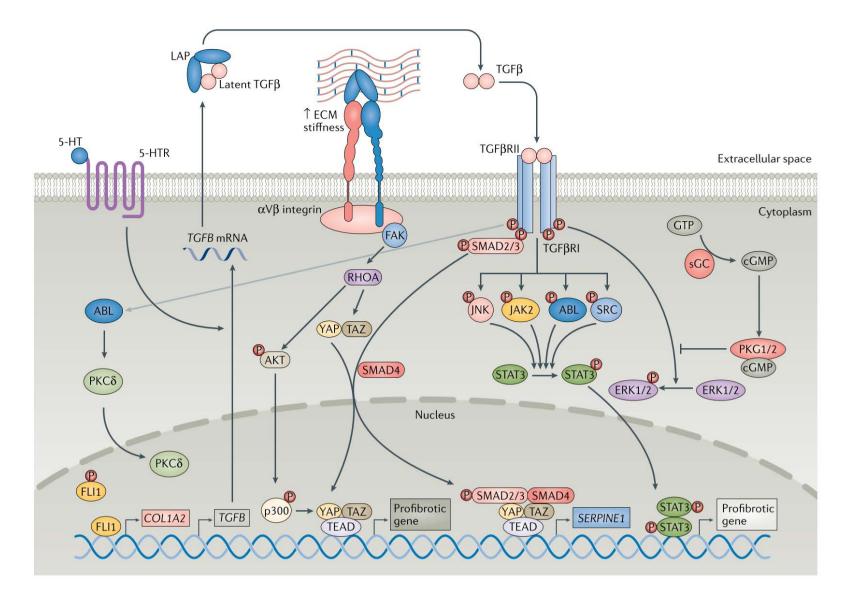
Myofibroblast activation in fibrosis


- Fibrotic diseases have excess tissue collagen
- Organ failure results from normally flexible tissue hardened by extra-cellular matrix deposition


At the cellular level fibrosis is caused in part by stimulation of tissue fibroblasts, differentiating them into activated *myofibroblasts*

Targeting core mechanisms leading to fibrosis represents a broad approach to therapy of many conditions in which fibrosis plays a role

Common and distinct mechanisms of fibrosis



Cellular components of fibrosis

Distler et al, Nature Reviews Rheumatology 15: 705-730, 2019

Signaling pathways in fibrosis

Distler et al, Nature Reviews Rheumatology 15: 705-730, 2019

Clinical trials in systemic sclerosis (SSc)

Table 4 | Clinical trials in patients with SSc and IPF

-						
Drug	Target	Target population	Phase	Clinical trial identifier	Status	
Systemic sclerosis						
GLPG1690	Autotaxin	SSc	П	NCT03798366	Recruiting	
IVIG	Fc receptors?	dcSSc	II	NCT01785056	Active, not recruiting	
Nintedanib	Multiple tyrosine kinases	SSc-associated ILD	Ш	NCT03313180	Active, recruiting	Арр
Pirfenidone	Not well defined, but including TGFβ signalling	SSc-associated ILD	ii	NCT03221257	Recruiting	Sept
Tofacitinib	JAK1/3	Early dcSSc	1/11	NCT03274076	Active, not recruiting	
GSK2330811	Oncostatin	dcSSc	1/11	NCT03041025	Recruiting	
AVID200	TGFβ1/TGFβ3	dcSSc	1	NCT03831438	Recruiting	
Abatacept	CTLA4	dcSSc	11	NCT02161406	Completed	
Tocilizumab	IL-6	dcSSc	III	NCT02453256	Completed	Faile
Riociguat	Soluble guanylate cyclase agonist	dcSSc	li	NCT02283762	Completed	
Brentuximab vedotin	CD30	dcSSc	1/11	NCT03222492	Recruiting	
Romilkimab (SAR 156597)	IL-4 and IL-13	dcSSc		NCT02921971	Completed	
Lenabasum (JBT-101)	CB2 agonist	dcSSc	Ш	NCT03398837	Active, recruiting	Faile
Lanifibranor (IVA337)	PPARs	Early dcSSc		NCT02503644	completed	

proved t 2019

*Failed 1 skin° endpoint 2° FVC endpoint improved

Distler et al, Nature Reviews Rheumatology 15: 705-730, 2019

Clinical trials in IPF

Idiopathic pulmonary fibrosis							
Pirfenidone	Not well defined, but including TGFβ signalling	Pulmonary fibrosis with anti-myeloperoxydase antibodies	II	NCT03385668	Recruiting		
Bevasizumab	VEGF	Radiation-/ chemotherapy-induced pulmonary fibrosis	II	NCT01917877	Recruiting		
TRK-250	RNA-based inhibition of TGFβ1 expression	IPF	I	NCT03727802	Recruiting		
FG-3019	CTGF	IPF	Ш	NCT01262001	Completed		
VAY736	BAFFR	IPF	Ш	NCT03287414	Recruiting		
GLPG1205	GPR84	IPF	Ш	NCT03725852	Recruiting		
ND-L02-s0201	HSP47 (collagen-specific chaperone)	IPF	Ш	NCT03538301	Recruiting		
BG00011	αVβ6 integrin	IPF	Ш	NCT03573505	Active, not recruiting		
CC-90001	JNK1	IPF	Ш	NCT03142191	Recruiting		
GLPG1690	Autotaxin	IPF	III	NCT03711162	Recruiting		
Elafibranor	ΡΡΑRα/δ	Nonalcoholic steatohepatitis with fibrosis	III	NCT02704403	Recruiting		

Unknown

IPF, Cirrhosis, and SSc Trials (Nov 2020) extracted from clinicaltrials.gov

- Total trials 1327
- Total Therapeutic 619
- Pulmonary Fibrosis
- Cirrhosis 161
- Sclero(derma/sis)
- Raynauds

211 32

221

Fibrosis trials drug classes

1	GPCR	93
2	Cell Rx	68
3	Antibody	54
4	Enzyme	48
5	KI	48
б	Immunosupp	36
7	Biologic	29
8	Unknown	26
9	NR	21
10	Imaging	14
11	Antibiotic	13
12	Gas	13
13	Cytokine	12
14	Interferon	11
15	Antiviral	10
16	Channel	10
17	Antioxidant	9
18	Dx	9
19	Integrin	7
20	Metabolite	6

21	NP
22	ECM
23	Immunomodulator
24	Protease Inhibitor
25	Proton Pump Inh
26	Anticoagulant
27	Combination
28	Nucleic Acid
29	Osmotic/Oncotic
30	Probiotic
31	Anesthetic
32	Anti-sickle
33	Antiparastic
34	Chelator
35	Hormone
36	Light
37	Muscle relaxant
38	Tubulin Inhibitor
39	Wnt inhibitor
40	ADC

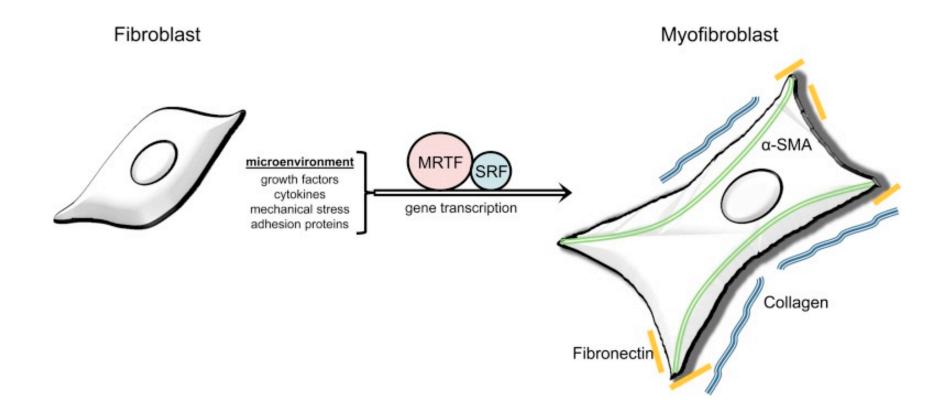
44	Antithrombotic	2
45	Antidiabetic	1
46	Bile acid	1
	Biomarker	1
	Bisphophonate	1
	Cytokine/Hormone	1
	Ion channels	1
	Mast cell stabilizer	1
	Metal	1
	Multiple	1
	Natriuretic peptide	1
	NR/GPCR	1
56	Nucleic Acid	1
57	Peptide	1
58	-	1
59	PPI	1
60	Protease inhibitor	1
61	Stem cell mobilizer	1
62	Sugar	1
	TF	1
64	Unknown/KI	1

Fibrosis trials drug targets_agents

	None	76	24	beta adrenergic	4	44	Albumin	2	67	Nintedanib	2
	ET	34	25	FXR	4	47	Aminoacids	2	68	NO	2
	MSC FGF VEGF PDGF	25 18	26	GR	4	49	AT 1 R	2	69	Nrf 2	2
	pirfenidone	17	27	HBV nucleoside	4	50	AT 2 R	2	70	03	2
	PDE5	15	28	IFNa	4	51	BLyS	2	71	Oncostatin M (OSM)	2
	Cyclophosphamide	11	29	IVIG	4		Bone marrow	2		P2X3 inhibitor	2
	IP receptor Abl Kit PDGF	11 10	30	JNK	4	53	CB 2	2	73	pan-caspase	2
	sGC	8	31	MOR	4	54	Collagen	2	74	pomalidomide	2
	SVF	8	32	Nucleotide	4	55	CTLA-4	2	75	Probiotic	2
	CD20	7	33	Pentraxin	4	56	ET/PDE 5	2	76	Relaxin	2
	IFNg 1 b IL 13	/	34	Stem cell transplant	4	57	FGF 21	2	77	ROCK2	2
	Microbiome	7	35	Adipose	3	58	Fuzhenghuayu	2	78	Thrombin	2
	Autotaxin	6	36	G-CSF	3	59	Galectin- 3	2	79	Thymocytes	2
	alphav beta 6	6	37	Methotrexate	3	60	HCV Protease Inhibitor	2	80	TKI	2
	N-Ac-cysteine	6	38	mToR	3	61	HSC	2	81	TLR 8/9	2
	Botox Combination	э 5	39	NO	3	62	HSP 47 siRNA	2	82	Unknown	2
	CTGF	5	40	Statin	3	63	IL 17 R	2	83	VGCC	2
	LPA1R antagonist	5	41	TGF-beta antagonist	3	64	IL4 IL13	2	84	Voxelotor	2
	Mycophenolate	5	42	Thalidomide	3	65	LOXL2	2	85	Yirfenidone	2
25	02	э	43	V2R	3	66	Lung stem cells	2			

1

+ 157 more singlets

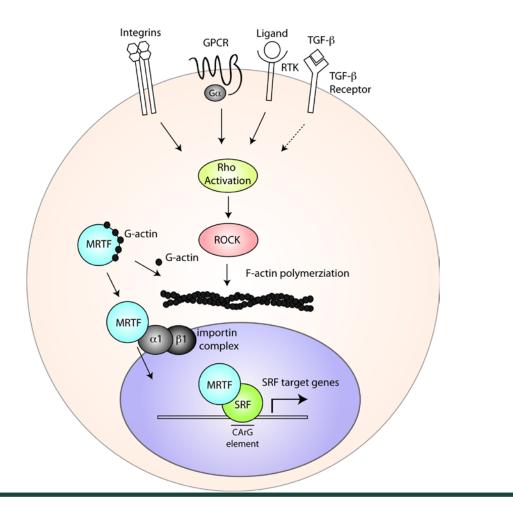

Fibrosis drugs by class

GPCR 1 ET 2 IP receptor 3 LPA1R antagonist 4 beta adrenergic 5 MOR 6 V2R 7 AT1R 8 AT2R 9 CB2 10 Relaxin	34 19 5 4 4 3 2 2 2 2 2	<pre>Kinase Inhibitors 1 Nintedanib 2 Imatinib 3 CC-90001 4 KD025</pre>	20 9 3 2	Enzymes 1 PDE5 2 sGC 3 Autotaxin 4 Statin 5 Thrombin	15 8 6 3 2
Antibody Drugs 1 CD20 2 IL13 3 CTGF 4 IVIG 5 BLyS 6 IL17R 7 IL4 IL13 8 LOXL2 9 Oncostatin M (OSM)	7 7 5 4 2 2 2 2 2 2 2 2 2 2	<pre>Biologicals 1 Microbiome 2 Botox 3 Pentraxin 4 CTLA-4 5 Probiotic</pre>	7 5 4 2 2	<pre>Immunosuppressants 1 Cyclophosphamide 2 Mycophenolate 3 Combination 4 Nucleotide 5 Methotrexate 6 mToR 7 TLR8/9</pre>	11 5 4 3 3 2

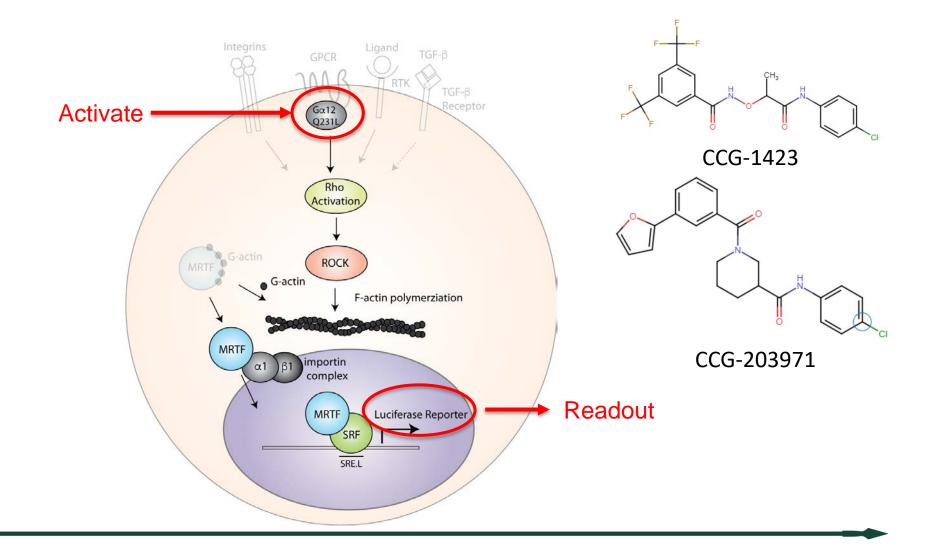
Fibrosis trials Unknown mechanism/target

Drug	n	Indication	Mechanism/Target?
Pirfenidone	18	IPF	affects TGF-beta
Bi 1015550	2	IPF	
Hec 585	2	IPF	
Iguratimod	1	SSC	\downarrow NF κ B activity
Pbi 4050	1	IPF	
Td-1058	1	IPF	
Zl-2102	1	IPF	
Zsp 1603	1	IPF/Ca	PDGFR

Fibroblast to Myofibroblast Transition is a Hallmark of Fibrotic Diseases

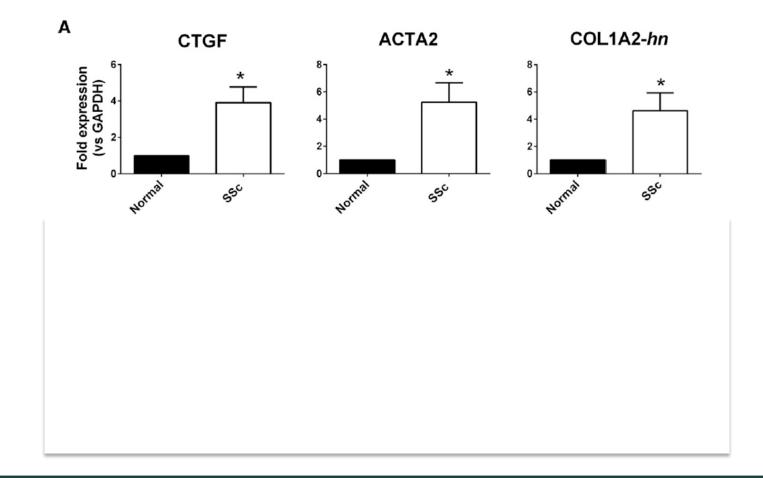

Tsou et al, Am J Physiol Cell Physiol 2014

Myocardin Related Transcription Factor (MRTF): Serum Response Factor (SRF) Signaling and Rho

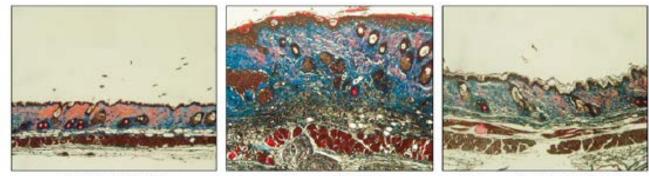

Rho is activated by many drivers of fibrosis

GPCRs – LPA, Endothelin TGF- β receptor - TGF- β RTKs – PDGF, VEGF Integrins – CTGF

All can activate Rho-MTRF pathway



SRE.L Luciferase Assay – pathway screen


Evelyn et al, Mol Canc Ther 2007.

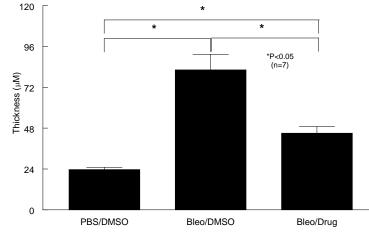
MRTF-regulated gene expression increased in SSc CCG-203971 can reduce CTGF, ACTA2 and Col1A2 mRNA

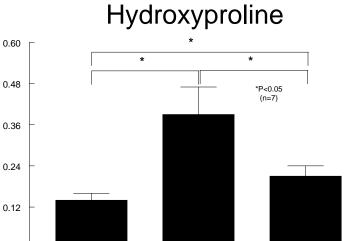
Haak et al, JPET 2014

CCG-203971 prevents bleomycin induced skin fibrosis

PBS+ DMSO

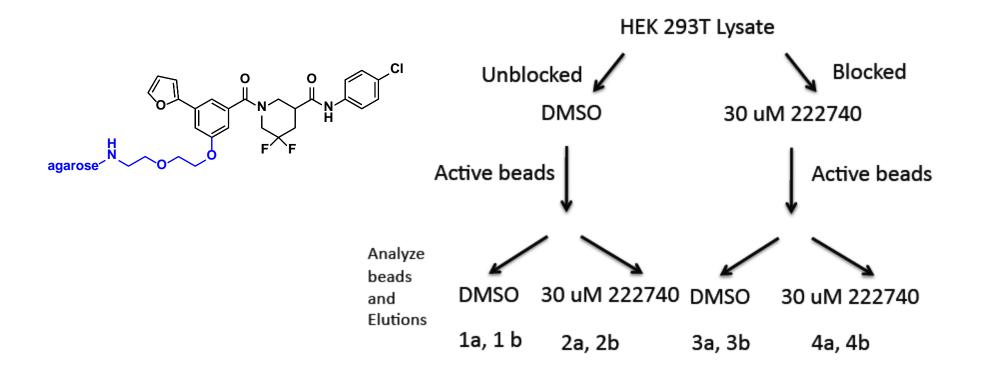
Bleo+ DMSO


Hydroxyproline (μg/μL/mg tissue weight) (E-1)


0.00

PBS/DMSO

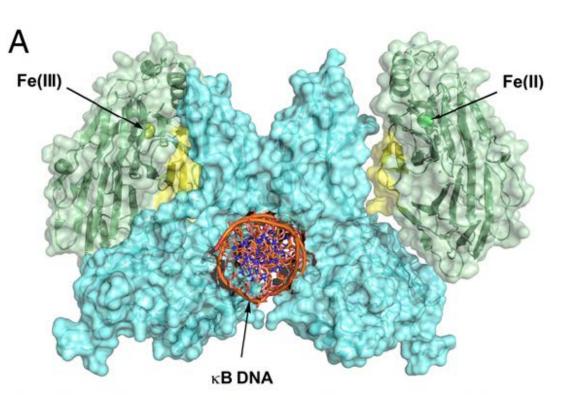
Bleo+ CCG-203971



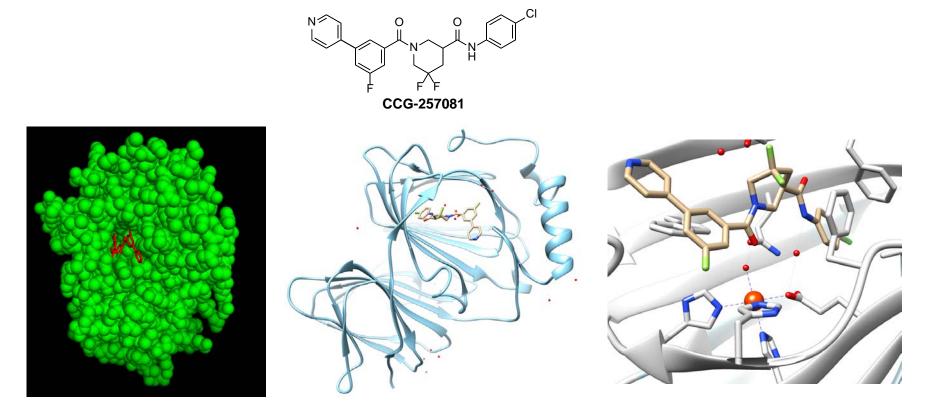
Haak et al JPET 349:480-6 , 2014

Bleo/Drug

Bleo/DMSO

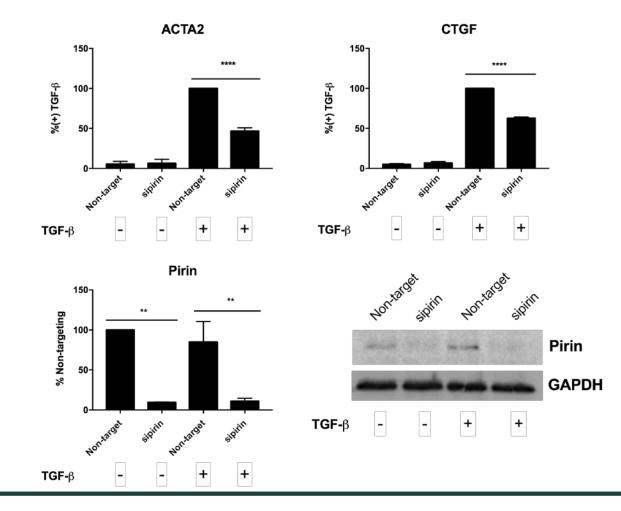

Target ID - Unbiased Proteomic Approach

2 samples each 3 technical mass spec measurements

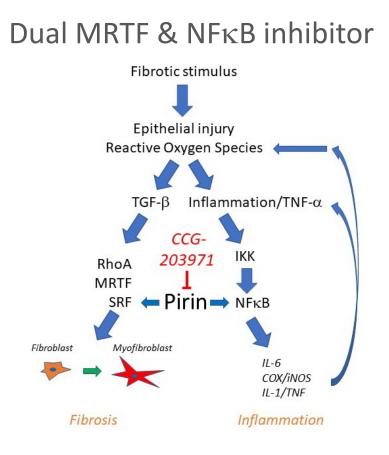

Pirin

- Co-transcription factor thought to be redox dependent
- Enhances NF-κB binding to DNA
- Upregulated in melanoma
- Highly expressed in pDC cells which are implicated in SSc

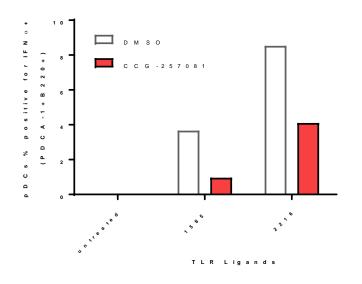
Model made using ZDOCK


Crystal Structure of CCG-257081 bound to Pirin

His-tagged full length recombinant pirin was purified from E.coli and crystallized using the hanging drop method in 0.1 M HEPES ph 7.5, 8% ethylene glycol and 20% PEG 8000. CCG-257081 was soaked into pre-formed crystals and data was collected at APC to 1.5 Å


Lisabeth et al ACS Pharm Trans Sci 2: 92–100 2019

Knockdown of Pirin reduces TGF β induced ACTA2 and CTGF



Lisabeth et al ACS Pharm Trans Sci 2: 92–100 2019

Novel attributes of pirin-inhibitor CCG compounds in fibrosis and scleroderma

Suppression of Plasmacytoid dendritic cells - pDC

Summary

- CCG series of compounds have been shown to be effective in melanoma and fibrotic disease models
- A molecular target, Pirin, identified through an unbiased proteomic approach
- CCG compounds bind to Pirin *in vitro* with excellent co-crystal
- Pirin is a novel drug target for fibrosis and cancer with unique mechanisms identified by academic drug discovery/chemical biology work
- Active development of the CCG compounds for clinical use is underway

Acknowledgements

- Chris Evelyn
- Andrew Haak
- Erika Lisabeth
- Tom Dexheimer
- Xianshu Jin

- Sarah Hynes
- Brent Martin
- Eliza Tsou
- Dinesh Khanna
- David Fox

• Kim Hutchings

Kendell Pawelec (FibrosIX)

• Scott Larsen

NIH R01AR066049 (SDL) and R01GM115459 (RRN)