

Renal Fibrosis: Mechanisms and novel therapeutic strategies

Jill Norman Department of Renal Medicine University College London

E-mail: j.norman@ucl.ac.uk

- Renal fibrosis hallmark of Chronic Kidney Disease (CKD)
- Diverse causes: Diabetes, hypertension, hyperlipidemia, obesity, chronic inflammation, chronic infection, kidney stones, kidney cysts, immune disorders, genetic disorders (ADPKD), age; recurrent Acute Kidney Injury
- Progressive damage and reduced function over time

	Stage	Description	GFR (mL/min/1.73 m ²)	-
	1	Kidney damage with normal or ↑ GFR	≥90	_
	2	Kidney damage with mild \downarrow GFR	60–89	_
	3	Moderate ↓ GFR	30–59	3a: 45-59
	4	Severe ↓ GFR	1529	50. 50-44
End-stage Renal Diseas	e 5	Kidney failure	<15 RRT: Dialysis/1	<i>Transplantation</i>

Stages of Chronic Kidney Disease

Chronic kidney disease is defined as either kidney damage or GFR <60 mL/min/1.73 m² for \geq 3 months. Kidney damage is defined as pathologic abnormalities or markers of damage, including abnormalities in blood or urine tests or imaging studies.

Chronic Kidney Disease

- **UCL**
- WHO classified CKD as a major non-communicable disease, "silent epidemic"
- > Affects >850 million people worldwide, one of the most common causes of death worldwide
- Globally >3.4 million people are kept alive by RRT; only half those who need it receive treatment
- Number of patients on RRT predicted to continue to increase (aging population, hypertension and diabetes)
- In the UK estimated 3 million people are at risk of moderate/severe CKD
- Economic cost: £1.45 billion a year in England
- Patient cost: reduced QoL, premature death (patients on RRT have 2.4-19x higher mortality than age-matched population)
- Those with CKD are up to 20 times more likely to die of other causes (largely cardiovascular diseases) before reaching ESRD

Challenges:

- Currently limited treatment options novel therapies
- Predict who will develop CKD
- Predict rate of progression

Functional unit of the kidney: nephron

Glomerulus

Tubule

- Complex tissue ~26 different cell types
- Additional heterogeneity?

Chronic Kidney Disease and fibrosis

- Multiple aetiologies
- Common pathology

Courtesy of Prof. A Howie. Dept Cell Path, Royal Free Hospital

Tubular injury/ Microvascular injury

activation

Inflammation

Apoptosis

Tubular atrophy

Cellular dedifferentiation

Epithelial mesenchymal transformation + fibroblast activation/

proliferation

Excessive ECM deposition

Fibrosis

Glomerulosclerosis

El Nahas AM, Bello AK. Lancet 365:331-345, 2005.

• Tubulointerstitial fibrosis best predicts progression to ESRD.

Chronic Kidney Disease and fibrosis

- Fibrosis = pathological extension of normal wound healing
- Fibrosis characterised by:
 - Cellular injury/damage
 - Inflammation persistent, non-resolving
 - Altered expression of growth factors and cytokines
 - * Increased pro-fibrotic cytokines (TGF β)
 - * Reduced anti-fibrotic factors
 - Increased interstitial cell number
 - Appearance of myofibroblasts (αSMA⁺)
 - Tubular atrophy and loss
 - Microvascular injury and loss
 - * Decreased O_2 and nutrients; hypoxia -> fibrosis
 - Accumulation of ECM
 - * Increased production
 - * Reduced turnover (MMPs/TIMPs; PAs/PAIs)
 - * Altered composition (EDA fibronectin, foetal proteins); altered cell/matrix interactions
 - * Post-translational modification (cross-linking collagen by TG-2)

Kumar S. Kidney Int 93:27-40,2018

Autosomal Dominant Polycystic Kidney Disease

- Most common monogenic kidney disease; ~1:800 live births
- Mutations in PKD1 (PC-1) (85%) or PKD2 (PC-2) (15%)
- Affects ~12 million individuals worldwide
- Affects both genders, all racial, geographic and ethnic groups
- 50% of patients develop ESRD and require RRT (7-10% of dialysis population)
 - Wide variation in age of onset of ESRD (1-8th decade)
- Characterised by extreme bilateral kidney enlargement Cysts arise from all segments of the nephron, cyst expansion accompanied by interstitial fibrosis

Wilson P NEJM 2004

ADPKD

Early ADPKD

End-Stage ADPKD

Normal

Pro-fibrotic markers in human ADPKD

E-ADPKD: Early, pre-dialysis ES-ADPKD: End-stage

Multiple cell types activated in fibrosis

1. Tubular cells

- Dedifferentiation
- Proliferation
- ECM production
- Apoptosis
- EMT?

2. Interstitial fibroblasts

- Proliferation
- Differentiation (αSMA)
- ECM accumulation

4. Immune/Inflammatory cells

- Inflammation
- Differentiation(?)

3. Microvascular cells Endothelial cells

- Migration
- ECM production
- Apoptosis
- EndoMT?

Pericytes

- Differentiation
- ECM accumulation

- 5. Progenitor cells
 - Resident Circulating

Compared normal fibroblasts and ADPKD (PKD1 mutant) fibroblasts:

Altered phenotype

NHK

ES-ADPKD

Shortened cilia

Group	Cilia length
NHK	5.8±1.5
E-ADPKD	4.3±0.6
ES-ADPKD	3.8±0.3*

PC-1 protein in ADPKD fibroblasts:

- * Full-length PC-1 (~460kD) undetectable
- * Reduced ~250kD fragment
- * Decreased expression of C-terminal ~30kD fragment
- * Other fragments (~30-100kD) generally decreased with disease stage

• Increased proliferation (basal) and differential response to growth factors

Increased production of growth factors

• Increased GF production: CTGF, FGF, TGF β

Increased collagen expression

Increased migration

Enhanced myofibroblast differentiation

Increased collagen gel contraction

Increased adhesion and spreading

Changes in focal adhesions

E-ES-NHK ADPKD ADPKD kDa pFAK ~125 FAK ~125 pPaxillin ~68 Paxillin -68 pILK 54 ILK -54 Tubulin 55 (loading control)

Dysregulated expression of ECM receptors

Down-regulated:

- TSPAN1
- TSPAN14
- TSPAN15
- TSPAN18

In vitro characterisation of ADPKD fibroblasts

- Compared to normal kidney fibroblasts ADPKD fibroblasts show:
- Decreased PC-1
- $_{\odot}\,$ Cilia defects (cilia known to integrate growth factor signalling, factors relevant to fibrosis PDGF, TGF $_{\beta})$
- Stage-dependent increase in proliferation and altered response to growth factors
- Increased myofibroblast differentiation; up-regulation of αSMA incorporated into stress fibres
- Increased contractility
- Increased collagen production
- Increased matrix adhesion and spreading
- Up-regulation of FA-associated proteins and larger FA; dysregulated ECM receptor profile
- Abnormalities reflect many of those seen in fibrotic fibroblasts from other organs

Common/unique patterns of gene expression

NHK -/+ TGFβ

Gene profiling of ADPKD vs normal fibroblasts

- Compare gene expression in NHK and ES-ADPKD fibroblasts
- Human Gene 1.0ST Affymetrix chip (UCL Genomics)
- Analysis Integromics[®] Biomarker Discovery software

Up-regulated genes:507 *Top 20*

Down-regulated genes:556 Top 20

Name	Fold Change
Periostin - osteoblast specific factor	8.03468375
Matrix Gla protein	7.601936667
Protocadherin 18	7.063819167
UDP-Gal:betaGlcNAc beta 1,3- galactosyltransferase, polypeptide 2	6.797520833
Oxidized LDL receptor 1	6.539281667
Fibroblast activation protein, alpha	6.456475833
Serglycin	6.45483
Sulfatase 1	6.4291425
Microfibrillar-associated protein 4	6.2683275
Lipid phosphate phosphatase-related protein type 4	6.167144583
Vestigial like 3	6.0196925
Sodium channel, voltage-gated, type IX, alpha subunit	6.001779167
Discoidin domain receptor tyrosine kinase 2	5.9929425
Asporin	5.9757225
Serpin peptidase inhibitor, clade B (ovalbumin), member 2	5.942604167
Anoctamin 3	5.938825833
Biglycan	5.933563333
Collagen, type I, alpha 2	5.903893333
Regulator of G-protein signaling 4	5.896416667
micro RNA 145	5.860660833

Name	Fold Change
Matrix metallopeptidase 7	-7.8520425
Tumor necrosis factor (ligand) superfamily, member 10	-7.423973333
Prominin 1 (CD133)	-7.293641667
CD24	-7.194954167
C-type lectin domain family 4, member E	-6.83895
Mal, T-cell differentiation protein 2 (gene/pseudogene)	-6.771321667
Hepatitis A virus cellular receptor 1	-6.700473333
Ets homologous factor	-6.503751667
iltegrin, beta 8	-6.381093333
Potassium inwardly-rectifying channel, subfamily J, member 16	-6.20179
Secreted phosphoprotein 1	-6.19344
Olfactory receptor, family 12, subfamily D, member 2	-6.0944
Integrin, beta 6	-6.038710833
Solute carrier family 17 (sodium phosphate), member 1	-6.0147
Epithelial cell adhesion molecule	-5.9800175
FAM134B	-5.972165833
Olfactory receptor, family 12, subfamily D, member 2	-5.9550325
Doublecortin domain containing 2	-5.861695

 Target validation

 NHK
 ES-ADPKD

 Periostin

 FAP

 Asporin

 MMP7

 ITGB8

 GAPDH

(>2 fold)

Gene ontology (GO) enrichment analysis

 PDGFRs most common genes regulated in the array (65 relevant GO annotated biological processes, up-regulated PDGFRα and PDGFRβ feature in 11)

PDGF/PDGFR receptors in ADPKD fibrosis

- PDGFRα and β tyrosine kinase receptors interact with ligands (A, B, C, D)
- PDGF/PDGFR widely implicated in fibrosis;
- Up-regulated in a number of renal diseases
- Responses to PDGF co-ordinated by primary cilium
- ADPKD fibroblasts in vitro hyper-proliferative to PDGF
- PDGFRs elevated in ADPKD fibroblasts in vitro and in vivo
- Inhibition of PDGFR/signaling (imatinib, siRNA) attenuates fibrotic characteristics of ADPKD fibroblasts in vitro

- PDGFR pathway target to slow progression of ADPKD?
- In vivo studies: Pharmacologic inhibition

Fibroblast-specific deletion

Inducible Coll1a2 Cre x PDGFR floxed mice x Pkd1^{nl/nl}

Re-purposing of PDGFR TKIs in clinical use for ADPKD?

Biomarkers of renal fibrosis

- Challenges in fibrosis: to identify at-risk individuals and to predict rate of progression
- Biomarkers are under intense investigation
- Advantage of the kidney is the availability of urine as a non-invasive source of biomarkers (urinary RNAs, miRNAs, proteins, microvesicles)

Exosomes as source of biomarkers in ADPKD

<u>Exosomes</u>

- 30-120nm vesicles
- Originating from multivesicular bodies
- Contain a subset of proteins, miRNAs and RNAs
- Released into body fluids (urine, blood)/cell medium
- Involved variety of cellular processes; cell-cell communication
- Altered in disease

- Royal Free Specialist PKD clinic with ~350 patients
- Range of stage of disease:

CKD Stage	Number of patients
1	70 (20%)
2	88 (25%)
3	140 (40%)
4	52 (15%)

- Urine and blood samples collected and stored (PKD Charity-sponsored Biobank)
 Longitudinal sampling of patients over time (~6 years)
- Linked to detailed clinical data

Urinary exosome preparation

[•]UCL

Exosome purification

- Small volumes of urine
- Optimisation of exosome isolation from 5ml urine samples

Ultracentrifugation protocol

CONFIDENTIAL

Urinary exosome protein profiling

• Longitudinal urine samples from patients who had similar function (eGFR) at presentation but (based on clinical data) declined at different rates over 4 year follow-up

- Proteomics of exosomes isolated from presentation urine samples (KCL Proteomics)
- Compared protein profiles
- >2-fold difference cut-off:

291 proteins up-regulated in PGs compared to NPGs

30 proteins down-regulated in PGs compared with NPGs

Pathways altered in progressors vs non-progressors

- Pathway analysis (>2-fold upregulated) identified distinct patterns between those with rapid (PG) vs slow progression (NPG)
- Can distinguish PG and NPG at different starting eGFR (levels of renal function)

- Develop protein panel to distinguish rapid and slow progressors at presentation
- Use of urinary exosome profiles to determine response to treatment
- Potential to predict response to Tolvaptan (Otsuka)

New Treatments for renal fibrosis?

1. Develop drugs/biologics (antibodies) targeting pathways altered in renal fibrosis

- New drug discovery
- Repurposing (SGLT2 inhibitors for diabetes)
- 2. Developing and implementing strategies to enhance endogenous renal repair and promote generation of new nephrons
- Engineer new organs for transplantation
 Supplement remaining tissue or replace damaged organ
 - Organoids
 - Re-seeded scaffolds (synthetic/natural)
- Studies *in vivo* and *in vitro* models of AKI/CKD have identified numerous factors and pathways dysregulated in renal fibrosis (TGFβ)
- Poor translation to the clinic
- Improved models? Human cell-based models

Human kidney ECM scaffolds

Native kidney

Decellularised ECM scaffold

SDS concentration

Reseeding scaffolds with human renal cells

- Normal human kidney ECM scaffolds seeded with human PTEC cell line (HK-2)
- Epithelial cells repopulate the human kidney ECM scaffold and line tubular lumens

ECM scaffold suppresses cell proliferation

 Increases expression of cell type-specific differentiation markers

- Background to CKD and renal fibrosis
- Some insights into some of the mechanisms of renal fibrosis
- The value of in vitro human cell models in understanding the biology of fibrosis and identifying candidate therapeutic targets
- The potential of urinary exosomes as a source of biomarkers to predict progression and response to treatment
- Challenges in developing new therapeutic strategies for renal fibrosis

Patricia Wilson Johanna Donovan Timo Haschler Qingyang Kong Kiron Koshi Siobhan Moyes Shilpa Nayuni Jane Ong Katie Raby Surya Rayapureddi Johanna Verneau Yu Hsuen Yang Hadzliana Zainal

Collaborators

UCL Institute for Child Health Institute of Opthalmology King's College London Imperial College UCB

St Peter's Trust

Medical

Council

Astra7eneo

Research

PETER SAMUEL

