Top ▲

PAC1 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 370

Nomenclature: PAC1 receptor

Family: VIP and PACAP receptors

Gene and Protein Information Click here for help
class B G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 468 7p14.3 ADCYAP1R1 ADCYAP receptor type I 37,58
Mouse 7 496 6 B3 Adcyap1r1 adenylate cyclase activating polypeptide 1 receptor 1 1,21
Rat 7 523 4q24 Adcyap1r1 ADCYAP receptor type I 5,46
Previous and Unofficial Names Click here for help
PAC1R | PVR1 | PACAP receptor 1 | PACAP type IA receptor | PACAPR1 | pituitary adenylate cyclase activating polypeptide 1 receptor (1) | PACAP1-R | adenylate cyclase activating polypeptide 1 receptor 1 | adenylate cyclase activating polypeptide 1 receptor type 1 | ADCYAP receptor type 1
Database Links Click here for help
Specialist databases
GPCRdb pacr_human (Hs), pacr_mouse (Mm), pacr_rat (Rn)
Other databases
Alphafold
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of PAC1 receptor extracellular domain
PDB Id:  3N94
Resolution:  1.9Å
Species:  Human
References:  28
Natural/Endogenous Ligands Click here for help
PACAP-38 {Sp: Human, Mouse, Rat}
PACAP-27 {Sp: Human, Mouse, Rat, Sheep}
PHI {Sp: Mouse, Rat}
PHM {Sp: Human}
PHV {Sp: Human} , PHV {Sp: Rat}
VIP {Sp: Human, Mouse, Rat}
Comments: PACAP-27 and PACAP-38 are the principal endogenous agonists
Potency order of endogenous ligands (Human)
PACAP-27 (ADCYAP1, P18509), PACAP-38 (ADCYAP1, P18509) >> VIP (VIP, P01282)

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I][Ac-His1]PACAP-27 Peptide Ligand is labelled Ligand is radioactive Hs Agonist 9.3 pKd 52
pKd 9.3 (Kd 5x10-10 M) [52]
[125I]PACAP-27 Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Agonist 9.1 pKd 45
pKd 9.1 (Kd 8.7x10-10 M) [45]
Description: Binding to NIH/3T3 cells stably expressing recombinant receptor
PACAP-27 {Sp: Human, Mouse, Rat, Sheep} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Rn Agonist 8.5 – 8.8 pKi 6
pKi 8.8 (Ki 1.5x10-9 M) [6]
Description: inhibition of [125I]-[Ac-His1]PACAP-27 binding to membranes from CHO cells stably expressing the rat PAC1 receptor isoform including the hop1 exon
pKi 8.5 (Ki 3x10-9 M) [6]
Description: inhibition of [125I]-[Ac-His1]PACAP-27 binding to membranes from CHO cells stably expressing the rat PAC1 receptor isoform lacking the hip and hop exons
PACAP-38 {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Rn Agonist 8.4 – 8.8 pKi 6
pKi 8.8 (Ki 1.5x10-9 M) [6]
Description: inhibition of [125I]-[Ac-His1]PACAP-27 binding to membranes from CHO cells stably expressing the rat PAC1 receptor isoform including the hop1 exon
pKi 8.4 (Ki 4x10-9 M) [6]
Description: inhibition of [125I]-[Ac-His1]PACAP-27 binding to membranes from CHO cells stably expressing the rat PAC1 receptor isoform lacking the hip and hop exons
[Ac-His1]PACAP-27 Peptide Rn Agonist 8.0 – 8.3 pKi 6
pKi 8.3 (Ki 5x10-9 M) [6]
Description: inhibition of [125I]-[Ac-His1]PACAP-27 binding to membranes from CHO cells stably expressing the rat PAC1 receptor isoform including the hop1 exon
pKi 8.0 (Ki 1x10-8 M) [6]
Description: inhibition of [125I]-[Ac-His1]PACAP-27 binding to membranes from CHO cells stably expressing the rat PAC1 receptor isoform lacking the hip and hop exons
PACAP-38 {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Agonist 6.9 – 9.0 pKi 9
pKi 9.0 (Ki 1.1x10-9 M) [9]
Description: inhibition of [125I]-PACAP-27 binding to membranes from HEK293 cells stably expressing the full length receptor (ENST00000304166)
pKi 8.8 (Ki 1.7x10-9 M) [9]
Description: inhibition of [125I]-PACAP-27 binding to membranes from HEK293 cells stably expressing the PAC1 short receptor (ENST00000409363)
pKi 6.9 (Ki 1.21x10-7 M) [9]
Description: inhibition of [125I]-PACAP-27 binding to membranes from HEK293 cells stably expressing the PAC1 very short receptor
PACAP-27 {Sp: Human, Mouse, Rat, Sheep} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Agonist 6.9 – 8.5 pKi 9
pKi 8.5 (Ki 3.1x10-9 M) [9]
Description: inhibition of [125I]-PACAP-27 binding to membranes from HEK293 cells stably expressing the PAC1 short receptor (ENST00000409363)
pKi 8.5 (Ki 2.9x10-9 M) [9]
Description: inhibition of [125I]-PACAP-27 binding to membranes from HEK293 cells stably expressing the full length receptor (ENST00000304166)
pKi 6.9 (Ki 1.29x10-7 M) [9]
Description: inhibition of [125I]-PACAP-27 binding to membranes from HEK293 cells stably expressing the PAC1 very short receptor
VIP {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Agonist <6.0 – 8.4 pKi 9
pKi 8.4 (Ki 4.4x10-9 M) [9]
Description: inhibition of [125I]-PACAP-27 binding to membranes from HEK293 cells stably expressing the PAC1 short receptor (ENST00000409363)
pKi 6.3 (Ki 4.58x10-7 M) [9]
Description: inhibition of [125I]-PACAP-27 binding to membranes from HEK293 cells stably expressing the full length receptor (ENST00000304166)
pKi <6.0 (Ki >1x10-6 M) [9]
Description: inhibition of [125I]-PACAP-27 binding to membranes from HEK293 cells stably expressing the PAC1 very short receptor
VIP {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Rn Agonist 5.5 – 5.8 pKi 6
pKi 5.8 (Ki 1.5x10-6 M) [6]
Description: inhibition of [125I]-[Ac-His1]PACAP-27 binding to membranes from CHO cells stably expressing the rat PAC1 receptor isoform including the hop1 exon
pKi 5.5 (Ki 3.5x10-6 M) [6]
Description: inhibition of [125I]-[Ac-His1]PACAP-27 binding to membranes from CHO cells stably expressing the rat PAC1 receptor isoform including the hop1 exon
PACAP-27 {Sp: Human, Mouse, Rat, Sheep} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Rn Agonist 10.0 – 10.1 pEC50 6
pEC50 10.1 (EC50 8x10-11 M) [6]
Description: stimulation of adenylate cyclase in CHO cells stably expressing the rat PAC1 receptor isoform lacking the hip and hop exons
pEC50 10.0 (EC50 1x10-10 M) [6]
Description: stimulation of adenylate cyclase in CHO cells stably expressing the rat PAC1 receptor isoform including the hop1 exon
PACAP-38 {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Rn Agonist 9.5 – 10.0 pEC50 6,36
pEC50 10.0 (EC50 1x10-10 M) [6]
Description: stimulation of adenylate cyclase in CHO cells stably expressing the rat PAC1 receptor isoform lacking the hip and hop exons
pEC50 10.0 (EC50 1x10-10 M) [6]
Description: stimulation of adenylate cyclase in CHO cells stably expressing the rat PAC1 receptor isoform including the hop1 exon
pEC50 9.5 (EC50 3.4x10-10 M) [36]
Description: stimulation of adenylate cyclase in COS cells transiently expressing recombinant receptor
PACAP-27 {Sp: Human, Mouse, Rat, Sheep} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Agonist 7.4 – 10.6 pEC50 9,11,35
pEC50 10.6 (EC50 2.6x10-11 M) [11]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pEC50 9.1 (EC50 8x10-10 M) [9]
Description: stimulation of cyclic AMP formation in HEK293 cells stably expressing the full length receptor (ENST00000304166)
pEC50 9.0 (EC50 1x10-9 M) [9]
Description: stimulation of cyclic AMP formation in HEK293 cells stably expressing the PAC1 short receptor (ENST00000409363)
pEC50 8.7 (EC50 2x10-9 M) [35]
Description: stimulation of cyclic AMP formation in NIH/3T3 cells stably expressing the recombinant receptor
pEC50 8.5 (EC50 3.3x10-9 M) [11]
Description: calcium influx in CHO cells stably expressing recombinant receptor
pEC50 7.4 (EC50 3.7x10-8 M) [9]
Description: stimulation of cyclic AMP formation in HEK293 cells stably expressing the PAC1 very short receptor
PACAP-38 {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Agonist 7.5 – 10.3 pEC50 9,11
pEC50 10.3 (EC50 4.9x10-11 M) [11]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pEC50 9.2 (EC50 6x10-10 M) [9]
Description: stimulation of cyclic AMP formation in HEK293 cells stably expressing the full length receptor (ENST00000304166)
pEC50 9.2 (EC50 7x10-10 M) [9]
Description: stimulation of cyclic AMP formation in HEK293 cells stably expressing the PAC1 short receptor (ENST00000409363)
pEC50 8.3 (EC50 5.1x10-9 M) [11]
Description: calcium influx in CHO cells stably expressing recombinant receptor
pEC50 7.5 (EC50 2.9x10-8 M) [9]
Description: stimulation of cyclic AMP formation in HEK293 cells stably expressing the PAC1 very short receptor
maxadilan Peptide Click here for species-specific activity table Hs Agonist 6.2 – 10.3 pEC50 11
pEC50 10.3 (EC50 5.4x10-11 M) [11]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pEC50 6.2 (EC50 5.68x10-7 M) [11]
Description: calcium influx in CHO cells stably expressing recombinant receptor
VIP {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Agonist <6.0 – 8.7 pEC50 9,11,35
pEC50 8.7 (EC50 2.1x10-9 M) [9]
Description: stimulation of cyclic AMP formation in HEK293 cells stably expressing the PAC1 short receptor (ENST00000409363)
pEC50 7.8 (EC50 1.51x10-8 M) [11]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pEC50 6.7 (EC50 1.86x10-7 M) [9]
Description: stimulation of cyclic AMP formation in HEK293 cells stably expressing the full length receptor (ENST00000304166)
pEC50 6.4 (EC50 3.73x10-7 M) [9]
Description: stimulation of cyclic AMP formation in HEK293 cells stably expressing the PAC1 very short receptor
pEC50 6.4 (EC50 3.89x10-7 M) [11]
Description: calcium influx in CHO cells stably expressing recombinant receptor
pEC50 <6.0 (EC50 >1x10-6 M) [35]
Description: stimulation of cyclic AMP formation in NIH/3T3 cells stably expressing the recombinant receptor
VIP {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Rn Agonist 7.1 pEC50 6
pEC50 7.1 (EC50 8x10-8 M) [6]
Description: stimulation of adenylate cyclase in CHO cells stably expressing the rat PAC1 receptor isoform lacking the hip and hop exons
pEC50 7.1 (EC50 8x10-8 M) [6]
Description: stimulation of adenylate cyclase in CHO cells stably expressing the rat PAC1 receptor isoform including the hop1 exon
PG 99-465 Peptide Click here for species-specific activity table Hs Agonist 7.1 pEC50 11
pEC50 7.1 (EC50 7.13x10-8 M) [11]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
Ro 25-1553 Peptide Click here for species-specific activity table Hs Agonist <6.0 pEC50 35
pEC50 <6.0 (EC50 >1x10-6 M) [35]
Description: stimulation of cyclic AMP formation in NIH/3T3 cells stably expressing the recombinant receptor
[Lys15,Arg16,Leu27]VIP-(1-7)/GRF-(8-27)-NH2 Peptide Click here for species-specific activity table Hs Agonist <6.0 pEC50 35
pEC50 <6.0 (EC50 >1x10-6 M) [35]
Description: stimulation of cyclic AMP formation in NIH/3T3 cells stably expressing the recombinant receptor
[Ala11,22,28]VIP Peptide Click here for species-specific activity table Hs Agonist <5.0 – 5.8 pEC50 11
pEC50 5.8 (EC50 1.582x10-6 M) [11]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pEC50 <5.0 (EC50 >1x10-5 M) [11]
Description: calcium influx in CHO cells stably expressing recombinant receptor
PACAP-27 {Sp: Human, Mouse, Rat, Sheep} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Agonist 7.6 pIC50 35
pIC50 7.6 (IC50 2.5x10-8 M) [35]
Description: inhibition of [125I]-PACAP-27 binding to membranes from NIH/3T3 cells stably expressing the recombinant receptor
VIP {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Hs Agonist <6.0 pIC50 35
pIC50 <6.0 (IC50 >1x10-6 M) [35]
Description: inhibition of [125I]-PACAP-27 binding to membranes from NIH/3T3 cells stably expressing the recombinant receptor
Ro 25-1553 Peptide Click here for species-specific activity table Hs Agonist <6.0 pIC50 35
pIC50 <6.0 (IC50 >1x10-6 M) [35]
Description: inhibition of [125I]-PACAP-27 binding to membranes from NIH/3T3 cells stably expressing the recombinant receptor
[Lys15,Arg16,Leu27]VIP-(1-7)/GRF-(8-27)-NH2 Peptide Click here for species-specific activity table Hs Agonist <6.0 pIC50 35
pIC50 <6.0 (IC50 >1x10-6 M) [35]
Description: inhibition of [125I]-PACAP-27 binding to membranes from NIH/3T3 cells stably expressing the recombinant receptor
VIP {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Rn Agonist 5.7 pIC50 16
pIC50 5.7 (IC50 2x10-6 M) [16]
Description: Inhibition of [125I]-Ac-His1-PACAP-27 binding in membranes from CHO cells expressing recombinant receptor
Ro 25-1553 Peptide Rn Agonist <5.0 pIC50 17
pIC50 <5.0 (IC50 >1x10-5 M) [17]
Description: inhibition of [125I]-[Ac-His1]PACAP-27 binding to membranes from CHO cells stably expressing the recombinant receptor
BAY 55-9837 Peptide Click here for species-specific activity table Hs Agonist <5.0 pIC50 59
pIC50 <5.0 (IC50 >1x10-5 M) [59]
Description: inhibition of [125I]-PACAP-27 binding to membranes from CHO cells stably expressing the recombinant receptor
[Arg16]chicken secretin Peptide Click here for species-specific activity table Rn Agonist 4.7 pIC50 16
pIC50 4.7 (IC50 2x10-5 M) [16]
Description: Inhibition of [125I]-Ac-His1-PACAP-27 binding in membranes from CHO cells expressing recombinant receptor
secretin {Sp: Pig} Peptide Click here for species-specific activity table Rn Agonist 4.5 pIC50 16
pIC50 4.5 (IC50 3x10-5 M) [16]
Description: Inhibition of [125I]-Ac-His1-PACAP-27 binding in membranes from CHO cells expressing recombinant receptor
[125I]VIP (human, mouse, rat) Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist - -
[Arg16]chicken secretin Peptide Click here for species-specific activity table Hs Full agonist - -
[Lys15,Arg16,Leu27]VIP-(1-7)/GRF-(8-27)-NH2 Peptide Click here for species-specific activity table Hs Full agonist - -
View species-specific agonist tables
Agonist Comments
Maxadilan is a selective agonist of PAC1 receptors but its use has been limited due to problems with availability.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
PACAP-(6-38) Peptide Rn Antagonist 7.5 – 8.1 pKi 6
pKi 8.1 (Ki 8x10-9 M) [6]
Description: inhibition of PACAP-27 stimulated adenylate cyclase in CHO cells stably expressing the rat PAC1 receptor isoform including the hop1 exon
pKi 8.0 (Ki 1x10-8 M) [6]
Description: inhibition of PACAP-27 stimulated adenylate cyclase in CHO cells stably expressing the rat PAC1 receptor isoform lacking the hip and hop exons
pKi 7.5 (Ki 3x10-8 M) [6]
Description: inhibition of [125I]-[Ac-His1]PACAP-27 binding to membranes from CHO cells stably expressing the rat PAC1 receptor isoform including the hop1 exon
pKi 7.5 (Ki 3x10-8 M) [6]
Description: inhibition of [125I]-[Ac-His1]PACAP-27 binding to membranes from CHO cells stably expressing the rat PAC1 receptor isoform including the hop1 exon
N-stearyl-[Nle17] neurotensin-(6-11)/VIP-(7-28) Peptide Click here for species-specific activity table Hs Antagonist 7.2 pIC50 35
pIC50 7.2 (IC50 6.5x10-8 M) [35]
Description: inhibition of [125I]-PACAP-27 binding to membranes from NIH/3T3 cells stably expressing the recombinant receptor
M65 Peptide Hs Antagonist 6.6 – 6.8 pIC50 11
pIC50 6.8 (IC50 1.496x10-7 M) [11]
Description: inhibition of cyclic AMP formation stimulated by 0.1nM PACAP-27 in CHO cells stably expressing recombinant receptor
pIC50 6.6 (IC50 2.774x10-7 M) [11]
Description: inhibition of calcium influx stimulated by 30nM PACAP-27 in CHO cells stably expressing recombinant receptor
MK-0893 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.0 pIC50 64
pIC50 5.0 (IC50 9.2x10-6 M) [64]
PG 97-269 Peptide Click here for species-specific activity table Rn Antagonist 4.5 pIC50 15
pIC50 4.5 (IC50 3x10-5 M) [15]
Description: inhibition of [125I]-[Ac-His1]PACAP-27 binding to membranes from CHO cells stably expressing the recombinant receptor
PG 97-269 Peptide Click here for species-specific activity table Hs Antagonist - - 16
[16]
View species-specific antagonist tables
Antagonist Comments
Deletion mutants of maxadilan (M65 and Max.d.4) have been reported to be selective PAC1 receptor antagonists but have not been extensively used due to problems of availability. PACAP(6-38) has been used as a PAC1 receptor antagonist in many studies, but does not discriminate between PAC1 and VPAC2 receptors [29]. Small molecule antagonists of PAC1 receptors have been described, but have not yet been extensively characterised [3].
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Gq/G11 family
Adenylyl cyclase stimulation
References:  10,47
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
G protein (identity unknown) Phospholipase C stimulation
References:  10
Tissue Distribution Click here for help
Adrenal medulla; pancreatic acini; glands of uterus; myenteric plexus; CNS
Species:  Human
Technique:  Receptor autoradiography
References:  50-51,65
Embryonic nervous system (including roof and floor plates of the neural tube, rhombencephalon, dorsal root and trigeminal ganglia and the sympathetic chain)
Species:  Mouse
Technique:  in situ hybridisation.
References:  54,63,66
Hypothalamus, brain stem, pituitary, adrenal gland, testis
Species:  Rat
Technique:  in situ hybridisation and northern blot
References:  57
Testis, epididymis, adrenal chromaffin cells
Species:  Rat
Technique:  receptor autoradiography and ligand binding
References:  56
Dorsal horn of spinal cord
Species:  Rat
Technique:  Receptor autoradiography
References:  24
Embryonic nervous system
Species:  Rat
Technique:  in situ hybridisation.
References:  2
Widespread in the CNS, especially in glomerular and internal granular layers of olfactory bulb, cerebral cortex, dentate gyrus, supraoptic nuclei, brainstem, cerebellum (purkinje cells and granular layer); anterior pituitary gland
Species:  Rat
Technique:  Immunocytochemistry and in situ hybridisation
References:  20,55
Thyroid and parathyroid glands.
Species:  Rat
Technique:  in situ hybridisation
References:  12
Adrenal medulla
Species:  Rat
Technique:  Receptor autoradiography and in situ hybridisation
References:  34
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
CHO cells stably transfected with PAC1 receptor cDNA.
Species:  Rat
Tissue:  CHO cells.
Response measured:  cAMP formation.
References:  6,10
CHO cells stably transfected with PAC1 receptor cDNA.
Species:  Rat
Tissue:  CHO cells.
Response measured:  IP3 production, intracellular Ca++ (Fura-2 AM).
References:  10
Pigment dispersion in Xenopus melanophores transfected with PAC1 receptor cDNA.
Species:  Rat
Tissue:  Xenopus melanophores.
Response measured:  Pigment dispersion.
References:  42
Physiological Functions Click here for help
Modulates glutamate-induced phase shifts in circadian rhythm of neuronal firing and clock gene expression in the suprachiasmatic nucleus, leading to changes in the magnitude of light-induced phase shifts in circadian behaviour in whole animals.
Species:  Mouse
Tissue:  suprachiasmatic nucleus
References:  4,7,19,33
Influences proliferation, apoptosis and migration of immature cerebellar granule cells
Species:  Rat
Tissue:  cerebellum
References:  13-14,60-62
Stimulation of catecholamine secretion from the adrenal medulla
Species:  Rat
Tissue:  adrenal medulla
References:  48
Physiological Consequences of Altering Gene Expression Click here for help
PAC1 receptor–deficient mice display impaired insulinotropic response to glucose, reduced glucose tolerance and impaired glucagon response to insulin-induced hypoglycaemia
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  23,43
PAC1 receptor–deficient mice display impairments in long-term potentiation and associative learning. Mice with a ubiquitous but not with a forebrain-specific deletion of the PAC1 receptor exhibited elevated locomotor activity and strongly reduced anxiety-like behavior
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  32,39-40
Studies in PAC1 receptor–deficient mice suggest a protective role for the receptor in endotoxic shock.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  31
Decreased nociceptive response in PAC1 receptor-deficient mice in models of chronic inflammation
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  25
When PAC1-deficient mice were crossed onto a C57BL/6 background, almost all mutants developed pulmonary hypertension and right heart failure after birth and died during the second postnatal week. These findings demonstrate the crucial importance of PAC1-mediated signaling for the maintenance of normal pulmonary vascular tone during early postnatal life.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  38
Mice lacking the PAC1 receptor or its ligand PACAP display an impairment in the ability of light pulses to induce phase shifts in circadian behaviour. PAC1 receptor null mice also displayed impaired masking (inhibition of wheel-running behaviour by light) at low light intensities.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  7,18-19,27
Transgenic mice overexpressing the human PAC1 receptor in a pattern closely resembling that of the endogenous gene developed dose-dependent hydrocephalus-like characteristics, including enlarged third and lateral ventricles and reduced cerebral cortex, corpus callosum, and subcommissural organ (SCO). There was significantly reduced neuronal proliferation and massively increased neuronal apoptosis in the developing cortex and SCO of transgenic embryos, while neurite outgrowth and neuronal migration in vitro remained uncompromised.
Species:  Mouse
Tissue:  Brain
Technique:  Transgenic mice overexpressing the human PAC1 receptor
References:  30
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adcyap1r1tm1.1Gsc Adcyap1r1tm1.1Gsc/Adcyap1r1tm1.1Gsc
involves: 129P2/OlaHsd
MGI:108449  MP:0001469 abnormal contextual conditioning behavior PMID: 11466423 
Adcyap1r1tm1.2Gsc|Tg(Camk2a-cre)1Gsc Adcyap1r1tm1.2Gsc/Adcyap1r1tm1.2Gsc,Tg(Camk2a-cre)1Gsc/0
involves: 129P2/OlaHsd * FVB/N
MGI:108449  MGI:2181421  MP:0001469 abnormal contextual conditioning behavior PMID: 11466423 
Adcyap1r1tm1.1Gsc Adcyap1r1tm1.1Gsc/Adcyap1r1tm1.1Gsc
involves: 129P2/OlaHsd
MGI:108449  MP:0001364 decreased anxiety-related response PMID: 11483244 
Adcyap1r1tm1Bbt Adcyap1r1tm1Bbt/Adcyap1r1tm1Bbt
involves: 129/Sv * C57BL/6J
MGI:108449  MP:0001262 decreased body weight PMID: 10792006 
Adcyap1r1tm1Bbt Adcyap1r1tm1Bbt/Adcyap1r1tm1Bbt
involves: 129/Sv * C57BL/6J
MGI:108449  MP:0002727 decreased circulating insulin level PMID: 10792006 
Adcyap1r1tm1Bbt Adcyap1r1tm1Bbt/Adcyap1r1tm1Bbt
involves: 129/Sv * C57BL/6J
MGI:108449  MP:0002565 delayed circadian phase PMID: 11425915 
Adcyap1r1tm1.1Gsc Adcyap1r1tm1.1Gsc/Adcyap1r1tm1.1Gsc
involves: 129P2/OlaHsd
MGI:108449  MP:0001399 hyperactivity PMID: 11483244 
Adcyap1r1tm1Bbt Adcyap1r1tm1Bbt/Adcyap1r1tm1Bbt
involves: 129/Sv * C57BL/6J
MGI:108449  MP:0005293 impaired glucose tolerance PMID: 10792006 
Adcyap1r1tm1Bbt Adcyap1r1tm1Bbt/Adcyap1r1tm1Bbt
involves: 129/Sv * C57BL/6J
MGI:108449  MP:0002079 increased circulating insulin level PMID: 10792006 
Adcyap1r1tm1Bbt Adcyap1r1tm1Bbt/Adcyap1r1tm1Bbt
involves: 129/Sv * C57BL/6J
MGI:108449  MP:0002412 increased susceptibility to bacterial infection PMID: 11792830 
Adcyap1r1tm1.2Gsc Adcyap1r1tm1.2Gsc/Adcyap1r1tm1.2Gsc
involves: 129P2/OlaHsd
MGI:108449  MP:0002169 no abnormal phenotype detected PMID: 11466423 
Adcyap1r1tm1Aba Adcyap1r1tm1Aba/Adcyap1r1tm1Aba
involves: C57BL/6
MGI:108449  MP:0002169 no abnormal phenotype detected PMID: 11032869 
Adcyap1r1tm1.1Gsc Adcyap1r1tm1.1Gsc/Adcyap1r1tm1.1Gsc
involves: 129P2/OlaHsd
MGI:108449  MP:0002082 postnatal lethality PMID: 11466423 
Adcyap1r1tm1Bbt Adcyap1r1tm1Bbt/Adcyap1r1tm1Bbt
involves: 129/Sv * C57BL/6J
MGI:108449  MP:0002082 postnatal lethality PMID: 10792006 
Adcyap1r1tm1Bbt Adcyap1r1tm1Bbt/Adcyap1r1tm1Bbt
involves: 129/Sv * C57BL/6J
MGI:108449  MP:0009011 prolonged diestrus PMID: 11193864 
Adcyap1r1tm1Bbt Adcyap1r1tm1Bbt/Adcyap1r1tm1Bbt
involves: 129/Sv * C57BL/6J
MGI:108449  MP:0009006 prolonged estrous cycle PMID: 11193864 
Adcyap1r1tm1Bbt Adcyap1r1tm1Bbt/Adcyap1r1tm1Bbt
involves: 129/Sv * C57BL/6J
MGI:108449  MP:0001923 reduced female fertility PMID: 11193864 
Adcyap1r1+|Adcyap1r1tm1Bbt Adcyap1r1tm1Bbt/Adcyap1r1+
involves: 129/Sv * C57BL/6J
MGI:108449  MP:0001923 reduced female fertility PMID: 11193864 
Adcyap1r1tm1.1Gsc Adcyap1r1tm1.1Gsc/Adcyap1r1tm1.1Gsc
involves: 129P2/OlaHsd
MGI:108449  MP:0001473 reduced long term potentiation PMID: 11466423 
Adcyap1r1tm1Bbt Adcyap1r1tm1Bbt/Adcyap1r1tm1Bbt
involves: 129/Sv * C57BL/6J
MGI:108449  MP:0002563 shortened circadian period PMID: 11425915 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Post-traumatic stress disorder
Disease Ontology: DOID:2055
References:  49
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Single nucleotide polymorphism Human C>G Located in consensus sequence of putative estrogen response element (ERE) 49
Clinically-Relevant Mutations and Pathophysiology Comments
A single nucleotide polymorphism (dbSNP:rs2267735) in a putative oestrogen response element within ADCYAP1R1 has been reported to predict PTSD diagnosis and symptoms in females only
Biologically Significant Variants Click here for help
Type:  Splice variants
Species:  Rat
Description:  Within the part of the PAC1 receptor cDNA encoding the third intracellular loop, splice variants either containing or lacking each of two alternative exons ('hip' and 'hop') exist. The hop exon exists in two forms (hop1 and hop2) as the result of the presence of two alternative splice acceptor sites three nucleotides apart. Thus, six possible splice variants which differ in their intracellular signal transduction pathways can be generated.
References:  26,57
Type:  Splice variants
Species:  Rat
Description:  A splice variant PAC1R(3a) encoding a full-length receptor with the insertion of an additional 72 base pairs encoding 24 amino acids (exon 3a) between coding exons 3 and 4 was detected in seminiferous tubules, spermatids and Sertoli cells and also in astroctyes. There was a 6-fold increase in the affinity of the PAC1R(3a) to bind PACAP-38, and alterations in its coupling to both cAMP and inositol phosphate signaling pathways relative to the wild type PAC1 receptor.
References:  8,44
Type:  Splice variants
Species:  Human
Description:  Splice variants with differing N-terminal extracellular domains were isolated from Y-79 retinoblastoma cells and human cerebellum. One variant named PAC1short (PAC1s) was deleted by 21 amino acids (residues 89-109) and bound PACAP38, PACAP27 and VIP with high affinity. A second novel variant, named PAC1 very short (PAC1vs), was deleted by 57 amino acids (residues 53-109) and preferentially bound PACAP38 (Ki=121 nM) and PACAP27 (Ki=129 nM) over VIP (Ki>1000 nM).
References:  9
Type:  Splice variants
Species:  Human
Description:  Four variants of the human PAC1 receptor (null, SV-1, SV-2 and SV-3) resulting from alternative splicing of sequences encoding part of the third intracellular loop (equivalent to hip and hop1 in the rat), have also been described and were shown to differ in their ability to activate phospholipase C (PLC).
References:  47
Type:  Splice variants
Species:  Mouse
Description:  Splicing out of the 4th and 5th coding exons, leading to a 21aa-deletion in the N-terminal extracellular domain, influences receptor selectivity with respect to PACAP-27 and -38 binding and the relative potencies of the two agonists in phospholipase C stimulation.
References:  41
General Comments
The PAC1 receptor/PACAP-38 pathway has been proposed as a novel target for the teament of migraine [22,53]. In response, Amgen developed an anti-PAC1 receptor monoclonal antibody (AMG301) that has completed phase 2 clinical evaluation in patients with chronic or episodic migraine (NCT03238781).

References

Show »

1. Aino H, Hashimoto H, Ogawa N, Nishino A, Yamamoto K, Nogi H, Nagata S, Baba A. (1995) Structure of the gene encoding the mouse pituitary adenylate cyclase-activating polypeptide receptor. Gene, 164 (2): 301-4. [PMID:7590347]

2. Basille M, Vaudry D, Coulouarn Y, Jegou S, Lihrmann I, Fournier A, Vaudry H, Gonzalez B. (2000) Comparative distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites and PACAP receptor mRNAs in the rat brain during development. J Comp Neurol, 425: 495-509. [PMID:10975876]

3. Beebe X, Darczak D, Davis-Taber RA, Uchic ME, Scott VE, Jarvis MF, Stewart AO. (2008) Discovery and SAR of hydrazide antagonists of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor type 1 (PAC1-R). Bioorg Med Chem Lett, 18 (6): 2162-6. [PMID:18272364]

4. Bergström AL, Hannibal J, Hindersson P, Fahrenkrug J. (2003) Light-induced phase shift in the Syrian hamster (Mesocricetus auratus) is attenuated by the PACAP receptor antagonist PACAP6-38 or PACAP immunoneutralization. Eur J Neurosci, 18 (9): 2552-62. [PMID:14622156]

5. Cai Y, Xin X, Yamada T, Muramatsu Y, Szpirer C, Matsumoto K. (1995) Assignments of the genes for rat pituitary adenylate cyclase activating polypeptide (Adcyap1) and its receptor subtypes (Adcyap1r1, Adcyap1r2, and Adcyap1r3). Cytogenet Cell Genet, 71 (2): 193-6. [PMID:7656595]

6. Ciccarelli E, Svoboda M, De Neef P, Di Paolo E, Bollen A, Dubeaux C, Vilardaga JP, Waelbroeck M, Robberecht P. (1995) Pharmacological properties of two recombinant splice variants of the PACAP type I receptor, transfected and stably expressed in CHO cells. Eur J Pharmacol, 288 (3): 259-67. [PMID:7774670]

7. Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelièvre V, Hu Z, Waschek JA. (2004) Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol, 287 (5): R1194-201. [PMID:15217792]

8. Daniel PB, Kieffer TJ, Leech CA, Habener JF. (2001) Novel alternatively spliced exon in the extracellular ligand-binding domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) selectively increases ligand affinity and alters signal transduction coupling during spermatogenesis. J Biol Chem, 276 (16): 12938-44. [PMID:11278585]

9. Dautzenberg FM, Mevenkamp G, Wille S, Hauger RL. (1999) N-terminal splice variants of the type I PACAP receptor: isolation, characterization and ligand binding/selectivity determinants. J Neuroendocrinol, 11 (12): 941-9. [PMID:10583729]

10. Delporte C, Poloczek P, de Neef P, Vertongen P, Ciccarelli E, Svoboda M, Herchuelz A, Winand J, Robberecht P. (1995) Pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide stimulate two signaling pathways in CHO cells stably transfected with the selective type I PACAP receptor. Mol Cell Endocrinol, 107 (1): 71-6. [PMID:7796937]

11. Dickson L, Aramori I, McCulloch J, Sharkey J, Finlayson K. (2006) A systematic comparison of intracellular cyclic AMP and calcium signalling highlights complexities in human VPAC/PAC receptor pharmacology. Neuropharmacology, 51 (6): 1086-98. [PMID:16930633]

12. Fahrenkrug J, Hannibal J. (2011) Localisation of the neuropeptide PACAP and its receptors in the rat parathyroid and thyroid glands. Gen Comp Endocrinol, 171 (1): 105-13. [PMID:21176780]

13. Falluel-Morel A, Vaudry D, Aubert N, Galas L, Benard M, Basille M, Fontaine M, Fournier A, Vaudry H, Gonzalez BJ. (2005) Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling. Proc Natl Acad Sci USA, 102 (7): 2637-42. [PMID:15695581]

14. Gonzalez BJ, Basille M, Vaudry D, Fournier A, Vaudry H. (1997) Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience, 78 (2): 419-30. [PMID:9145799]

15. Gourlet P, De Neef P, Cnudde J, Waelbroeck M, Robberecht P. (1997) In vitro properties of a high affinity selective antagonist of the VIP1 receptor. Peptides, 18 (10): 1555-60. [PMID:9437716]

16. Gourlet P, Vandermeers A, Vertongen P, Rathe J, De Neef P, Cnudde J, Waelbroeck M, Robberecht P. (1997) Development of high affinity selective VIP1 receptor agonists. Peptides, 18 (10): 1539-45. [PMID:9437714]

17. Gourlet P, Vertongen P, Vandermeers A, Vandermeers-Piret MC, Rathe J, De Neef P, Waelbroeck M, Robberecht P. (1997) The long-acting vasoactive intestinal polypeptide agonist RO 25-1553 is highly selective of the VIP2 receptor subclass. Peptides, 18 (3): 403-8. [PMID:9145428]

18. Hannibal J, Brabet P, Fahrenkrug J. (2008) Mice lacking the PACAP type I receptor have impaired photic entrainment and negative masking. Am J Physiol Regul Integr Comp Physiol, 295 (6): R2050-8. [PMID:18922961]

19. Hannibal J, Jamen F, Nielsen HS, Journot L, Brabet P, Fahrenkrug J. (2001) Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J Neurosci, 21 (13): 4883-90. [PMID:11425915]

20. Hashimoto H, Nogi H, Mori K, Ohishi H, Shigemoto R, Yamamoto K, Matsuda T, Mizuno N, Nagata S, Baba A. (1996) Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: an in situ hybridization study. J Comp Neurol, 371 (4): 567-77. [PMID:8841910]

21. Hashimoto H, Yamamoto K, Hagigara N, Ogawa N, Nishino A, Aino H, Nogi H, Imanishi K, Matsuda T, Baba A. (1996) cDNA cloning of a mouse pituitary adenylate cyclase-activating polypeptide receptor. Biochim Biophys Acta, 1281 (2): 129-33. [PMID:8664310]

22. Hoffmann J, Miller S, Martins-Oliveira M, Akerman S, Supronsinchai W, Sun H, Shi L, Wang J, Zhu D, Lehto S et al.. (2020) PAC1 receptor blockade reduces central nociceptive activity: new approach for primary headache?. Pain, 161 (7): 1670-1681. [PMID:32142016]

23. Jamen F, Persson K, Bertrand G, Rodriguez-Henche N, Puech R, Bockaert J, Ahrén B, Brabet P. (2000) PAC1 receptor-deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. J Clin Invest, 105 (9): 1307-15. [PMID:10792006]

24. Jongsma H, Danielsen N, Sundler F, Kanje M. (2000) Alteration of PACAP distribution and PACAP receptor binding in the rat sensory nervous system following sciatic nerve transection. Brain Res, 853: 186-196. [PMID:10640616]

25. Jongsma H, Pettersson LM, Zhang Yz, Reimer MK, Kanje M, Waldenström A, Sundler F, Danielsen N. (2001) Markedly reduced chronic nociceptive response in mice lacking the PAC1 receptor. Neuroreport, 12 (10): 2215-9. [PMID:11447337]

26. Journot L, Waeber C, Pantaloni C, Holsboer F, Seeburg PH, Bockaert J, Spengler D. (1995) Differential signal transduction by six splice variants of the pituitary adenylate cyclase-activating peptide (PACAP) receptor. Biochem Soc Trans, 23: 133-137. [PMID:7758697]

27. Kawaguchi C, Tanaka K, Isojima Y, Shintani N, Hashimoto H, Baba A, Nagai K. (2003) Changes in light-induced phase shift of circadian rhythm in mice lacking PACAP. Biochem Biophys Res Commun, 310 (1): 169-75. [PMID:14511666]

28. Kumar S, Pioszak A, Zhang C, Swaminathan K, Xu HE. (2011) Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors. PLoS ONE, 6 (5): e19682. [PMID:21625560]

29. Laburthe M, Couvineau A, Tan V. (2007) Class II G protein-coupled receptors for VIP and PACAP: structure, models of activation and pharmacology. Peptides, 28 (9): 1631-9. [PMID:17574305]

30. Lang B, Song B, Davidson W, MacKenzie A, Smith N, McCaig CD, Harmar AJ, Shen S. (2006) Expression of the human PAC1 receptor leads to dose-dependent hydrocephalus-related abnormalities in mice. J Clin Invest, 116 (7): 1924-34. [PMID:16823490]

31. Martinez C, Abad C, Delgado M, Arranz A, Juarranz MG, Rodriguez-Henche N, Brabet P, Leceta J, Gomariz RP. (2002) Anti-inflammatory role in septic shock of pituitary adenylate cyclase-activating polypeptide receptor. Proc Natl Acad Sci USA, 99 (2): 1053-8. [PMID:11792830]

32. Matsuyama S, Matsumoto A, Hashimoto H, Shintani N, Baba A. (2003) Impaired long-term potentiation in vivo in the dentate gyrus of pituitary adenylate cyclase-activating polypeptide (PACAP) or PACAP type 1 receptor-mutant mice. Neuroreport, 14 (16): 2095-8. [PMID:14600504]

33. Minami Y, Furuno K, Akiyama M, Moriya T, Shibata S. (2002) Pituitary adenylate cyclase-activating polypeptide produces a phase shift associated with induction of mPer expression in the mouse suprachiasmatic nucleus. Neuroscience, 113 (1): 37-45. [PMID:12123682]

34. Moller K, Sundler F. (1996) Expression of pituitary adenylate cyclase activating peptide (PACAP) and PACAP type I receptors in the rat adrenal medulla. Regul Pept, 63 (2-3): 129-39. [PMID:8837221]

35. Moody TW, Jensen RT, Fridkin M, Gozes I. (2002) (N-stearyl, norleucine17)VIPhybrid is a broad spectrum vasoactive intestinal peptide receptor antagonist. J Mol Neurosci, 18 (1-2): 29-35. [PMID:11931347]

36. Moro O, Lerner EA. (1997) Maxadilan, the vasodilator from sand flies, is a specific pituitary adenylate cyclase activating peptide type I receptor agonist. J Biol Chem, 272 (2): 966-70. [PMID:8995389]

37. Ogi K, Miyamoto Y, Masuda Y, Habata Y, Hosoya M, Ohtaki T, Masuo Y, Onda H, Fujino M. (1993) Molecular cloning and functional expression of a cDNA encoding a human pituitary adenylate cyclase activating polypeptide receptor. Biochem Biophys Res Commun, 196 (3): 1511-21. [PMID:7902709]

38. Otto C, Hein L, Brede M, Jahns R, Engelhardt S, Gröne HJ, Schütz G. (2004) Pulmonary hypertension and right heart failure in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. Circulation, 110 (20): 3245-51. [PMID:15520307]

39. Otto C, Kovalchuk Y, Wolfer DP, Gass P, Martin M, Zuschratter W, Gröne HJ, Kellendonk C, Tronche F, Maldonado R et al.. (2001) Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. J Neurosci, 21 (15): 5520-7. [PMID:11466423]

40. Otto C, Martin M, Wolfer DP, Lipp HP, Maldonado R, Schütz G. (2001) Altered emotional behavior in PACAP-type-I-receptor-deficient mice. Brain Res Mol Brain Res, 92 (1-2): 78-84. [PMID:11483244]

41. Pantaloni C, Brabet P, Bilanges B, Dumuis A, Houssami S, Spengler D, Bockaert J, Journot L. (1996) Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. J Biol Chem, 271 (36): 22146-51. [PMID:8703026]

42. Pereira P, Reddy VB, Kounga K, Bello Y, Lerner E. (2002) Maxadilan activates PAC1 receptors expressed in Xenopus laevis xelanophores. Pigment Cell Res, 15 (6): 461-6. [PMID:12453189]

43. Persson K, Ahrén B. (2002) The neuropeptide PACAP contributes to the glucagon response to insulin-induced hypoglycaemia in mice. Acta Physiol Scand, 175 (1): 25-8. [PMID:11982501]

44. Pilzer I, Gozes I. (2006) A splice variant to PACAP receptor that is involved in spermatogenesis is expressed in astrocytes. Ann N Y Acad Sci, 1070: 484-90. [PMID:16888214]

45. Pisegna JR, Lyu RM, Germano PM. (2000) Essential structural motif in the C-terminus of the PACAP type I receptor for signal transduction and internalization. Ann N Y Acad Sci, 921: 195-201. [PMID:11193823]

46. Pisegna JR, Wank SA. (1993) Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type I receptor. Proc Natl Acad Sci USA, 90 (13): 6345-9. [PMID:8392197]

47. Pisegna JR, Wank SA. (1996) Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor. Evidence for dual coupling to adenylate cyclase and phospholipase C. J Biol Chem, 271 (29): 17267-74. [PMID:8663363]

48. Przywara DA, Guo X, Angelilli ML, Wakade TD, Wakade AR. (1996) A non-cholinergic transmitter, pituitary adenylate cyclase-activating polypeptide, utilizes a novel mechanism to evoke catecholamine secretion in rat adrenal chromaffin cells. J Biol Chem, 271 (18): 10545-50. [PMID:8631854]

49. Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, Norrholm SD, Kilaru V, Smith AK, Myers AJ et al.. (2011) Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature, 470 (7335): 492-7. [PMID:21350482]

50. Reubi JC. (2000) In vitro evaluation of VIP/PACAP receptors in healthy and diseased human tissues. Clinical implications. Ann N Y Acad Sci, 921: 1-25. [PMID:11193811]

51. Reubi JC, Läderach U, Waser B, Gebbers JO, Robberecht P, Laissue JA. (2000) Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res, 60 (11): 3105-12. [PMID:10850463]

52. Robberecht P, Gourlet P, De Neef P, Woussen-Colle MC, Vandermeers-Piret MC, Vandermeers A, Christophe J. (1992) Structural requirements for the occupancy of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6-38) as a potent antagonist. Eur J Biochem, 207 (1): 239-46. [PMID:1321043]

53. Rubio-Beltrán E, Correnti E, Deen M, Kamm K, Kelderman T, Papetti L, Vigneri S, MaassenVanDenBrink A, Edvinsson L, European Headache Federation School of Advanced Studies (EHF-SAS). (2018) PACAP38 and PAC1 receptor blockade: a new target for headache?. J Headache Pain, 19 (1): 64. [PMID:30088106]

54. Sheward WJ, Lutz EM, Copp AJ, Harmar AJ. (1998) Expression of PACAP, and PACAP type 1 (PAC1) receptor mRNA during development of the mouse embryo. Brain Res Dev Brain Res, 109 (2): 245-53. [PMID:9729410]

55. Shioda S, Shuto Y, Somogyvari-Vigh A, Legradi G, Onda H, Coy DH, Nakajo S, Arimura A. (1997) Localization and gene expression of the receptor for pituitary adenylate cyclase-activating polypeptide in the rat brain. Neurosci Res, 28 (4): 345-54. [PMID:9274830]

56. Shivers BD, Görcs TJ, Gottschall PE, Arimura A. (1991) Two high affinity binding sites for pituitary adenylate cyclase-activating polypeptide have different tissue distributions. Endocrinology, 128 (6): 3055-65. [PMID:2036976]

57. Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L. (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature, 365 (6442): 170-5. [PMID:8396727]

58. Stoffel M, Espinosa 3rd R, Trabb JB, Le Beau MM, Bell GI. (1994) Human type I pituitary adenylate cyclase activating polypeptide receptor (ADCYAP1R): localization to chromosome band 7p14 and integration into the cytogenetic, physical, and genetic map of chromosome 7. Genomics, 23 (3): 697-9. [PMID:7851900]

59. Tsutsumi M, Claus TH, Liang Y, Li Y, Yang L, Zhu J, Dela Cruz F, Peng X, Chen H, Yung SL et al.. (2002) A potent and highly selective VPAC2 agonist enhances glucose-induced insulin release and glucose disposal: a potential therapy for type 2 diabetes. Diabetes, 51 (5): 1453-60. [PMID:11978642]

60. Vaudry D, Gonzalez BJ, Basille M, Anouar Y, Fournier A, Vaudry H. (1998) Pituitary adenylate cyclase-activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway. Neuroscience, 84 (3): 801-12. [PMID:9579785]

61. Vaudry D, Gonzalez BJ, Basille M, Fournier A, Vaudry H. (1999) Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proc Natl Acad Sci USA, 96 (16): 9415-20. [PMID:10430957]

62. Vaudry D, Gonzalez BJ, Basille M, Pamantung TF, Fontaine M, Fournier A, Vaudry H. (2000) The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc Natl Acad Sci USA, 97 (24): 13390-5. [PMID:11087878]

63. Waschek JA, Casillas RA, Nguyen TB, DiCicco-Bloom EM, Carpenter EM, Rodriguez WI. (1998) Neural tube expression of pituitary adenylate cyclase-activating peptide (PACAP) and receptor: potential role in patterning and neurogenesis. Proc Natl Acad Sci USA, 95 (16): 9602-7. [PMID:9689127]

64. Xiong Y, Guo J, Candelore MR, Liang R, Miller C, Dallas-Yang Q, Jiang G, McCann PE, Qureshi SA, Tong X et al.. (2012) Discovery of a novel glucagon receptor antagonist N-[(4-{(1S)-1-[3-(3, 5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl]ethyl}phenyl)carbonyl]-β-alanine (MK-0893) for the treatment of type II diabetes. J Med Chem, 55 (13): 6137-48. [PMID:22708876]

65. Yon L, Breault L, Contesse V, Bellancourt G, Delarue C, Fournier A, Lehoux JG, Vaudry H, Gallo-Payet N. (1998) Localization, characterization, and second messenger coupling of pituitary adenylate cyclase-activating polypeptide receptors in the fetal human adrenal gland during the second trimester of gestation. J Clin Endocrinol Metab, 83 (4): 1299-305. [PMID:9543159]

66. Zhou CJ, Shioda S, Shibanuma M, Nakajo S, Funahashi H, Nakai Y, Arimura A, Kikuyama S. (1999) Pituitary adenylate cyclase-activating polypeptide receptors during development: expression in the rat embryo at primitive streak stage. Neuroscience, 93 (1): 375-91. [PMID:10430501]

Contributors

Show »

How to cite this page