VPAC<sub>1</sub> receptor | VIP and PACAP receptors | IUPHAR/BPS Guide to PHARMACOLOGY

VPAC1 receptor

Target id: 371

Nomenclature: VPAC1 receptor

Family: VIP and PACAP receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     VPAC1 receptor has curated GtoImmuPdb data

Gene and Protein Information
class B G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 457 3p22 VIPR1 vasoactive intestinal peptide receptor 1 32
Mouse 7 459 9F4 Vipr1 vasoactive intestinal peptide receptor 1 16
Rat 7 459 8 Vipr1 vasoactive intestinal peptide receptor 1 2,5
Previous and Unofficial Names
PVR2 | HVR1 | RDC1 | VIP and PACAP receptor 1 | PACAP-R2 | pituitary adenylate cyclase-activating polypeptide type II receptor | VIP-R1
Database Links
Specialist databases
GPCRDB vipr1_human (Hs), vipr1_mouse (Mm), vipr1_rat (Rn)
Other databases
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands
GHRH {Sp: Human} , GHRH {Sp: Mouse} , GHRH {Sp: Rat}
PACAP-38 {Sp: Human, Mouse, Rat}
PACAP-27 {Sp: Human, Mouse, Rat, Sheep}
PHI {Sp: Mouse, Rat}
PHV {Sp: Rat}
secretin {Sp: Human} , secretin {Sp: Mouse} , secretin {Sp: Rat}
VIP {Sp: Human, Mouse, Rat}
Comments: VIP, PACAP-27 and PACAP-38 are the principal endogenous agonists
Potency order of endogenous ligands (Human)
VIP (VIP, P01282), PACAP-27 (ADCYAP1, P18509), PACAP-38 (ADCYAP1, P18509) >> GHRH (GHRH, P01286), PHI, secretin (SCT, P09683)

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]VIP (human, mouse, rat) Hs Agonist 9.4 pKd 29
pKd 9.4 (Kd 4x10-10 M) [29]
Description: binding to membranes from CHO cells stably expressing the recombinant receptor
VIP {Sp: Human, Mouse, Rat} Hs Agonist 8.5 – 9.8 pKi 8,28-29,33-34,38
pKi 9.8 (Ki 1.6x10-10 M) [34]
Description: inhibition of [125I]-VIP binding to membranes from HEK293 cells stably expressing the recombinant receptor
pKi 9.7 (Ki 2x10-10 M) [34]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pKi 9.7 (Ki 2x10-10 M) [34]
Description: cyclic AMP formation in HEK293 cells stably expressing recombinant receptor
pKi 9.1 (Ki 8x10-10 M) [33]
Description: inhibition of [125I]-VIP binding to membranes from COS cells transiently expressing the recombinant receptor
pKi 9.1 (Ki 8.2x10-10 M) [34]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
pKi 9.0 (Ki 9x10-10 M) [29]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
pKi 9.0 (Ki 9x10-10 M) [8]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
pKi 8.9 (Ki 1.4x10-9 M) [28]
Description: inhibition of [125I]-VIP binding to membranes from COS cells transiently expressing the recombinant receptor
pKi 8.5 (Ki 3.4x10-9 M) [38]
Description: inhibition of [125I]-VIP binding to CHO cells stably expressing the recombinant receptor
PACAP-27 {Sp: Human, Mouse, Rat, Sheep} Hs Agonist 8.9 pKi 8
pKi 8.9 (Ki 1.3x10-9 M) [8]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
PACAP-38 {Sp: Human, Mouse, Rat} Hs Agonist 8.2 pKi 8
pKi 8.2 (Ki 6.8x10-9 M) [8]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
[Ala11,22,28]VIP Hs Agonist 8.1 pKi 29
pKi 8.1 (Ki 7.4x10-9 M) [29]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
helodermin Hs Agonist 7.3 pKi 8
pKi 7.3 (Ki 4.6x10-8 M) [8]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
GHRH {Sp: Human} Hs Agonist 6.2 pKi 8
pKi 6.2 (Ki 6x10-7 M) [8]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
PHM {Sp: Human} Hs Agonist 5.7 pKi 8
pKi 5.7 (Ki 2x10-6 M) [8]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
Ro 25-1392 Hs Agonist <5.5 pKi 38
pKi <5.5 (Ki >3x10-6 M) [38]
Description: inhibition of [125I]-VIP binding to CHO cells stably expressing the recombinant receptor
secretin {Sp: Pig} Hs Agonist <5.0 pKi 8
pKi <5.0 (Ki >1x10-5 M) [8]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
VIP {Sp: Human, Mouse, Rat} Hs Agonist 7.9 – 10.0 pEC50 6,20,26,29,38
pEC50 10.0 (EC50 1.1x10-10 M) [6]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pEC50 9.4 (EC50 4x10-10 M) [29]
Description: stimulation of cyclic AMP formation in CHO cells stably expressing the recombinant receptor
pEC50 9.3 (EC50 5x10-10 M) [20]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pEC50 8.9 (EC50 1.2x10-9 M) [38]
Description: stimulation of cyclic AMP formation in CHO cells stably expressing the recombinant receptor
pEC50 8.5 (EC50 3x10-9 M) [26]
Description: stimulation of cyclic AMP formation in CHO cells stably expressing the recombinant receptor
pEC50 7.9 (EC50 1.41x10-8 M) [6]
Description: calcium influx in CHO cells stably expressing recombinant receptor
[Ala11,22,28]VIP Hs Agonist 7.6 – 10.2 pEC50 6,29
pEC50 10.2 (EC50 5.7x10-11 M) [6]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pEC50 9.4 (EC50 4x10-10 M) [29]
Description: stimulation of cyclic AMP formation in CHO cells stably expressing the recombinant receptor
pEC50 7.6 (EC50 2.56x10-8 M) [6]
Description: calcium influx in CHO cells stably expressing recombinant receptor
PACAP-27 {Sp: Human, Mouse, Rat, Sheep} Hs Agonist 7.6 – 9.9 pEC50 6,26
pEC50 9.9 (EC50 1.3x10-10 M) [6]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pEC50 8.2 (EC50 6x10-9 M) [26]
Description: stimulation of cyclic AMP formation in CHO cells stably expressing the recombinant receptor
pEC50 7.6 (EC50 2.26x10-8 M) [6]
Description: calcium influx in CHO cells stably expressing recombinant receptor
PACAP-38 {Sp: Human, Mouse, Rat} Hs Agonist 7.4 – 9.7 pEC50 6
pEC50 9.7 (EC50 2.2x10-10 M) [6]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pEC50 7.4 (EC50 3.74x10-8 M) [6]
Description: calcium influx in CHO cells stably expressing recombinant receptor
[Lys15,Arg16,Leu27]VIP-(1-7)/GRF-(8-27)-NH2 Hs Agonist 8.3 pEC50 26
pEC50 8.3 (EC50 5x10-9 M) [26]
Description: stimulation of cyclic AMP formation in CHO cells stably expressing the recombinant receptor
BAY 55-9837 Hs Agonist 7.0 pEC50 35
pEC50 7.0 (EC50 1x10-7 M) [35]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
PG 99-465 Hs Agonist <5.5 – 8.1 pEC50 6
pEC50 8.1 (EC50 8.04x10-9 M) [6]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pEC50 <5.5 (EC50 >3x10-6 M) [6]
Description: calcium influx in CHO cells stably expressing recombinant receptor
Ro 25-1553 Hs Partial agonist 6.0 pEC50 20,26
pEC50 6.0 (EC50 1x10-6 M) [20]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pEC50 <6.0 (EC50 >1x10-6 M) [26]
Description: stimulation of cyclic AMP formation in CHO cells stably expressing the recombinant receptor
Ro 25-1392 Hs Agonist <6.0 pEC50 38
pEC50 <6.0 (EC50 >1x10-6 M) [38]
Description: stimulation of cyclic AMP formation in CHO cells stably expressing the recombinant receptor
PACAP-27 {Sp: Human, Mouse, Rat, Sheep} Rn Agonist 9.0 pIC50 12
pIC50 9.0 (IC50 1x10-9 M) [12]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
[Arg16]chicken secretin Rn Agonist 9.0 pIC50 13
pIC50 9.0 (IC50 1x10-9 M) [13]
Description: Inhibition of [125I]VIP binding in membranes from CHO cells expressing recombinant receptor
VIP {Sp: Human, Mouse, Rat} Rn Agonist 8.7 – 9.0 pIC50 11-13
pIC50 9.0 (IC50 1x10-9 M) [12]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
pIC50 8.7 (IC50 2x10-9 M) [13]
Description: Inhibition of [125I]VIP binding in membranes from CHO cells expressing recombinant receptor
pIC50 8.7 (IC50 2x10-9 M) [11]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
N-stearyl-[Nle17]VIP Rn Agonist 8.7 pIC50 11
pIC50 8.7 (IC50 2x10-9 M) [11]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
[Lys15,Arg16,Leu27]VIP-(1-7)/GRF-(8-27)-NH2 Rn Agonist 8.7 pIC50 13
pIC50 8.7 (IC50 2x10-9 M) [13]
Description: Inhibition of [125I]VIP binding in membranes from CHO cells expressing recombinant receptor
VIP {Sp: Human, Mouse, Rat} Hs Agonist 8.0 – 9.3 pIC50 11-13,20,26
pIC50 9.3 (IC50 5x10-10 M) [20]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
pIC50 8.7 (IC50 2x10-9 M) [13]
Description: Inhibition of [125I]VIP binding in membranes from LoVo cells expressing recombinant receptor
pIC50 8.7 (IC50 2x10-9 M) [12]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
pIC50 8.7 (IC50 2x10-9 M) [11]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
pIC50 8.0 (IC50 1x10-8 M) [26]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
PHI {Sp: Pig} Rn Agonist 8.5 pIC50 12
pIC50 8.5 (IC50 3x10-9 M) [12]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
PHV {Sp: Rat} Rn Agonist 8.5 pIC50 12
pIC50 8.5 (IC50 3x10-9 M) [12]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
[Lys15,Arg16,Leu27]VIP-(1-7)/GRF-(8-27)-NH2 Hs Agonist 7.7 – 9.0 pIC50 13,26
pIC50 9.0 (IC50 1x10-9 M) [13]
Description: Inhibition of [125I]VIP binding in membranes from LoVo cells expressing recombinant receptor
pIC50 7.7 (IC50 2x10-8 M) [26]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
N-stearyl-[Nle17]VIP Hs Agonist 8.3 pIC50 11
pIC50 8.3 (IC50 5x10-9 M) [11]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
PACAP-27 {Sp: Human, Mouse, Rat, Sheep} Hs Agonist 7.8 – 8.5 pIC50 12,26
pIC50 8.5 (IC50 3x10-9 M) [12]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
pIC50 7.8 (IC50 1.5x10-8 M) [26]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
helodermin Rn Agonist 8.1 pIC50 12
pIC50 8.1 (IC50 8x10-9 M) [12]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
[Arg16]chicken secretin Hs Agonist 7.2 pIC50 13
pIC50 7.2 (IC50 6x10-8 M) [13]
Description: Inhibition of [125I]VIP binding in membranes from LoVo cells expressing recombinant receptor
PG 99-465 Hs Partial agonist 6.7 pIC50 27
pIC50 6.7 (IC50 2x10-7 M) [27]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
secretin {Sp: Pig} Rn Agonist 6.5 pIC50 12-13
pIC50 6.5 (IC50 3x10-7 M) [12]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
pIC50 6.5 (IC50 3x10-7 M) [13]
Description: Inhibition of [125I]VIP binding in membranes from CHO cells expressing recombinant receptor
Ro 25-1553 Hs Partial agonist 6.0 – 7.0 pIC50 14,20,26
pIC50 7.0 (IC50 1x10-7 M) [14]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
pIC50 6.1 (IC50 8x10-7 M) [20]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
pIC50 <6.0 (IC50 >1x10-6 M) [26]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
PHI {Sp: Pig} Hs Agonist 6.0 pIC50 12
pIC50 6.0 (IC50 1x10-6 M) [12]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
helodermin Hs Agonist 6.0 pIC50 12
pIC50 6.0 (IC50 1x10-6 M) [12]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
secretin {Sp: Pig} Hs Agonist 5.8 pIC50 12-13
pIC50 5.8 (IC50 1.5x10-6 M) [13]
Description: Inhibition of [125I]VIP binding in membranes from LoVo cells expressing recombinant receptor
pIC50 5.8 (IC50 1.5x10-6 M) [12]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
PHV {Sp: Rat} Hs Agonist 5.5 pIC50 12
pIC50 5.5 (IC50 3x10-6 M) [12]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
BAY 55-9837 Hs Agonist 5.1 pIC50 35
pIC50 5.1 (IC50 8.7x10-6 M) [35]
Description: inhibition of [125I]-PACAP-27 binding to membranes from CHO cells stably expressing the recombinant receptor
[125I]PACAP-27 Hs Agonist - -
View species-specific agonist tables
Agonist Comments
[Ala11,22,28]VIP and [Lys15,Arg16,Leu27]VIP(1–7)/GRF(8–27)-NH2 are selective VPAC1 agonists with much lower potency at VPAC2 and PAC1 receptors.
Antagonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Reference
PG 97-269 Rn Antagonist 8.0 pIC50 10
pIC50 8.0 (IC50 1x10-8 M) [10]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
PG 97-269 Hs Antagonist 7.1 – 8.7 pIC50 6,10,20
pIC50 8.7 (IC50 2x10-9 M) [10,20]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor, or from LoVo cells which endogenously express the receptor
pIC50 8.7 (IC50 2x10-9 M) [20]
Description: cyclic AMP formation in CHO cells stably expressing recombinant receptor
pIC50 8.0 (IC50 9.9x10-9 M) [6]
Description: inhibition of calcium influx stimulated by 30nM VIP in CHO cells stably expressing recombinant receptor
pIC50 7.1 (IC50 8x10-8 M) [6]
Description: inhibition of cyclic AMP formation stimulated by 0.3nM VIP in CHO cells stably expressing recombinant receptor
N-stearyl-[Nle17] neurotensin-(6-11)/VIP-(7-28) Hs Antagonist 7.5 pIC50 26
pIC50 7.5 (IC50 3x10-8 M) [26]
Description: inhibition of [125I]-VIP binding to membranes from CHO cells stably expressing the recombinant receptor
View species-specific antagonist tables
Antagonist Comments
PG97-269 is a selective VPAC1 antagonist with much lower potency at VPAC2 and PAC1 receptors.
Immunopharmacology Comments
VPAC1 receptor activation by vasoactive intestinal peptide (VIP) can inhibit proinflammatory cytokine production by monocytes in an experimental model of pancreatitis [22]. The potential role of the VIP-PACAP system in immunity is reviewed in [9].
Primary Transduction Mechanisms
Transducer Effector/Response
Gs family Adenylate cyclase stimulation
References:  8,23,33-34
Secondary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family
Gq/G11 family
G protein (identity unknown)
Phospholipase C stimulation
Phospholipase D stimulation
Comments:  Coupling to phospholipase C has been reported to be dependent on the presence of the Receptor Activity Modifying Protein RAMP2 [3].
References:  24-25,37
Tissue Distribution
Cerebral cortex, hippocampus, amygdala
Species:  Human
Technique:  in situ hybridisation.
References:  19,36
Liver (hepatocytes); gastrointestinal mucosa; lobules and ducts of the mammary gland; thyroid (follicular cells); prostate (glands); urothelium of bladder and ureter; acini of the lung; pancreatic ducts; glands of uterus; adipose tissue; kidney (glomeruli);
Species:  Human
Technique:  Radioligand binding
References:  30-31
T lymphocytes
Species:  Human
Technique:  RT-PCR
References:  4
Lung > prostate > peripheral blood leukocytes = liver = brain = small intestine colon = heart = spleen > placenta = kidney = thymus = testis
Species:  Human
Technique:  Northern blotting.
References:  32
Mucosa throughout the gastrointestinal tract; liver; uterine glands; epithelial cells of prostate and urethra; Leydig cells of the testis; white pulp of the spleen; lymphocytes in lymph nodes; medulla of the thymus; tracheal and bronchial epithelia;
Species:  Mouse
Technique:  Radioligand binding
References:  15
Macrophages at sites of inflammation strongly express VPAC1 receptors in many animal models
Species:  Mouse
Technique:  Northern blotting.
References:  17,21
Rodent lung (epithelial cells, some vascular and non-vascular smooth muscle, macrophages)
Species:  Rat
Technique:  Immunohistochemistry.
References:  18,21
Kidney: epithelium of proximal and distal tubules; thymus, adrenal medulla, bronchial epithelium, uterine smooth muscle
Species:  Rat
Technique:  in situ hybridisation.
References:  36
Lung, intestine, heart, liver, vas deferens
Species:  Rat
Technique:  Northern blotting.
References:  19,36
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
CHO cells stably transfected with VPAC1 receptor cDNA.
Species:  Human
Tissue:  CHO cells.
Response measured:  cAMP formation.
References:  8,29
COS-7 cells transiently transfected with VPAC1 receptor cDNA.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  cAMP formation.
References:  28
Stimulation of cAMP production in human colon cancer cell lines (eg. HT-29).
Species:  Human
Tissue:  Colon cancer cells.
Response measured:  cAMP formation.
References:  23,34
Physiological Consequences of Altering Gene Expression
VPAC1 receptor null mice are resistant to dextran sodium sulfate-induced colitis
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  39
VPAC1 receptor null mice exhibit fetal, neonatal and postweaning death owing to failure to thrive, intestinal obstruction and hypoglycemia. Disorganized hyperproliferation of intestinal epithelial cells with mucus deposition and bowel wall thickening. Small dysmorphic islets of Langerhans. Abnormal glucose and insulin tolerance.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  7
VPAC1 receptor-deficient mice are resistant to induction of experimental autoimmune encephalomyelitis (EAE), indicating a critical role for VPAC1 receptor signaling in the development of EAE. This is phenocopied by the VPAC1 receptor anatgonist PG 97-269.
Species:  Mouse
Tissue: 
Technique:  Geneknockout
References:  1

References

Show »

1. Abad C, Jayaram B, Becquet L, Wang Y, O'Dorisio MS, Waschek JA, Tan YV. (2016) VPAC1 receptor (Vipr1)-deficient mice exhibit ameliorated experimental autoimmune encephalomyelitis, with specific deficits in the effector stage. J Neuroinflammation, 13 (1): 169. [PMID:27357191]

2. Cai Y, Xin X, Yamada T, Muramatsu Y, Szpirer C, Matsumoto K. (1995) Assignments of the genes for rat pituitary adenylate cyclase activating polypeptide (Adcyap1) and its receptor subtypes (Adcyap1r1, Adcyap1r2, and Adcyap1r3). Cytogenet Cell Genet, 71: 193-196. [PMID:7656595]

3. Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, Couvineau A, Kuwasako K, Tilakaratne N, Sexton PM. (2003) Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem., 278: 3293-3297. [PMID:12446722]

4. Delgado M, Martinez C, Johnson MC, Gomariz RP, Ganea D. (1996) Differential expression of vasoactive intestinal peptide receptors 1 and 2 (VIP-R1 and VIP-R2) mRNA in murine lymphocytes. J Neuroimmunol, 68: 27-38. [PMID:8784257]

5. Deng AY, Gu L, Rapp JP, Szpirer C, Szpirer J. (1994) Chromosomal assignment of 11 loci in the rat by mouse-rat somatic hybrids and linkage. Mamm Genome, 5: 712-716. [PMID:7873882]

6. Dickson L, Aramori I, McCulloch J, Sharkey J, Finlayson K. (2006) A systematic comparison of intracellular cyclic AMP and calcium signalling highlights complexities in human VPAC/PAC receptor pharmacology. Neuropharmacology, 51 (6): 1086-98. [PMID:16930633]

7. Fabricius D, Karacay B, Shutt D, Leverich W, Schafer B, Takle E, Thedens D, Khanna G, Raikwar S, Yang B et al.. (2011) Characterization of intestinal and pancreatic dysfunction in VPAC1-null mutant mouse. Pancreas, 40 (6): 861-71. [PMID:21697765]

8. Gaudin P, Couvineau A, Maoret JJ, Rouyer-Fessard C, Laburthe M. (1996) Stable expression of the recombinant human VIP1 receptor in clonal Chinese hamster ovary cells: pharmacological, functional and molecular properties. Eur J Pharmacol, 302: 207-214. [PMID:8791009]

9. Gomariz RP, Juarranz Y, Abad C, Arranz A, Leceta J, Martinez C. (2006) VIP-PACAP system in immunity: new insights for multitarget therapy. Ann. N. Y. Acad. Sci., 1070: 51-74. [PMID:16888149]

10. Gourlet P, De Neef P, Cnudde J, Waelbroeck M, Robberecht P. (1997) In vitro properties of a high affinity selective antagonist of the VIP1 receptor. Peptides, 18: 1555-1560. [PMID:9437716]

11. Gourlet P, Rathe J, De Neef P, Cnudde J, Vandermeers-Piret MC, Waelbroeck M, Robberecht P. (1998) Interaction of lipophilic VIP derivatives with recombinant VIP1/PACAP and VIP2/PACAP receptors. Eur J Pharmacol., 354: 105-111. [PMID:9726637]

12. Gourlet P, Vandermeers A, Van Rampelbergh J, De Neef P, Cnudde J, Waelbroeck M, Robberecht P. (1998) Analogues of VIP, helodermin, and PACAP discriminate between rat and human VIP1 and VIP2 receptors. Ann N Y Acad Sci, 865: 247-252. [PMID:9928018]

13. Gourlet P, Vandermeers A, Vertongen P, Rathe J, De Neef P, Cnudde J, Waelbroeck M, Robberecht P. (1997) Development of high affinity selective VIP1 receptor agonists. Peptides, 18: 1539-1545. [PMID:9437714]

14. Gourlet P, Vertongen P, Vandermeers A, Vandermeers-Piret MC, Rathe J, De Neef P, Waelbroeck M, Robberecht P. (1997) The long-acting vasoactive intestinal polypeptide agonist RO 25-1553 is highly selective of the VIP2 receptor subclass. Peptides, 18: 403-408. [PMID:9145428]

15. Harmar AJ, Sheward WJ, Morrison CF, Waser B, Gugger M, Reubi JC. (2004) Distribution of the VPAC2 receptor in peripheral tissues of the mouse. Endocrinology, 145: 1203-1210. [PMID:14617572]

16. Hashimoto H, Nishino A, Shintani N, Hagihara N, Copeland NG, Jenkins NA, Yamamoto K, Matsuda T, Ishihara T, Nagata S, Baba A. (1999) Genomic organization and chromosomal location of the mouse vasoactive intestinal polypeptide 1 (VPAC1) receptor. Genomics, 58: 90-93. [PMID:10331949]

17. Ichikawa S, Goto Y, Uchino S, Kaltreider HB, Goetzl EJ, Sreedharan SP. (1996) Changes in adhesion molecule expression during distinct patterns of immune cell migration in the inflamed lung. Arch Histol Cytol, 59: 443-452. [PMID:9037381]

18. Ichikawa S, Sreedharan SP, Owen RL, Goetzl EJ. (1995) Immunochemical localization of type I VIP receptor and NK-1-type substance P receptor in rat lung. Am J Physiol, 268: L584-L588. [PMID:7537460]

19. Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S. (1992) Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron, 8: 811-819. [PMID:1314625]

20. Juarranz MG, Van Rampelbergh J, Gourlet P, De Neef P, Cnudde J, Robberecht P, Waelbroeck M. (1999) Different vasoactive intestinal polypeptide receptor domains are involved in the selective recognition of two VPAC2-selective ligands. Mol Pharmacol, 56: 1280-1287. [PMID:10570056]

21. Kaltreider HB, Ichikawa S, Byrd PK, Ingram DA, Kishiyama JL, Sreedharan SP, Warnock ML, Beck JM, Goetzl EJ. (1997) Upregulation of neuropeptides and neuropeptide receptors in a murine model of immune inflammation in lung parenchyma. Am J Respir Cell Mol Biol, 16: 133-144. [PMID:9032120]

22. Kojima M, Ito T, Oono T, Hisano T, Igarashi H, Arita Y, Kawabe K, Coy DH, Jensen RT, Nawata H. (2005) VIP attenuation of the severity of experimental pancreatitis is due to VPAC1 receptor-mediated inhibition of cytokine production. Pancreas, 30 (1): 62-70. [PMID:15632701]

23. Laburthe M, Rousset M, Boissard C, Chevalier G, Zweibaum A, Rosselin G. (1978) Vasoactive intestinal peptide: a potent stimulator of adenosine 3':5'- cyclic monophosphate accumulation in gut carcinoma cell lines in culture. Proc Natl Acad Sci USA, 75: 2772-2775. [PMID:208077]

24. MacKenzie CJ, Lutz EM, McCulloch DA, Mitchell R, Harmar AJ. (1996) Phospholipase C activation by VIP1 and VIP2 receptors expressed in COS 7 cells involves a pertussis toxin-sensitive mechanism. Ann N Y Acad Sci, 805: 579-584. [PMID:8993443]

25. McCulloch DA, Lutz EM, Johnson MS, Robertson DN, MacKenzie CJ, Holland PJ, Mitchell R. (2001) ADP-ribosylation factor-dependent phospholipase D activation by VPAC receptors and a PAC1 receptor splice variant. Mol Pharmacol, 59: 1523-1532. [PMID:11353814]

26. Moody TW, Jensen RT, Fridkin M, Gozes I. (2002) (N-stearyl, norleucine17)VIPhybrid is a broad spectrum vasoactive intestinal peptide receptor antagonist. J Mol Neurosci., 18: 29-35. [PMID:11931347]

27. Moreno D, Gourlet P, De Neef P, Cnudde J, Waelbroeck M, Robberecht P. (2000) Development of selective agonists and antagonists for the human vasoactive intestinal polypeptide VPAC2 receptor. Peptides, 21: 1543-1549. [PMID:11068102]

28. Nicole P, Du K, Couvineau A, Laburthe M. (1998) Site-directed mutagenesis of human vasoactive intestinal peptide receptor subtypes VIP1 and VIP2: evidence for difference in the structure-function relationship. J Pharmacol Exp Ther, 284: 744-750. [PMID:9454823]

29. Nicole P, Lins L, Rouyer-Fessard C, Drouot C, Fulcrand P, Thomas A, Couvineau A, Martinez J, Brasseur R, Laburthe M. (2000) Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem., 275: 24003-24012. [PMID:10801840]

30. Reubi JC. (2000) In vitro evaluation of VIP/PACAP receptors in healthy and diseased human tissues. Clinical implications. Ann N Y Acad Sci, 921: 1-25. [PMID:11193811]

31. Reubi JC, Laderach U, Waser B, Gebbers JO, Robberecht P, Laissue JA. (2000) Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res, 60: 3105-3112. [PMID:10850463]

32. Sreedharan SP, Huang JX, Cheung MC, Goetzl EJ. (1995) Structure, expression, and chromosomal localization of the type I human vasoactive intestinal peptide receptor gene. Proc Natl Acad Sci U S A, 92: 2939-2943. [PMID:7708752]

33. Sreedharan SP, Patel DR, Huang JX, Goetzl EJ. (1993) Cloning and functional expression of a human neuroendocrine vasoactive intestinal peptide receptor. Biochem Biophys Res Commun, 193: 546-553. [PMID:8390245]

34. Sreedharan SP, Patel DR, Xia M, Ichikawa S, Goetzl EJ. (1994) Human vasoactive intestinal peptide1 receptors expressed by stable transfectants couple to two distinct signaling pathways. Biochem Biophys Res Commun, 203: 141-148. [PMID:8074647]

35. Tsutsumi M, Claus TH, Liang Y, Li Y, Yang L, Zhu J, Dela Cruz F, Peng X, Chen H, Yung SL, Hamren S, Livingston JN, Pan CQ. (2002) A potent and highly selective VPAC2 agonist enhances glucose-induced insulin release and glucose disposal: a potential therapy for type 2 diabetes. Diabetes, 51: 1453-1460. [PMID:11978642]

36. Usdin TB, Bonner TI, Mezey E. (1994) Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology, 135: 2662-2680. [PMID:7988457]

37. Van Rampelbergh J, Poloczek P, Francoys I, Delporte C, Winand J, Robberecht P, Waelbroeck M. (1997) The pituitary adenylate cyclase activating polypeptide (PACAP I) and VIP (PACAP II VIP1) receptors stimulate inositol phosphate synthesis in transfected CHO cells through interaction with different G proteins. Biochim Biophys Acta, 1357: 249-255. [PMID:9223629]

38. Xia M, Sreedharan SP, Bolin DR, Gaufo GO, Goetzl EJ. (1997) Novel cyclic peptide agonist of high potency and selectivity for the type II vasoactive intestinal peptide receptor. J Pharmacol Exp Ther, 281: 629-633. [PMID:9152366]

39. Yadav M, Huang MC, Goetzl EJ. (2011) VPAC1 (vasoactive intestinal peptide (VIP) receptor type 1) G protein-coupled receptor mediation of VIP enhancement of murine experimental colitis. Cell. Immunol., 267 (2): 124-32. [PMID:21295288]

Contributors

Show »

How to cite this page

Anthony Harmar, Jan Fahrenkrug, Edward J. Goetzl, Illana Gozes, Marc Laburthe, Victor May, Joseph R. Pisegna, Sami I. Said, David Vaudry, Hubert Vaudry, James A. Waschek.
VIP and PACAP receptors: VPAC1 receptor. Last modified on 20/02/2018. Accessed on 19/11/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=371.