halothane

Ligand id: 2401

Name: halothane

Structure and Physico-chemical Properties

2D Structure
Calculated Physico-chemical Properties
Hydrogen bond acceptors 0
Hydrogen bond donors 0
Rotatable bonds 1
Topological polar surface area 0
Molecular weight 195.89
XLogP 3.16
No. Lipinski's rules broken 0

Molecular properties generated using the CDK

References
1. Blin S, Chatelain FC, Feliciangeli S, Kang D, Lesage F, Bichet D. (2014)
Tandem Pore Domain Halothane-Inhibited K+ Channel Subunits THIK1 and THIK2 Assemble and Form Active Channels.
J. Biol. Chem.,  [Epub ahead of print]. [PMID:25148687]
2. Kulkarni RS, Zorn LJ, Anantharam V, Bayley H, Treistman SN. (1996)
Inhibitory effects of ketamine and halothane on recombinant potassium channels from mammalian brain.
Anesthesiology84 (4): 900-9. [PMID:8638845]
3. Lesage F, Terrenoire C, Romey G, Lazdunski M. (2000)
Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors.
J. Biol. Chem.275 (37): 28398-405. [PMID:10880510]
4. Meadows HJ, Randall AD. (2001)
Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel.
Neuropharmacology40 (4): 551-9. [PMID:11249964]
5. Patel AJ, HonorĂ© E, Lesage F, Fink M, Romey G, Lazdunski M. (1999)
Inhalational anesthetics activate two-pore-domain background K+ channels.
Nat. Neurosci.2 (5): 422-6. [PMID:10321245]
6. Talley EM, Bayliss DA. (2002)
Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action.
J. Biol. Chem.277 (20): 17733-42. [PMID:11886861]
7. Weigl LG, Schreibmayer W. (2001)
G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics.
Mol. Pharmacol.60 (2): 282-9. [PMID:11455015]