P2Y<sub>13</sub> receptor | P2Y receptors | IUPHAR/BPS Guide to PHARMACOLOGY

P2Y13 receptor

Target id: 329

Nomenclature: P2Y13 receptor

Family: P2Y receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for P2Y13 receptor in GtoImmuPdb

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 354 3q24 P2RY13 purinergic receptor P2Y13 9,31
Mouse 7 337 3 P2ry13 purinergic receptor P2Y, G-protein coupled 13 31
Rat 7 336 2q31 P2ry13 purinergic receptor P2Y13 13
Previous and Unofficial Names
GPR94 | G protein-coupled receptor 86 | P2Y purinoceptor 13 | purinergic receptor P2Y, G-protein coupled 13 | purinergic receptor P2Y
Database Links
Specialist databases
GPCRDB p2y13_human (Hs), p2y13_mouse (Mm), p2y13_rat (Rn)
Other databases
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands
ADP
ATP
Potency order of endogenous ligands (Human)
ADP>>ATP

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[33P]2MeSADP Hs Full agonist 9.6 pKd 23
pKd 9.6 [23]
2MeSADP Hs Full agonist 9.0 pIC50 23
pIC50 9.0 [23]
2MeSATP Hs Full agonist 7.7 pIC50 23
pIC50 7.7 [23]
ADP Hs Full agonist 6.5 pIC50 23
pIC50 6.5 [23]
ADPβS Hs Full agonist 5.7 pIC50 23
pIC50 5.7 [23]
ATPγS Hs Full agonist 5.5 pIC50 23
pIC50 5.5 [23]
ATP Hs Full agonist 5.4 pIC50 23
pIC50 5.4 [23]
Agonist Comments
ADP was found to be more potent than 2-MeSADP for human P2Y13 receptor, by using [35S]GTPγS binding assay in 1321N1 cells that express rat P2Y13 receptor. [13]
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
cangrelor Hs Antagonist 8.3 pIC50 23
pIC50 8.3 [23]
Ap4A Hs Antagonist 6.7 pIC50 23
pIC50 6.7 [23]
MRS2603 Hs Antagonist 6.2 pIC50 20
pIC50 6.2 [20]
MRS2211 Hs Antagonist 6.0 pIC50 20
pIC50 6.0 [20]
reactive blue-2 Hs Antagonist 5.7 pIC50 23
pIC50 5.7 [23]
suramin Hs Antagonist 5.6 pIC50 23
pIC50 5.6 [23]
2MeSAMP Hs Antagonist 5.6 pIC50 23
pIC50 5.6 [23]
PPADS Hs Antagonist 4.9 pIC50 23
pIC50 4.9 [23]
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Adenylate cyclase inhibition
References:  9
Secondary Transduction Mechanisms
Transducer Effector/Response
Other - See Comments
Comments:  In some experimental systems P2Y12/P2Y13 receptors were found to be coupled to [Ca2+]i increases. In particular in microglial cells and satellite glial cells from trigeminal ganglia, the ADP-induced [Ca2+]i responses were significantly reduced after pretreatement with Cangrelor, an antagonist selective for P2Y12 and P2Y13, thus suggesting that a component of the [Ca2+]i responses evoked by ADP results from P2Y12 and P2Y13 receptor activation. [5,8]. In rat cerebellar astrocytes P2Y13 has been found to mediate intracellular calcium responses to BzATP [7].
References: 
Tissue Distribution
Monocytes, CD34+ stem and progenitor cells
Species:  Human
Technique:  Real-time PCR
References:  27
Blood platelets.
Species:  Human
Technique:  RT-PCR.
References:  31
Epidermal keratinocytes (NHEKs cells)
Species:  Human
Technique:  RT-PCR
References:  17
Brain, spleen, bone marrow, lymph nodes
Species:  Human
Technique:  in situ hybridisation.
References:  31
Megakaryocytes
Species:  Human
Technique:  RT-PCR and Western blot
References:  4
Heart, brain, spleen, liver.
Species:  Mouse
Technique:  Northern blotting.
References:  31
Pancreatic islets and β-cells
Species:  Mouse
Technique:  RT-PCR
References:  3
Adult neural progenitor cells
Species:  Mouse
Technique:  RT-PCR
References:  15
Spleen, pancreas, brain, liver.
Species:  Mouse
Technique:  in situ hybridisation.
References:  31
Spleen> brain (highest levels in the cerebral cortex and striatum), liver, kidney, aorta>intestine, stomach, skeletal muscle, testis, heart, lung
Species:  Rat
Technique:  RT-PCR
References:  13
Dorsal root ganglion and spinal cord
Species:  Rat
Technique:  RT-PCR
References:  16
Bone: osteoblasts and osteoclasts
Species:  Rat
Technique:  RT-PCR and flow cytometry
References:  1,25
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of IP3 levels in AG32 cells transfected with the human P2Y13 receptor.
Species:  Human
Tissue:  AG32 cells.
Response measured:  IP3 accumulation.
References:  23
Measurement of cAMP levels in CHO-K1 cells transfected with the human P2Y13 receptor.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  PTX-sensitive inhibition of cAMP accumulation.
References:  23
Measurement of N-type Ca2+ current in HEK 293 cells endogenously expressing P2Y receptors and transfected with rabbit N-type Ca2+ channels.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Inhibition of N-type Ca2+ current.
References:  30
GTPγ35S binding to membranes of 1321N1 that express recombinant receptor
Species:  Human
Tissue:  1321N1 cells
Response measured:  GTPγ35S binding
References:  23
[35S]GTPγS binding to membranes of 1321N1 that express recombinant receptor
Species:  Rat
Tissue:  1321N1 cells
Response measured:  GTPγS binding
References:  13
Physiological Functions
ADP acting on P2Y13 receptor activates a negative feedback that inhibit ATP release from erythrocytes
Species:  Human
Tissue:  red blood cells
References:  28
Role in the hepatic high-density lipopotein (HDL) endocytosis
Species:  Human
Tissue:  hepatocytes
References:  18,21
Inhibition of glicine neurotrasmitters transporters (GLYT) GLYT2 and stimulation of GLYT1 by a paracrine regulation
Species:  Rat
Tissue:  Rat brainstem/spinal cord primary neuronal cultures and adult rat synaptosomes
References:  19
Degranulation in mast cells
Species:  Rat
Tissue:  Mast cell line (RBL-2H3)
References:  14
Reduction of axonal elongation
Species:  Mouse
Tissue:  Primary hippocampal neurons
References:  10
Inhibition of insulin secretion
Species:  Mouse
Tissue:  Pancreatic islets
References:  3
Synergism in progenitor proliferation, growth and survival of P2Y13, P2Y1, P2Y2 and EGF receptors
Species:  Mouse
Tissue:  Adult subventricular zone
References:  15
Proplatelet formation by megakaryocytes in culture
Species:  Human
Tissue:  Cord blood cells
References:  4
Neuroprotective action against glutamate excitotoxicity and oxidative stress
Species:  Rat
Tissue:  Primary cultures of cerebellar granule neurons
References:  11,26
Inhibition of CFA induced hyperalgesia
Species:  Mouse
Tissue:  Peripheral nervous system
References:  22
Physiological Consequences of Altering Gene Expression
Receptor deficient mice show decrease in hepatic HDL cholesterol uptake, hepatic cholesterol content, and biliary cholesterol output. Normal development (with the exception of a small increase in bone area), normal fertility, hematological and biochemical parameters.
Species:  Mouse
Tissue:  Plasma and primary hepatocytes
Technique:  Gene knockouts
References:  12
Mice with receptor knockout show altered lipoprotein metabolism. Phenotype: viability, normal fertility and no gross abnormalities
Species:  Mouse
Tissue:  Plasma for lipoprotein profiles and livers
Technique:  Gene knockouts
References:  6
Mice with receptor knockout show decreased bone formation and bone resorption. Less bone volume in the whole tibia
Species:  Mouse
Tissue:  Bone; osteoclast and osteoblast cultures
Technique:  Gene knockouts
References:  24,29
Biologically Significant Variants
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The P2Y13 Met-158-Thr polymorphism, which is in linkage disequilibrium with the P2Y12 locus, is not associated with acute myocardial infarction, diabetes mellitus or related risk factors.
References:  2

References

Show »

1. Alvarenga EC, Rodrigues R, Caricati-Neto A, Silva-Filho FC, Paredes-Gamero EJ, Ferreira AT. (2010) Low-intensity pulsed ultrasound-dependent osteoblast proliferation occurs by via activation of the P2Y receptor: role of the P2Y1 receptor. Bone, 46 (2): 355-62. [PMID:19781676]

2. Amisten S, Braun OO, Johansson L, Ridderstråle M, Melander O, Erlinge D. (2008) The P2Y 13 Met-158-Thr polymorphism, which is in linkage disequilibrium with the P2Y 12 locus, is not associated with acute myocardial infarction. PLoS ONE, 3: e1462-e1462. [PMID:18213371]

3. Amisten S, Meidute-Abaraviciene S, Tan C, Olde B, Lundquist I, Salehi A, Erlinge D. (2010) ADP mediates inhibition of insulin secretion by activation of P2Y13 receptors in mice. Diabetologia, 53 (9): 1927-34. [PMID:20526761]

4. Balduini A, Di Buduo CA, Malara A, Lecchi A, Rebuzzini P, Currao M, Pallotta I, Jakubowski JA, Cattaneo M. (2012) Constitutively released adenosine diphosphate regulates proplatelet formation by human megakaryocytes. Haematologica, 97 (11): 1657-65. [PMID:22689668]

5. Bianco F, Fumagalli M, Pravettoni E, D'Ambrosi N, Volonté C, Matteoli M, Abbracchio MP, Verderio C. (2005) Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res Brain Res Rev, 48: 144-156. [PMID:15850653]

6. Blom D, Yamin TT, Champy MF, Selloum M, Bedu E, Carballo-Jane E, Gerckens L, Luell S, Meurer R, Chin J et al.. (2010) Altered lipoprotein metabolism in P2Y(13) knockout mice. Biochim. Biophys. Acta, 1801 (12): 1349-60. [PMID:20817122]

7. Carrasquero LM, Delicado EG, Bustillo D, Gutiérrez-Martín Y, Artalejo AR, Miras-Portugal MT. (2009) P2X7 and P2Y13 purinergic receptors mediate intracellular calcium responses to BzATP in rat cerebellar astrocytes. J. Neurochem., 110 (3): 879-89. [PMID:19457067]

8. Ceruti S, Fumagalli M, Villa G, Verderio C, Abbracchio MP. (2008) Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures. Cell Calcium., 43: 576-590. [PMID:18031810]

9. Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M, Boeynaems JM. (2001) Identification of a novel human ADP receptor coupled to G(i). J Biol Chem, 276: 41479-41485. [PMID:11546776]

10. del Puerto A, Díaz-Hernández JI, Tapia M, Gomez-Villafuertes R, Benitez MJ, Zhang J, Miras-Portugal MT, Wandosell F, Díaz-Hernández M, Garrido JJ. (2012) Adenylate cyclase 5 coordinates the action of ADP, P2Y1, P2Y13 and ATP-gated P2X7 receptors on axonal elongation. J. Cell. Sci., 125 (Pt 1): 176-88. [PMID:22250198]

11. Espada S, Ortega F, Molina-Jijón E, Rojo AI, Pérez-Sen R, Pedraza-Chaverri J, Miras-Portugal MT, Cuadrado A. (2010) The purinergic P2Y(13) receptor activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. Free Radic. Biol. Med., 49 (3): 416-26. [PMID:20447456]

12. Fabre AC, Malaval C, Ben Addi A, Verdier C, Pons V, Serhan N, Lichtenstein L, Combes G, Huby T, Briand F et al.. (2010) P2Y13 receptor is critical for reverse cholesterol transport. Hepatology, 52 (4): 1477-83. [PMID:20830789]

13. Fumagalli M, Trincavelli L, Lecca D, Martini C, Ciana P, Abbracchio MP. (2004) Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y(13) receptor. Biochem Pharmacol, 68: 113-124. [PMID:15183123]

14. Gao ZG, Ding Y, Jacobson KA. (2010) P2Y(13) receptor is responsible for ADP-mediated degranulation in RBL-2H3 rat mast cells. Pharmacol. Res., 62 (6): 500-5. [PMID:20813187]

15. Grimm I, Messemer N, Stanke M, Gachet C, Zimmermann H. (2009) Coordinate pathways for nucleotide and EGF signaling in cultured adult neural progenitor cells. J. Cell. Sci., 122 (Pt 14): 2524-33. [PMID:19549686]

16. Heinrich A, Kittel A, Csölle C, Sylvester Vizi E, Sperlágh B. (2008) Modulation of neurotransmitter release by P2X and P2Y receptors in the rat spinal cord. Neuropharmacology, 54: 375-386. [PMID:18063000]

17. Inoue K, Hosoi J, Denda M. (2007) Extracellular ATP has stimulatory effects on the expression and release of IL-6 via purinergic receptors in normal human epidermal keratinocytes. J Invest Dermatol, 127: 362-371. [PMID:16946718]

18. Jacquet S, Malaval C, Martinez LO, Sak K, Rolland C, Perez C, Nauze M, Champagne E, Tercé F, Gachet C, Perret B, Collet X, Boeynaems JM, Barbaras R. (2005) The nucleotide receptor P2Y13 is a key regulator of hepatic high-density lipoprotein (HDL) endocytosis. Cell Mol Life Sci, 62: 2508-2515. [PMID:16231090]

19. Jiménez E, Zafra F, Pérez-Sen R, Delicado EG, Miras-Portugal MT, Aragón C, López-Corcuera B. (2011) P2Y purinergic regulation of the glycine neurotransmitter transporters. J. Biol. Chem., 286 (12): 10712-24. [PMID:21245148]

20. Kim YC, Lee JS, Sak K, Marteau F, Mamedova L, Boeynaems JM, Jacobson KA. (2005) Synthesis of pyridoxal phosphate derivatives with antagonist activity at the P2Y13 receptor. Biochem Pharmacol, 70: 266-274. [PMID:15913566]

21. Malaval C, Laffargue M, Rolland C, Peres C, Champagne E, Perret B, Tercé F, Collet X, Martinez LO. (2009) RhoA/ROCK I signalling downstream of the P2Y13 ADP-receptor controls HDL endocytosis in human hepatocytes. Cell Signal, 21: 120-127. [PMID:18948190]

22. Malin SA, Molliver DC. (2010) Gi- and Gq-coupled ADP (P2Y) receptors act in opposition to modulate nociceptive signaling and inflammatory pain behavior. Mol Pain, 6: 21. [PMID:20398327]

23. Marteau F, Le Poul E, Communi D, Labouret C, Savi P, Boeynaems JM, Gonzalez NS. (2003) Pharmacological Characterization of the Human P2Y13 Receptor. Mol Pharmacol, 64: 104-112. [PMID:12815166]

24. Orriss I, Syberg S, Wang N, Robaye B, Gartland A, Jorgensen N, Arnett T, Boeynaems JM. (2011) Bone phenotypes of P2 receptor knockout mice. Front Biosci (Schol Ed), 3: 1038-46. [PMID:21622253]

25. Orriss IR, Burnstock G, Arnett TR. (2010) Purinergic signalling and bone remodelling. Curr Opin Pharmacol, 10 (3): 322-30. [PMID:20189453]

26. Ortega F, Pérez-Sen R, Delicado EG, Teresa Miras-Portugal M. (2011) ERK1/2 activation is involved in the neuroprotective action of P2Y13 and P2X7 receptors against glutamate excitotoxicity in cerebellar granule neurons. Neuropharmacology, 61 (8): 1210-21. [PMID:21798274]

27. Wang L, Jacobsen SE, Bengtsson A, Erlinge D. (2004) P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol, 5: 16-16. [PMID:15291969]

28. Wang L, Olivecrona G, Gotberg M, Olsson ML, Winzell MS, Erlinge D. (2005) ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ Res, 96: 189-196. [PMID:15604418]

29. Wang N, Robaye B, Agrawal A, Skerry TM, Boeynaems JM, Gartland A. (2012) Reduced bone turnover in mice lacking the P2Y(13) receptor of ADP. Mol. Endocrinol., 26 (1): 142-52. [PMID:22108801]

30. Wirkner K, Schweigel J, Gerevich Z, Franke H, Allgaier C, Barsoumian EL, Draheim H, Illes P. (2004) Adenine nucleotides inhibit recombinant N-type calcium channels via G protein-coupled mechanisms in HEK 293 cells; involvement of the P2Y13 receptor-type. Br J Pharmacol, 141: 141-151. [PMID:14662731]

31. Zhang FL, Luo L, Gustafson E, Palmer K, Qiao X, Fan X, Yang S, Laz TM, Bayne M, Monsma F. (2002) P2Y(13): identification and characterization of a novel Galphai-coupled ADP receptor from human and mouse. J Pharmacol Exp Ther, 301: 705-713. [PMID:11961076]

Contributors

Show »

How to cite this page

Maria-Pia Abbracchio, Jean-Marie Boeynaems, José L. Boyer, Geoffrey Burnstock, Stefania Ceruti, Marta Fumagalli, Christian Gachet, Rebecca Hills, Robert G. Humphries, Kenneth A. Jacobson, Charles Kennedy, Brian F. King, Davide Lecca, Maria Teresa Miras-Portugal, Gary A. Weisman.
P2Y receptors: P2Y13 receptor. Last modified on 20/02/2018. Accessed on 18/11/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=329.