BB<sub>3</sub> receptor | Bombesin receptors | IUPHAR/BPS Guide to PHARMACOLOGY

Top ▲

BB3 receptor

Target id: 40

Nomenclature: BB3 receptor

Family: Bombesin receptors, Class A Orphans

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for BB3 receptor in GtoImmuPdb

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 399 Xq26-q28 BRS3 bombesin receptor subtype 3 5,10
Mouse 7 399 X A7.1-A7.2 Brs3 bombesin-like receptor 3 30,41
Rat 7 399 Xq36 Brs3 bombesin receptor subtype 3 17
Previous and Unofficial Names
bb3 | bombesin receptor subtype-3 | bombesin like receptor 3
Database Links
Specialist databases
GPCRDB brs3_human (Hs), brs3_human (Hs), brs3_mouse (Mm), brs3_mouse (Mm), brs3_rat (Rn), brs3_rat (Rn)
Other databases
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]bag-2 Mm Agonist 8.6 pKd 11
pKd 8.6 (Kd 2.6x10-9 M) [11]
[125I][D-Tyr6,β-Ala11,Phe13,Nle14]bombesin-(6-14) Hs Full agonist 8.0 – 8.4 pKd 22,28
pKd 8.0 – 8.4 (Kd 1x10-8 – 3.98x10-9 M) [22,28]
[D-Phe6,β-Ala11,Phe13,Nle14]bombesin-(6-14) Rn Full agonist 9.0 pKi 34
pKi 9.0 (Ki 1x10-9 M) [34]
[D-Phe6,β-Ala11,Phe13,Nle14]bombesin-(6-14) Mm Full agonist 8.8 pKi 34
pKi 8.8 (Ki 1.5x10-9 M) [34]
MK-5046 Mm Full agonist 8.8 pKi 12
pKi 8.8 (Ki 1.6x10-9 M) [12]
[D-Tyr6,(R)-APA11,Phe13,Nle14]bombesin-(6-14) Hs Full agonist 8.4 pKi 21
pKi 8.4 (Ki 4.1x10-9 M) [21]
[D-Phe6,β-Ala11,Phe13,Nle14]bombesin-(6-14) Hs Full agonist 8.1 – 8.4 pKi 22
pKi 8.1 – 8.4 (Ki 8.9x10-9 – 4.2x10-9 M) [22]
[D-Tyr6,Apa-4Cl11,Phe13,Nle14]bombesin-(6-14) Hs Full agonist 8.1 pKi 20
pKi 8.1 (Ki 8x10-9 M) [20]
MK-5046 Hs Agonist 7.7 – 8.4 pKi 28,38
pKi 7.7 – 8.4 [28,38]
compound 21b [PMID: 12723954] Hs Full agonist 9.2 – 10.2 pEC50 41
pEC50 9.2 – 10.2 [41]
compound 9g [PMID: 24412111] Hs Agonist 8.8 pEC50 24
pEC50 8.8 (EC50 1.7x10-9 M) [24]
phenylacetyl-Ala,DTrp-phenthylamide Hs Full agonist 7.8 – 8.9 pEC50 42,45
pEC50 7.8 – 8.9 (EC50 1.415x10-8 – 1.2x10-9 M) [42,45]
compound 17c [PMID: 25497965] Hs Agonist 7.9 pEC50 23
pEC50 7.9 (EC50 1.2x10-8 M) [23]
compound 9f [PMID: 24412111] Hs Agonist 7.8 pEC50 24
pEC50 7.8 (EC50 1.7x10-8 M) [24]
MK-5046 Hs Full agonist 7.6 pEC50 38
pEC50 7.6 (EC50 2.5x10-8 M) [38]
phenylacetyl-Ala,DTrp-phenthylamide Mm Full agonist 7.5 pEC50 45
pEC50 7.5 (EC50 3.33x10-8 M) [45]
Ac-Phe-Trp-Ala-His(τBZL)-Nip-Gly-Arg-NH2 Hs Full agonist 6.4 – 8.2 pEC50 2,8,37
pEC50 6.4 – 8.2 (EC50 3.98x10-7 – 6.9x10-9 M) [2,8,37]
phenylacetyl-Ala,DTrp-phenthylamide Rn Full agonist 7.0 pEC50 45
pEC50 7.0 (EC50 1.099x10-7 M) [45]
compound 8a [PMID: 24900283] Hs Agonist 8.9 pIC50 18
pIC50 8.9 (IC50 1.4x10-9 M) [18]
bag-1 Rn Full agonist 8.6 pIC50 11
pIC50 8.6 (IC50 2.4x10-9 M) [11]
MK-7725 Hs Agonist 8.5 pIC50 4
pIC50 8.5 (IC50 3x10-9 M) [4]
bag-2 Mm Full agonist 8.2 pIC50 11
pIC50 8.2 (IC50 6.6x10-9 M) [11]
bag-1 Mm Full agonist 8.2 pIC50 11
pIC50 8.2 (IC50 6.9x10-9 M) [11]
[D-Tyr6,Apa-4Cl11,Phe13,Nle14]bombesin-(6-14) Hs Full agonist 7.4 – 8.9 pIC50 8,37
pIC50 7.4 – 8.9 (IC50 4x10-8 – 1.4x10-9 M) [8,37]
bag-2 Rn Full agonist 8.0 pIC50 11
pIC50 8.0 (IC50 1.03x10-8 M) [11]
[D-Tyr6,(R)-APA11,Phe13,Nle14]bombesin-(6-14) Hs Full agonist 7.5 – 8.4 pIC50 8,37
pIC50 7.5 – 8.4 (IC50 2.95x10-8 – 4.3x10-9 M) [8,37]
bag-1 Hs Agonist 7.7 pIC50 11
pIC50 7.7 (IC50 1.83x10-8 M) [11]
compound 22e [PMID: 20167483] Hs Agonist 7.6 pIC50 13
pIC50 7.6 (IC50 2.5x10-8 M) [13]
MK-5046 Hs Full agonist 6.8 – 7.6 pIC50 28,38
pIC50 6.8 – 7.6 (IC50 1.6x10-7 – 2.7x10-8 M) [28,38]
bag-2 Hs Agonist 7.0 pIC50 11
pIC50 7.0 (IC50 9.6x10-8 M) [11]
Ac-Phe-Trp-Ala-His(τBZL)-Nip-Gly-Arg-NH2 Hs Full agonist 6.2 – 7.3 pIC50 8,37
pIC50 6.2 – 7.3 (IC50 5.72x10-7 – 4.9x10-8 M) [8,37]
phenylacetyl-Ala,DTrp-phenthylamide Hs Full agonist 5.0 – 5.5 pIC50 37
pIC50 5.0 – 5.5 (IC50 1x10-5 – 3.162x10-6 M) [37]
View species-specific agonist tables
Agonist Comments
[D-Phe6,β-Ala11,Phe13,Nle14]bombesin(6-14) has a low affinity for rat and mouse BB3 receptors (pKd 5.70) whereas it has high affinity for the chicken BB3 (pKd 9.13) similar to its affinity for the human receptor [14,17].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
bantag-1 Rn Antagonist 8.8 pIC50 11
pIC50 8.8 (IC50 1.7x10-9 M) [11]
bantag-1 Hs Antagonist 8.6 – 8.7 pIC50 11,28
pIC50 8.6 – 8.7 (IC50 2.5x10-9 – 2x10-9 M) [11,28]
bantag-1 Mm Antagonist 8.1 pIC50 11
pIC50 8.1 (IC50 8.1x10-9 M) [11]
D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Nal-NH2 Hs Antagonist 5.6 pIC50 22,35-36
pIC50 5.6 [22,35-36]
ML-18 Hs Antagonist 5.3 pIC50 26
pIC50 5.3 (IC50 4.8x10-6 M) [26]
View species-specific antagonist tables
Antagonist Comments
Nal: beta-(2-naphthyl)-D-alamine.
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Phospholipase D stimulation
Other - See Comments
Comments:  BB3 receptor activates p125 focal adhesion kinase tyrosine phosphyloryation. Actvates protein kinase C and increases intracellular calcium.
References:  7,32,35-36,43
Secondary Transduction Mechanisms
Transducer Effector/Response
G protein (identity unknown) Other - See Comments
Comments:  Activation of tyrosine kinase cascades, MAPK , EGFR transactivation, CREB and MEK and ELK-1 have been associated with activation of BB3 receptor. In addition, activation of BB3 receptor stimulates p125 FAK, paxillin, MAPK and EGFR transactivation, involving activation of reactive oxygen species, matrix metalloproteinase and Src [27,32,43].
References: 
Tissue Distribution
Germ cells in testis and lung carcinoma cells.
Species:  Human
Technique:  PCR/homology screening.
References:  5
Brain (paraventricular, arcuate, striohypothalamic, dorsal hypothalamic and dorsomedial hypothalamic nuclei, medial and lateral preoptic areas, and lateral and posterior hypothalamic areas).
Species:  Mouse
Technique:  Northern Blot and in situ hybridisation.
References:  30
Mapping in MOUSE and RAT brain. Highest in hypothamus (particularly preoptic nucleus, paraventricular, arcuate, and dorsomedial nuclei).
Species:  Mouse
Technique:  In situ hybridisation.
References:  46
Brain mapping: highest expression in hypothalamic nuclei, diagonal band, bed nucleus of strai terminalis, medial optic area, medial amygdaloid and parabrachial nuclei.
Species:  Mouse
Technique:  [3H]Bag-2 binding.
References:  11
Testis.
Species:  Rat
Technique:  Northern Blot and in situ hybridisation.
References:  5
Medial habenula nucleus, various hypothalamic nuclei, also cerebral cortex, hippocampus formation, thalmus and hypothamus.
Species:  Rat
Technique:  Immunohistochemistry, RT-PCR
References:  15,17
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of PLC activation and/or Ca2+ levels in lung cancer cells, as well as in a hBRS-3-transfected cell lines (Balb 3T3, NCI-H1299 cells).
Species:  Human
Tissue:  Transfected cells and human lung cancer cells.
Response measured:  [3H]IP generation, increase in cytosolic Ca2+.
References:  9,32,35,37,39
Measurement of PLC activity, PLD activity, and intracellular calcium mobilisation in NCI-N417 cells containing native human BB3 receptors.
Species:  Human
Tissue:  NCI-N417 human small cell lung carcinoma cells.
Response measured:  Stimulation of PLD activity.
Stimulation of PLC activity and subsequent intracellular calcium mobilisation.
References:  9,36,39,43
Measurement of MAPK activation.
Species:  Human
Tissue:  Lung cancer cells or hBRS-3 (BB3)-transfected cell lines (Balb 3T3, NCI-H1299).
Response measured:  p42/p44 MAPK formation.
References:  3,27,44
Physiological Functions
Role in sperm cell division, maturation, or function. This receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system.
Species:  Human
Tissue:  Germ cells in testis.
References:  5
Involved in body temperature regulation. BRS-3 agonists/BRS-3 knockout mice have altered body temperature.
Species:  Mouse
Tissue:  In vivo.
References:  12,25
Role in insulin secretion. Blockade of BB3 receptor or receptor knock-down with small interfering RNAs replicates the alteration in islet insulin release/regulation as observed in BB3 receptor knockout mice.
Species:  Mouse
Tissue:  In vivo and isolated pancreatic islet cells.
References:  6
Involved in the effect of insulin on skeletal muscle. In diabetics and obese patients BB3receptor is downregulated in skeletal muscle. Altered metabolic states have altered muscle BB3receptor stimulated glucose transport, GLUT-4 levels. BB3receptor mediated glucose transport is inhibited by wortmammin and PD98059.
Species:  Human
Tissue:  Myocytes.
References:  33
Stimulates growth of both normal tissues and of BB3 receptor containing lung tumors
Species:  Human
Tissue:  Lung cancer cells and bronchial epithelial cells.
References:  27,40
Involved in energy homeostasis. MK-5046, a BB3 receptor selective agonist causes weight loss similar to that observed in receptor knockout studies.
Species:  Mouse
Tissue:  In vivo.
References:  11-12
Physiological Consequences of Altering Gene Expression
BB3 receptor knockout mice show impaired glucose metabolism possibly as a result of disruption of the GLUT4 translocation system in adipocytes.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  29
BB3 receptor knockout mice show mild late-onset obesity, hyperphagia and reduced metabolic rate.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  1,16
BB3 receptor knockout mice develope mild obesity, hypertension, and impaired glucose metabolism.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  31
BB3 receptor knockout mice display overexpression of MCH (melanin concentrating hormone) receptors. MCH treatment induces hyperleptinemia (leptin resistance) and feeding facilitation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  19
BB3 receptor knockout mice show altered body temperature regulation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  28
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Brs3tm1Jfb Brs3tm1Jfb/Brs3tm1Jfb
B6.129X1-Brs3
MGI:1100501  MP:0006319 abnormal epididymal fat pad morphology PMID: 18039774 
Brs3tm1Jfb Brs3tm1Jfb/Brs3tm1Jfb
B6.129X1-Brs3
MGI:1100501  MP:0005449 abnormal food intake PMID: 18039774 
Brs3tm1Hoh Brs3tm1Hoh/Brs3tm1Hoh
involves: 129P2/OlaHsd * C57BL/6J
MGI:1100501  MP:0002078 abnormal glucose homeostasis PMID: 9367152 
Brs3tm1Hoh Brs3tm1Hoh/Brs3tm1Hoh
involves: 129P2/OlaHsd * C57BL/6J
MGI:1100501  MP:0005120 decreased circulating growth hormone level PMID: 9367152 
Brs3tm1Hoh Brs3tm1Hoh/Brs3tm1Hoh
involves: 129P2/OlaHsd * C57BL/6J
MGI:1100501  MP:0003912 decreased drinking behavior PMID: 9367152 
Brs3tm1Hoh Brs3tm1Hoh/Brs3tm1Hoh
involves: 129P2/OlaHsd * C57BL/6J
MGI:1100501  MP:0005290 decreased oxygen consumption PMID: 9367152 
Brs3tm1Jfb Brs3tm1Jfb/Brs3tm1Jfb
B6.129X1-Brs3
MGI:1100501  MP:0001260 increased body weight PMID: 18039774 
Brs3tm1Jfb Brs3tm1Jfb/Brs3tm1Jfb
B6.129X1-Brs3
MGI:1100501  MP:0000005 increased brown adipose tissue amount PMID: 18039774 
Brs3tm1Hoh Brs3tm1Hoh/Brs3tm1Hoh
involves: 129P2/OlaHsd * C57BL/6J
MGI:1100501  MP:0002079 increased circulating insulin level PMID: 9367152 
Brs3tm1Jfb Brs3tm1Jfb/Brs3tm1Jfb
B6.129X1-Brs3
MGI:1100501  MP:0002079 increased circulating insulin level PMID: 18039774 
Brs3tm1Hoh Brs3tm1Hoh/Brs3tm1Hoh
involves: 129P2/OlaHsd * C57BL/6J
MGI:1100501  MP:0005669 increased circulating leptin level PMID: 9367152 
Brs3tm1Jfb Brs3tm1Jfb/Brs3tm1Jfb
B6.129X1-Brs3
MGI:1100501  MP:0005669 increased circulating leptin level PMID: 18039774 
Brs3tm1Jfb Brs3tm1Jfb/Brs3tm1Jfb
B6.129X1-Brs3
MGI:1100501  MP:0003909 increased eating behavior PMID: 18039774 
Brs3tm1Hoh Brs3tm1Hoh/Brs3tm1Hoh
involves: 129P2/OlaHsd * C57BL/6J
MGI:1100501  MP:0002842 increased systemic arterial blood pressure PMID: 9367152 
Brs3tm1Hoh Brs3tm1Hoh/Brs3tm1Hoh
involves: 129P2/OlaHsd * C57BL/6J
MGI:1100501  MP:0000008 increased white adipose tissue amount PMID: 9367152 
Brs3tm1Jfb Brs3tm1Jfb/Brs3tm1Jfb
B6.129X1-Brs3
MGI:1100501  MP:0000008 increased white adipose tissue amount PMID: 18039774 
Brs3tm1Hoh Brs3tm1Hoh/Brs3tm1Hoh
involves: 129P2/OlaHsd * C57BL/6J
MGI:1100501  MP:0001261 obese PMID: 9367152 
Brs3tm1Hoh Brs3tm1Hoh/Brs3tm1Hoh
involves: 129P2/OlaHsd * C57BL/6J
MGI:1100501  MP:0001433 polyphagia PMID: 9367152 
Biologically Significant Variants
Type:  Missense mutation
Species:  Human
Description:  I606V non-synonymous variant may show a weak association with major depressive disorder (MDD) in females.
SNP accession: 

References

Show »

1. Aoki K, Sun YJ, Aoki S, Wada K, Wada E. (2002) Cloning, expression, and mapping of a gene that is upregulated in adipose tissue of mice deficient in bombesin receptor subtype-3. Biochem Biophys Res Commun., 290: 1282-1288. [PMID:11812002]

2. Boyle RG, Humphries J, Mitchell T, Showell GA, Apaya R, Iijima H, Shimada H, Arai T, Ueno H, Usui Y, Sakaki T, Wada E, Wada K. (2005) The design of a new potent and selective ligand for the orphan bombesin receptor subtype 3 (BRS3). J Pept Sci, 11: 136-141. [PMID:15635635]

3. Cai H, Yang H, Xiang B, Li S, Liu S, Wan L, Zhang J, Li Y, Cheng J, Lu X. (2010) Selective apoptotic killing of solid and hematologic tumor cells by bombesin-targeted delivery of mitochondria-disrupting peptides. Mol. Pharm., 7 (2): 586-96. [PMID:20141196]

4. Chobanian HR, Guo Y, Liu P, Chioda M, Lanza Jr TJ, Chang L, Kelly TM, Kan Y, Palyha O, Guan XM et al.. (2012) Discovery of MK-7725, A Potent, Selective Bombesin Receptor Subtype-3 Agonist for the Treatment of Obesity. ACS Med Chem Lett, 3 (3): 252-6. [PMID:24900461]

5. Fathi Z, Corjay MH, Shapira H, Wada E, Benya R, Jensen R, Viallet J, Sausville EA, Battey JF. (1993) BRS-3: a novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J. Biol. Chem., 268: 5979-5984. [PMID:8383682]

6. Feng Y, Guan XM, Li J, Metzger JM, Zhu Y, Juhl K, Zhang BB, Thornberry NA, Reitman ML, Zhou YP. (2011) Bombesin receptor subtype-3 (BRS-3) regulates glucose-stimulated insulin secretion in pancreatic islets across multiple species. Endocrinology, 152 (11): 4106-15. [PMID:21878513]

7. Furutani N, Hondo M, Tsujino N, Sakurai T. (2010) Activation of bombesin receptor subtype-3 influences activity of orexin neurons by both direct and indirect pathways. J. Mol. Neurosci., 42 (1): 106-11. [PMID:20467915]

8. Gonzalez N, Hocart SJ, Portal-Nuñez S, Mantey SA, Nakagawa T, Zudaire E, Coy DH, Jensen RT. (2008) Molecular basis for agonist selectivity and activation of the orphan bombesin receptor subtype 3 receptor. J. Pharmacol. Exp. Ther., 324 (2): 463-74. [PMID:18006692]

9. González N, Mantey SA, Pradhan TK, Sancho V, Moody TW, Coy DH, Jensen RT. (2009) Characterization of putative GRP- and NMB-receptor antagonist's interaction with human receptors. Peptides, 30 (8): 1473-86. [PMID:19463875]

10. Gorbulev V, Akhundova A, Grzeschik KH, Fahrenholz F. (1994) Organization and chromosomal localization of the gene for the human bombesin receptor subtype expressed in pregnant uterus. FEBS Lett., 340: 260-264. [PMID:8131855]

11. Guan XM, Chen H, Dobbelaar PH, Dong Y, Fong TM, Gagen K, Gorski J, He S, Howard AD, Jian T et al. (2010) Regulation of energy homeostasis by bombesin receptor subtype-3: selective receptor agonists for the treatment of obesity. Cell Metabolism, 11 (2): 101-112. [PMID:20096642]

12. Guan XM, Metzger JM, Yang L, Raustad KA, Wang SP, Spann SK, Kosinski JA, Yu H, Shearman LP, Faidley TD et al. (2010) Antiobesity effect of MK-5046, a novel bombesin receptor subtype-3 agonist. Journal of Pharmacology and Expimental Therapeutics, 336 (2): 356-364. [PMID:21036912]

13. He S, Dobbelaar PH, Liu J, Jian T, Sebhat IK, Lin LS, Goodman A, Guo C, Guzzo PR, Hadden M et al.. (2010) Discovery of substituted biphenyl imidazoles as potent, bioavailable bombesin receptor subtype-3 agonists. Bioorg. Med. Chem. Lett., 20 (6): 1913-7. [PMID:20167483]

14. Iwabuchi M, Ui-Tei K, Yamada K, Matsuda Y, Sakai Y, Tanaka K, Ohki-Hamazaki H. (2003) Molecular cloning and characterization of avian bombesin-like peptide receptors: New tools for investigating molecular basis for ligand selectivity. Br J Pharmacol., 139: 555-566. [PMID:12788815]

15. Jennings CA, Harrison DC, Maycox PR, Crook B, Smart D, Hervieu GJ. (2003) The distribution of the orphan bombesin receptor subtype-3 in the rat CNS. Neuroscience., 120: 309-324. [PMID:12890504]

16. Ladenheim EE, Hamilton NL, Behles RR, Bi S, Hampton LL, Battey JF, Moran TH. (2008) Factors contributing to obesity in bombesin receptor subtype-3-deficient mice. Endocrinology, 149 (3): 971-8. [PMID:18039774]

17. Liu J, Lao ZJ, Zhang J, Schaeffer MT, Jiang MM, Guan XM, Van der Ploeg LH, Fong TM. (2002) Molecular basis of the pharmacological difference between rat and human bombesin receptor subtype-3 (BRS-3). Biochemistry., 41: 8954-8960. [PMID:12102638]

18. Liu P, Lanza Jr TJ, Chioda M, Jones C, Chobanian HR, Guo Y, Chang L, Kelly TM, Kan Y, Palyha O et al.. (2011) Discovery of benzodiazepine sulfonamide-based bombesin receptor subtype 3 agonists and their unusual chirality. ACS Med Chem Lett, 2 (12): 933-7. [PMID:24900283]

19. Maekawa F, Quah HM, Tanaka K, Ohki-Hamazaki H. (2004) Leptin resistance and enhancement of feeding facilitation by melanin-concentrating hormone in mice lacking bombesin receptor subtype-3. Diabetes, 53: 570-576. [PMID:14988239]

20. Mantey SA, Coy DH, Entsuah LK, Jensen RT. (2004) Development of Bombesin Analogues With Conformationally-Restricted Amino Acid Substitutions With Enhanced Selectivity for the Orphan Receptor, hBRS-3. J Pharmacol Exp Ther., 310: 1161-1170. [PMID:15102928]

21. Mantey SA, Coy DH, Pradhan TK, Igarashi H, Rizo IM, Shen L, Hou W, Hocart SJ, Jensen RT. (2001) Rational design of a peptide agonist that interacts selectively with the orphan receptor, bombesin receptor subtype 3. J Biol Chem., 276: 9219-9229. [PMID:11112777]

22. Mantey SA, Weber HC, Sainz E, Akeson M, Ryan RR, Pradhan TK, Searles RP, Spindel ER, Battey JF, Coy DH, Jensen RT. (1997) Discovery of a high affinity radioligand for the human orphan receptor, bombesin receptor subtype 3, which demonstrates that it has a uniquepharmacology compared with other mammalian bombesin receptors. J Biol Chem., 272: 26062-26071. [PMID:9325344]

23. Matsufuji T, Shimada K, Kobayashi S, Ichikawa M, Kawamura A, Fujimoto T, Arita T, Hara T, Konishi M, Abe-Ohya R et al.. (2015) Synthesis and biological evaluation of novel chiral diazepine derivatives as bombesin receptor subtype-3 (BRS-3) agonists incorporating an antedrug approach. Bioorg. Med. Chem., 23 (1): 89-104. [PMID:25497965]

24. Matsufuji T, Shimada K, Kobayashi S, Kawamura A, Fujimoto T, Arita T, Hara T, Konishi M, Abe-Ohya R, Izumi M et al.. (2014) Discovery of novel chiral diazepines as bombesin receptor subtype-3 (BRS-3) agonists with low brain penetration. Bioorg. Med. Chem. Lett., 24 (3): 750-5. [PMID:24412111]

25. Metzger JM, Gagen K, Raustad KA, Yang L, White A, Wang SP, Craw S, Liu P, Lanza T, Lin LS et al.. (2010) Body temperature as a mouse pharmacodynamic response to bombesin receptor subtype-3 agonists and other potential obesity treatments. Am. J. Physiol. Endocrinol. Metab., 299 (5): E816-24. [PMID:20807840]

26. Moody TW, Mantey SA, Moreno P, Nakamura T, Lacivita E, Leopoldo M, Jensen RT. (2015) ML-18 is a non-peptide bombesin receptor subtype-3 antagonist which inhibits lung cancer growth. Peptides, 64: 55-61. [PMID:25554218]

27. Moody TW, Sancho V, di Florio A, Nuche-Berenguer B, Mantey S, Jensen RT. (2011) Bombesin receptor subtype-3 agonists stimulate the growth of lung cancer cells and increase EGF receptor tyrosine phosphorylation. Peptides, 32 (8): 1677-84. [PMID:21712056]

28. Moreno P, Mantey SA, Nuche-Berenguer B, Reitman ML, Gonzalez N, , Coy DH, Jensen RT. (2013) Comparative Pharmacology of Bombesin Receptor Subtype-3, Nonpeptide Agonist MK-5046, a Universal Peptide Agonist, and Peptide Antagonist Bantag-1 for Human Bombesin Receptors. Pharmacol Exp Therap, 347 (1): 100-116. [PMID:23892571]

29. Nakamichi Y, Wada E, Aoki K, Ohara-Imaizumi M, Kikuta T, Nishiwaki C, Matsushima S, Watanabe T, Wada K, Nagamatsu S. (2004) Functions of pancreatic beta cells and adipocytes in bombesin receptor subtype-3-deficient mice. Biochem Biophys Res Commun., 318: 698-703. [PMID:15144894]

30. Ohki-Hamazaki H, Wada E, Matsui K, Wada K. (1997) Cloning and expression of the neuromedin B receptor and the third subtype of bombesin receptor genes in the mouse. Brain Res, 762: 165-172. [PMID:9262170]

31. Ohki-Hamazaki H, Watase K, Yamamoto K, Ogura H, Yamano M, Yamada K, Maeno H, Imaki J, Kikuyama S, Wada E, Wada K. (1997) Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Nature., 390: 165-169. [PMID:9367152]

32. Qin X, Qu X, Coy D, Weber HC. (2012) A selective human bombesin receptor subtype-3 peptide agonist mediates CREB phosphorylation and transactivation. J. Mol. Neurosci., 46 (1): 88-99. [PMID:22127929]

33. Ramos-Álvarez I, Martín-Duce A, Moreno-Villegas Z, Sanz R, Aparicio C, Portal-Núñez S, Mantey SA, Jensen RT, González N. (2013) Bombesin receptor subtype-3 (BRS-3), a novel candidate as therapeutic molecular target in obesity and diabetes. Mol. Cell. Endocrinol., 367 (1-2): 109-15. [PMID:23291341]

34. Ryan R, Katsuno T, Mantey SA, Pradhan TK, Weber HC, Coy DH, Battey JF, Jensen RT. (1999) Comparative pharmacology of the nonpeptide neuromedin B receptor antagonist PD168368. J Pharmacol Exp Ther., 290: 1202-1211. [PMID:10454496]

35. Ryan RR, Weber HC, Hou W, Sainz E, Mantey SA, Battey JF, Coy DH, Jensen RT. (1998) Ability of various bombesin receptor agonists and antagonists to alter intracellular signaling of the human orphan receptor BRS-3. J Biol Chem., 273: 13613-13624. [PMID:9593699]

36. Ryan RR, Weber HC, Mantey SA, Hou W, Hilburger ME, Pradhan TK, Coy DH, Jensen RT. (1998) Pharmacology and intracellular signaling mechanisms of the native human orphan receptor BRS-3 in lung cancer cells. J Pharmacol Exp Ther., 287: 366-380. [PMID:9765358]

37. Sancho V, Moody TW, Mantey SA, Di Florio A, Uehara H, Coy DH, Jensen RT. (2010) Pharmacology of putative selective hBRS-3 receptor agonists for human bombesin receptors (BnR): affinities, potencies and selectivity in multiple native and BnR transfected cells. Peptides, 31 (8): 1569-78. [PMID:20438784]

38. Sebhat IK, Franklin C, Lo MM, Chen D, Jewell JP, Miller R, Pang J, Palyha O, Kan Y, Kelly TM et al.. (2011) Discovery of MK-5046, a Potent, Selective Bombesin Receptor Subtype-3 Agonist for the Treatment of Obesity. ACS Med Chem Lett, 2 (1): 43-7. [PMID:24900253]

39. Uehara H, González N, Sancho V, Mantey SA, Nuche-Berenguer B, Pradhan T, Coy DH, Jensen RT. (2011) Pharmacology and selectivity of various natural and synthetic bombesin related peptide agonists for human and rat bombesin receptors differs. Peptides, 32 (8): 1685-99. [PMID:21729729]

40. Wang Y, Zhang M, Tan Y, Xiang Y, Liu H, Qu F, Qin L, Qin X. (2007) BRS-3 activation transforms the effect of human bronchial epithelial cells from PGE2 mediated inhibition to TGF-beta1 dependent promotion on proliferation and collagen synthesis of lung fibroblasts. Cell Biol. Int., 31 (12): 1495-500. [PMID:17714959]

41. Weber D, Berger C, Eickelmann P, Antel J, Kessler H. (2003) Design of selective peptidomimetic agonists for the human orphan receptor BRS-3. J Med Chem., 46: 1918-1930. [PMID:12723954]

42. Weber D, Berger C, Heinrich T, Eickelmann P, Antel J, Kessler H. (2002) Systematic optimization of a lead-structure identities for a selective short peptide agonist for the human orphan receptor BRS-3. J Pept Sci, 8: 461-475. [PMID:12212809]

43. Weber HC, Jensen RT, Battey JF. (2000) Molecular organization of the mouse gastrin-releasing peptide receptor gene and its promoter. Gene, 244 (1-2): 137-49. [PMID:10689196]

44. Weber HC, Walters J, Leyton J, Casibang M, Purdom S, Jensen RT, Coy DH, Ellis C, Clark G, Moody TW. (2001) A bombesin receptor subtype-3 peptide increases nuclear oncogene expression in a MEK-1 dependent manner in human lung cancer cells. Eur. J. Pharmacol., 412 (1): 13-20. [PMID:11166731]

45. Zhang L, Nothacker HP, Wang Z, Bohn LM, Civelli O. (2009) Pharmacological characterization of a selective agonist for bombesin receptor subtype-3. Biochem. Biophys. Res. Commun., 387 (2): 283-8. [PMID:19580790]

46. Zhang L, Parks GS, Wang Z, Wang L, Lew M, Civelli O. (2013) Anatomical characterization of bombesin receptor subtype-3 mRNA expression in the rodent central nervous system. J. Comp. Neurol., 521 (5): 1020-39. [PMID:22911445]

Contributors

Show »

How to cite this page

Jim Battey, Richard V. Benya, Robert T. Jensen.
Bombesin receptors: BB3 receptor. Last modified on 19/02/2018. Accessed on 21/11/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=40.