Ca<sub>v</sub>2.3 | Voltage-gated calcium channels | IUPHAR/BPS Guide to PHARMACOLOGY

Cav2.3

Target id: 534

Nomenclature: Cav2.3

Family: Voltage-gated calcium channels

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for Cav2.3 in GtoImmuPdb

Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 24 0 2270 1q25-q31 CACNA1E calcium voltage-gated channel subunit alpha1 E
Mouse 24 0 2273 1 G3 Cacna1e calcium channel, voltage-dependent, R type, alpha 1E subunit
Rat 24 0 2295 13q21 Cacna1e calcium voltage-gated channel subunit alpha1 E
Previous and Unofficial Names
α1E | CACH6 | CACNL1A6 | brain calcium channel II | CACHA1E | calcium channel, L type, alpha-1 polypeptide, isoform 6 | RBE2 | RBE-II | alpha1E | Cchra1 | BII-1 | calcium channel
Database Links
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Associated Proteins
Heteromeric Pore-forming Subunits
Name References
Not determined
Auxiliary Subunits
Name References
β 31,55
α 31,55
Other Associated Proteins
Name References
Not determined
Functional Characteristics
R-type calcium current: Moderate voltage-activated, fast voltage-dependent inactivation
Ion Selectivity and Conductance
Species:  Human
Rank order:  Ba2+ > Ca2+
References:  55
Species:  Rat
Rank order:  Ca2+ = Ba2+ [14.0 - 21.0 (median: 20.0) pS]
References:  6,8
Voltage Dependence
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -29.1 – -24.6 2.1 – 2.4 41 Xenopus laevis oocyte Rat
Inactivation  -78.1 – -65.2 - 41
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -7.7 – -1.7 1.8 19,35 Neurons (cerebellar and hippocampal) Rat
Inactivation  -68.4 - 35
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -14.0 – -13.3 - 40 Neurons (striatal, cortical and hippocampal) Mouse
Inactivation  -73.1 – -67.8 (median: -70.3) - 40
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  - 2.0 – 3.6 31,38 Xenopus laevis oocyte Human
Inactivation  -73.0 – -31.0 (median: -54.0) 16.0 – 655.0 31,38
Voltage Dependence Comments
Coexpression of Cav2.3 with β1, β3 or β4 subunits shifts the voltage-dependence of activation and inactivation further in the hyperpolarised direction [31,41]. Activation and inactivation time courses depend upon the nature of the β subunit, being slower with β2 [31].

Download all structure-activity data for this target as a CSV file

Gating inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
SNX482 Hs Antagonist 7.5 – 8.0 pIC50 - Physiological 29
pIC50 7.5 – 8.0 (IC50 3x10-8 – 1.5x10-8 M) [29]
Holding voltage: Physiological
SNX482 Rn Antagonist 7.1 – 8.2 pIC50 - -90.0 2,43
pIC50 7.1 – 8.2 [2,43]
Holding voltage: -90.0 mV
mibefradil Rn - 6.4 pIC50 - -100.0 12
pIC50 6.4 [12]
Holding voltage: -100.0 mV
Ni2+ Rn Antagonist 3.6 – 4.7 pIC50 - -100.0 41,59
pIC50 3.6 – 4.7 [41,59]
Holding voltage: -100.0 mV
View species-specific gating inhibitor tables
Gating Inhibitor Comments
Ni2+ blockade is detected as both a reduction in the maximum slope conductance and a shift in the current-voltage relation [59]. SNX482 has also been shown to block native IA potassium currents and cloned Kv4.3 currents at lower concentrations than that required for blockade of Cav2.3 currents [14].
Channel Blockers
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
ω-phonetoxin-IIA Rn Antagonist 7.2 pKd - -100.0 7
pKd 7.2 [7]
Holding voltage: -100.0 mV
ω-PnTx3-3 Rn Antagonist 7.9 pIC50 - -80.0 18
pIC50 7.9 [18]
Holding voltage: -80.0 mV
Pb2+ Hs Antagonist 7.0 pIC50 - -90.0 32
pIC50 7.0 [32]
Holding voltage: -90.0 mV
DW13.3 Rn Antagonist 7.0 pIC50 - -100.0 42
pIC50 7.0 [42]
Holding voltage: -100.0 mV
PnTx-3-6 Rn Antagonist 6.9 pIC50 - -100.0 48
pIC50 6.9 [48]
Holding voltage: -100.0 mV
Cd2+ Hs Antagonist 6.1 pIC50 - -90.0 55
pIC50 6.1 [55]
Holding voltage: -90.0 mV
Ni2+ Hs Antagonist 4.6 pIC50 - -90.0 55
pIC50 4.6 (IC50 2.74x10-5 M) [55]
Holding voltage: -90.0 mV
View species-specific channel blocker tables
Tissue Distribution
Brain (widespread)
Species:  Human
Technique:  Microarray analysis
References:  10
Lung (fetal epithelium). This distribution is also seen in mice.
Species:  Human
Technique:  Immunocytochemistry
References:  3
Brain (widespread)
Species:  Mouse
Technique:  In situ hybridisation
References:  55
Brain (widespread)
Species:  Mouse
Technique:  In situ hybridisation
References:  17
Brain (cerebral cortex: neurons, oligodendrocyte precursor cells, newly formed oligodendrocytes, microglia, endothelial cells)
Species:  Mouse
Technique:  RNA transcriptome
References:  61
Auditory system (spiral ganglion)
Species:  Mouse
Technique:  qPCR, immunocytochemistry
References:  5
Brain and spinal cord (cell bodies and dendrites)
Species:  Rat
Technique:  Immunohistochemistry
References:  54
Pituitary (somatotrophs, lactotrophs)
Species:  Rat
Technique:  RT-PCR, immunocytochemistry, whole cell patch clamp
References:  46
Brain (widespread)
Species:  Rat
Technique:  In situ hybridisation
References:  41
Sperm
Species:  Rat
Technique:  Immunocytochemistry, whole cell patch clamp
References:  52-53
Brain (inc. cortical astrocytes, cerebellum)
Species:  Rat
Technique:  RT-PCR
References:  6,16,47
Atrial myocytes
Species:  Rat
Technique:  RT-PCR
References:  24
Kidney, pancreatic islets
Species:  Rat
Technique:  RT-PCR
References:  47
Functional Assays
Patch clamp (whole cell currents and single channel recording)
Species:  Human
Tissue:  HEK-293 cells expressing Cav2.3
Response measured:  R-type currents
References:  33,55
Patch-clamp (whole cell currents and single channel recordings), two-microelectrode voltage-clamp.
Species:  Human
Tissue:  Xenopus laevis oocytes expressing Cav2.3
Response measured:  R-type currents
References:  31,38,55
Patch-clamp (whole cell currents)
Species:  Rat
Tissue:  Xenopus laevis oocytes expressing Cav2.3
Response measured:  R-type currents
References:  41
Patch-clamps (whole cell currents and single channel recordings)
Species:  Rat
Tissue:  Cortical astrocytes
Response measured:  R-type currents
References:  6
Patch-clamp (whole cell currents)
Species:  Rat
Tissue:  Primary neurons (cerebellar granules cells, hippocampal neurons)
Response measured:  R-type currents
References:  19,35,43,56
Patch-clamp (whole cell currents)
Species:  Mouse
Tissue:  Primary neurons (hippocampal and neocortical neurons)
Response measured:  R-type currents
References:  40
Patch-clamp, calcium imaging
Species:  Rat
Tissue:  Pancreas (islet cells)
Response measured:  R-type currents, insulin secretion, intracellular calcium changes
References:  13
Patch-clamp, calcium imaging
Species:  Rat
Tissue:  Cerebellum (parallel fiber – Purkinje cell synapse)
Response measured:  Long-term potentiation, EPSCs, intracellular calcium changes
References:  26
Physiological Functions
Synaptic transmission
Species:  Rat
Tissue:  Brain (hippocampus, cerebellum, brainstem)
References:  23,56-57
Neuropeptide and hormone secretion. This function was also seen in mice.
Species:  Rat
Tissue:  Pancreas, adrenal, neurons
References:  1,13,49-50,60
Synaptic plasticity
Species:  Rat
Tissue:  Brain (cerebellum)
References:  26
Axon guidance
Species:  Mouse
Tissue:  Sympathetic neurons
References:  44
Low-threshold calcium spike generation
Species:  Rat
Tissue:  Cerebellum
References:  4
Inflammatory and neuropathic pain. Also seen in rats.
Species:  Mouse
Tissue:  Brain and spinal chord
References:  22,37
Seizure susceptibility. This effect is also seen in rats
Species:  Mouse
Tissue:  Brain
References:  28,36
Physiological Consequences of Altering Gene Expression
Absence of Cav2.3 expression leads to abnormal sleep pattern (reduced wake duration, increased slow-wave sleep), altered EEG pattern (spike-wave discharges), increased susceptibility to absence seizures, decreased susceptibility to PTZ- and kainate-induced seizures, loss of atropine-sensitive theta oscillations, altered cerebellar function, altered cocaine-mediated behavior; impaired insulin release, hyperglycemia, impaired spatial memory, enhanced susceptibility to cardiac arrhythmia, enhanced morphine analgesia and reduced morphine tolerance
Species:  Mouse
Tissue:  Central and peripheral nervous systems, heart, pancreas
Technique:  Knockout
References:  9,15,20-21,27,30,34,39,51,58
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Cacna1etm1Hssh Cacna1etm1Hssh/Cacna1etm1Hssh
involves: 129S4/SvJae * C57BL/6J
MGI:106217  MP:0003484 abnormal channel response PMID: 11854466 
Cacna1etm1Ttan Cacna1etm1Ttan/Cacna1etm1Ttan
involves: 129S4/SvJae * C57BL/6
MGI:106217  MP:0002065 abnormal fear/anxiety-related behavior PMID: 10801976 
Cacna1etm1Hssh Cacna1etm1Hssh/Cacna1etm1Hssh
involves: 129S4/SvJae * C57BL/6J
MGI:106217  MP:0002065 abnormal fear/anxiety-related behavior PMID: 11854466 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: C57BL/6
MGI:106217  MP:0003565 abnormal glucagon secretion PMID: 15630454 
Cacna1etm1Ttan Cacna1etm1Ttan/Cacna1etm1Ttan
involves: 129S4/SvJae * C57BL/6
MGI:106217  MP:0002066 abnormal motor capabilities/coordination/movement PMID: 10801976 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: C57BL/6
MGI:106217  MP:0003562 abnormal pancreatic beta cell physiology PMID: 15630454 
Cacna1etm1Ttan Cacna1etm1Ttan/Cacna1etm1Ttan
involves: 129S4/SvJae * C57BL/6
MGI:106217  MP:0002067 abnormal sensory capabilities/reflexes/nociception PMID: 10801976 
Cacna1etm1.1Beck Cacna1etm1.1Beck/Cacna1etm1.1Beck
involves: 129P2/OlaHsd * C57BL/6
MGI:106217  MP:0003488 decreased channel response intensity PMID: 12154172 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: C57BL/6
MGI:106217  MP:0002696 decreased circulating glucagon level PMID: 15630454 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: BALB/cJ * C57BL/6
MGI:106217  MP:0002711 decreased glucagon secretion PMID: 15777780 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: C57BL/6
MGI:106217  MP:0003059 decreased insulin secretion PMID: 15630454 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: BALB/cJ * C57BL/6
MGI:106217  MP:0003059 decreased insulin secretion PMID: 11923483 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: C57BL/6
MGI:106217  MP:0009177 decreased pancreatic alpha cell number PMID: 15630454 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: BALB/cJ * C57BL/6
MGI:106217  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 15777780 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: BALB/cJ * C57BL/6
MGI:106217  MP:0001559 hyperglycemia PMID: 11923483 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: C57BL/6
MGI:106217  MP:0005293 impaired glucose tolerance PMID: 15630454 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: BALB/cJ * C57BL/6
MGI:106217  MP:0005293 impaired glucose tolerance PMID: 11923483 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: BALB/cJ * C57BL/6
MGI:106217  MP:0001260 increased body weight PMID: 15777780 
Cacna1etm1.1Beck Cacna1etm1.1Beck/Cacna1etm1.1Beck
involves: 129P2/OlaHsd * C57BL/6
MGI:106217  MP:0003489 increased channel response threshold PMID: 12154172 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: C57BL/6
MGI:106217  MP:0005559 increased circulating glucose level PMID: 15630454 
Cacna1etm1.1Tsch Cacna1etm1.1Tsch/Cacna1etm1.1Tsch
involves: BALB/cJ * C57BL/6
MGI:106217  MP:0005559 increased circulating glucose level PMID: 15777780 
Cacna1etm1Hssh Cacna1etm1Hssh/Cacna1etm1Hssh
involves: 129S4/SvJae * C57BL/6J
MGI:106217  MP:0002797 increased thigmotaxis PMID: 11854466 
Cacna1etm1Rjml Cacna1etm1Rjml/Cacna1etm1Rjml
involves: 129S1/Sv * C57BL/6J
MGI:106217  MP:0002169 no abnormal phenotype detected PMID: 11102459 
Cacna1etm1Tsch Cacna1etm1Tsch/Cacna1etm1Tsch
involves: C57BL/6
MGI:106217  MP:0002169 no abnormal phenotype detected PMID: 11923483 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Diabetes mellitus, noninsulin-dependent; NIDDM
Synonyms: Diabetes mellitus, Type II; T2D [OMIM: 125853]
Maturity onset diabetes
Type 2 diabetes mellitus [Disease Ontology: DOID:9352]
Disease Ontology: DOID:9352
OMIM: 125853
Role: 
References:  11,25,45

References

Show »

1. Albillos A, Neher E, Moser T. (2000) R-Type Ca2+ channels are coupled to the rapid component of secretion in mouse adrenal slice chromaffin cells. J. Neurosci., 20 (22): 8323-30. [PMID:11069939]

2. Bourinet E, Stotz SC, Spaetgens RL, Dayanithi G, Lemos J, Nargeot J, Zamponi GW. (2001) Interaction of SNX482 with domains III and IV inhibits activation gating of alpha(1E) (Ca(V)2.3) calcium channels. Biophys. J., 81 (1): 79-88. [PMID:11423396]

3. Brennan SC, Finney BA, Lazarou M, Rosser AE, Scherf C, Adriaensen D, Kemp PJ, Riccardi D. (2013) Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels. PLoS ONE, 8 (11): e80294. [PMID:24282533]

4. Cavelier P, Lohof AM, Lonchamp E, Beekenkamp H, Mariani J, Bossu JL. (2008) Participation of low-threshold Ca2+ spike in the Purkinje cells complex spike. Neuroreport, 19 (3): 299-303. [PMID:18303570]

5. Chen WC, Xue HZ, Hsu YL, Liu Q, Patel S, Davis RL. (2011) Complex distribution patterns of voltage-gated calcium channel α-subunits in the spiral ganglion. Hear. Res., 278 (1-2): 52-68. [PMID:21281707]

6. D'Ascenzo M, Vairano M, Andreassi C, Navarra P, Azzena GB, Grassi C. (2004) Electrophysiological and molecular evidence of L-(Cav1), N- (Cav2.2), and R- (Cav2.3) type Ca2+ channels in rat cortical astrocytes. Glia, 45 (4): 354-63. [PMID:14966867]

7. Dos Santos RG, Van Renterghem C, Martin-Moutot N, Mansuelle P, Cordeiro MN, Diniz CR, Mori Y, De Lima ME, Seagar M. (2002) Phoneutria nigriventer omega-phonetoxin IIA blocks the Cav2 family of calcium channels and interacts with omega-conotoxin-binding sites. J. Biol. Chem., 277 (16): 13856-62. [PMID:11827974]

8. Forti L, Tottene A, Moretti A, Pietrobon D. (1994) Three novel types of voltage-dependent calcium channels in rat cerebellar neurons. J. Neurosci., 14 (9): 5243-56. [PMID:8083734]

9. Han W, Saegusa H, Zong S, Tanabe T. (2002) Altered cocaine effects in mice lacking Ca(v)2.3 (alpha(1E)) calcium channel. Biochem. Biophys. Res. Commun., 299 (2): 299-304. [PMID:12437986]

10. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, van de Lagemaat LN, Smith KA, Ebbert A, Riley ZL et al.. (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489 (7416): 391-9. [PMID:22996553]

11. Holmkvist J, Tojjar D, Almgren P, Lyssenko V, Lindgren CM, Isomaa B, Tuomi T, Berglund G, Renström E, Groop L. (2007) Polymorphisms in the gene encoding the voltage-dependent Ca(2+) channel Ca (V)2.3 (CACNA1E) are associated with type 2 diabetes and impaired insulin secretion. Diabetologia, 50 (12): 2467-75. [PMID:17934712]

12. Jiménez C, Bourinet E, Leuranguer V, Richard S, Snutch TP, Nargeot J. (2000) Determinants of voltage-dependent inactivation affect Mibefradil block of calcium channels. Neuropharmacology, 39 (1): 1-10. [PMID:10665814]

13. Jing X, Li DQ, Olofsson CS, Salehi A, Surve VV, Caballero J, Ivarsson R, Lundquist I, Pereverzev A, Schneider T et al.. (2005) CaV2.3 calcium channels control second-phase insulin release. J. Clin. Invest., 115 (1): 146-54. [PMID:15630454]

14. Kimm T, Bean BP. (2014) Inhibition of A-type potassium current by the peptide toxin SNX-482. J. Neurosci., 34 (28): 9182-9. [PMID:25009251]

15. Kubota M, Murakoshi T, Saegusa H, Kazuno A, Zong S, Hu Q, Noda T, Tanabe T. (2001) Intact LTP and fear memory but impaired spatial memory in mice lacking Ca(v)2.3 (alpha(IE)) channel. Biochem. Biophys. Res. Commun., 282 (1): 242-8. [PMID:11263998]

16. Latour I, Hamid J, Beedle AM, Zamponi GW, Macvicar BA. (2003) Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes. Glia, 41 (4): 347-53. [PMID:12555202]

17. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ et al.. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445 (7124): 168-76. [PMID:17151600]

18. Leão RM, Cruz JS, Diniz CR, Cordeiro MN, Beirão PS. (2000) Inhibition of neuronal high-voltage activated calcium channels by the omega-phoneutria nigriventer Tx3-3 peptide toxin. Neuropharmacology, 39 (10): 1756-67. [PMID:10884557]

19. Li L, Bischofberger J, Jonas P. (2007) Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons. J. Neurosci., 27 (49): 13420-9. [PMID:18057200]

20. Lu ZJ, Pereverzev A, Liu HL, Weiergräber M, Henry M, Krieger A, Smyth N, Hescheler J, Schneider T. (2004) Arrhythmia in isolated prenatal hearts after ablation of the Cav2.3 (alpha1E) subunit of voltage-gated Ca2+ channels. Cell. Physiol. Biochem., 14 (1-2): 11-22. [PMID:14976402]

21. Matsuda Y, Saegusa H, Zong S, Noda T, Tanabe T. (2001) Mice lacking Ca(v)2.3 (alpha1E) calcium channel exhibit hyperglycemia. Biochem. Biophys. Res. Commun., 289 (4): 791-5. [PMID:11735114]

22. Matthews EA, Bee LA, Stephens GJ, Dickenson AH. (2007) The Cav2.3 calcium channel antagonist SNX-482 reduces dorsal horn neuronal responses in a rat model of chronic neuropathic pain. Eur. J. Neurosci., 25 (12): 3561-9. [PMID:17610575]

23. Mintz IM, Sabatini BL, Regehr WG. (1995) Calcium control of transmitter release at a cerebellar synapse. Neuron, 15 (3): 675-88. [PMID:7546746]

24. Mitchell JW, Larsen JK, Best PM. (2002) Identification of the calcium channel alpha 1E (Ca(v)2.3) isoform expressed in atrial myocytes. Biochim. Biophys. Acta, 1577 (1): 17-26. [PMID:12151091]

25. Muller YL, Hanson RL, Zimmerman C, Harper I, Sutherland J, Kobes S, International Type 2 Diabetes 1q Consortium, Knowler WC, Bogardus C, Baier LJ. (2007) Variants in the Ca V 2.3 (alpha 1E) subunit of voltage-activated Ca2+ channels are associated with insulin resistance and type 2 diabetes in Pima Indians. Diabetes, 56 (12): 3089-94. [PMID:17720895]

26. Myoga MH, Regehr WG. (2011) Calcium microdomains near R-type calcium channels control the induction of presynaptic long-term potentiation at parallel fiber to purkinje cell synapses. J. Neurosci., 31 (14): 5235-43. [PMID:21471358]

27. Müller R, Struck H, Ho MS, Brockhaus-Dumke A, Klosterkötter J, Broich K, Hescheler J, Schneider T, Weiergräber M. (2012) Atropine-sensitive hippocampal θ oscillations are mediated by Cav2.3 R-type Ca²⁺ channels. Neuroscience, 205: 125-39. [PMID:22240250]

28. N'gouemo P, Faingold CL, Morad M. (2009) Calcium channel dysfunction in inferior colliculus neurons of the genetically epilepsy-prone rat. Neuropharmacology, 56 (3): 665-75. [PMID:19084544]

29. Newcomb R, Szoke B, Palma A, Wang G, Chen X, Hopkins W, Cong R, Miller J, Urge L, Tarczy-Hornoch K, Loo JA, Dooley DJ, Nadasdi L, Tsien RW, Lemos J, Miljanich G. (1998) Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry, 37 (44): 15353-62. [PMID:9799496]

30. Osanai M, Saegusa H, Kazuno AA, Nagayama S, Hu Q, Zong S, Murakoshi T, Tanabe T. (2006) Altered cerebellar function in mice lacking CaV2.3 Ca2+ channel. Biochem. Biophys. Res. Commun., 344 (3): 920-5. [PMID:16631598]

31. Parent L, Schneider T, Moore CP, Talwar D. (1997) Subunit regulation of the human brain alpha 1E calcium channel. J. Membr. Biol., 160 (2): 127-40. [PMID:9354705]

32. Peng S, Hajela RK, Atchison WD. (2002) Characteristics of block by Pb2+ of function of human neuronal L-, N-, and R-type Ca2+ channels transiently expressed in human embryonic kidney 293 cells. Mol. Pharmacol., 62 (6): 1418-30. [PMID:12435810]

33. Pereverzev A, Klöckner U, Henry M, Grabsch H, Vajna R, Olyschläger S, Viatchenko-Karpinski S, Schröder R, Hescheler J, Schneider T. (1998) Structural diversity of the voltage-dependent Ca2+ channel alpha1E-subunit. Eur. J. Neurosci., 10 (3): 916-25. [PMID:9753159]

34. Pereverzev A, Mikhna M, Vajna R, Gissel C, Henry M, Weiergräber M, Hescheler J, Smyth N, Schneider T. (2002) Disturbances in glucose-tolerance, insulin-release, and stress-induced hyperglycemia upon disruption of the Ca(v)2.3 (alpha 1E) subunit of voltage-gated Ca(2+) channels. Mol. Endocrinol., 16 (4): 884-95. [PMID:11923483]

35. Randall AD, Tsien RW. (1997) Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology, 36 (7): 879-93. [PMID:9257934]

36. Rijkers K, Mescheriakova J, Majoie M, Lemmens E, van Wijk X, Philippens M, Van Kranen-Mastenbroek V, Schijns O, Vles J, Hoogland G. (2010) Polymorphisms in CACNA1E and Camk2d are associated with seizure susceptibility of Sprague-Dawley rats. Epilepsy Res., 91 (1): 28-34. [PMID:20638246]

37. Saegusa H, Kurihara T, Zong S, Minowa O, Kazuno A, Han W, Matsuda Y, Yamanaka H, Osanai M, Noda T et al.. (2000) Altered pain responses in mice lacking alpha 1E subunit of the voltage-dependent Ca2+ channel. Proc. Natl. Acad. Sci. U.S.A., 97 (11): 6132-7. [PMID:10801976]

38. Schneider T, Wei X, Olcese R, Costantin JL, Neely A, Palade P, Perez-Reyes E, Qin N, Zhou J, Crawford GD. (1994) Molecular analysis and functional expression of the human type E neuronal Ca2+ channel alpha 1 subunit. Recept. Channels, 2 (4): 255-70. [PMID:7536609]

39. Siwek ME, Müller R, Henseler C, Broich K, Papazoglou A, Weiergräber M. (2014) The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture. Sleep, 37 (5): 881-92. [PMID:24790266]

40. Sochivko D, Pereverzev A, Smyth N, Gissel C, Schneider T, Beck H. (2002) The Ca(V)2.3 Ca(2+) channel subunit contributes to R-type Ca(2+) currents in murine hippocampal and neocortical neurones. J. Physiol. (Lond.), 542 (Pt 3): 699-710. [PMID:12154172]

41. Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, Snutch TP. (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family. Science, 260 (5111): 1133-6. [PMID:8388125]

42. Sutton KG, Siok C, Stea A, Zamponi GW, Heck SD, Volkmann RA, Ahlijanian MK, Snutch TP. (1998) Inhibition of neuronal calcium channels by a novel peptide spider toxin, DW13.3. Mol. Pharmacol., 54 (2): 407-18. [PMID:9687583]

43. Tottene A, Volsen S, Pietrobon D. (2000) alpha(1E) subunits form the pore of three cerebellar R-type calcium channels with different pharmacological and permeation properties. J. Neurosci., 20 (1): 171-8. [PMID:10627594]

44. Treinys R, Kaselis A, Jover E, Bagnard D, Šatkauskas S. (2014) R-type calcium channels are crucial for semaphorin 3A-induced DRG axon growth cone collapse. PLoS ONE, 9 (7): e102357. [PMID:25032951]

45. Trombetta M, Bonetti S, Boselli M, Turrini F, Malerba G, Trabetti E, Pignatti P, Bonora E, Bonadonna RC. (2012) CACNA1E variants affect beta cell function in patients with newly diagnosed type 2 diabetes. the Verona newly diagnosed type 2 diabetes study (VNDS) 3. PLoS ONE, 7 (3): e32755. [PMID:22427875]

46. Tzour A, Sosial E, Meir T, Canello T, Naveh-Many T, Gabizon R, Nussinovitch I. (2013) Multiple pathways for high voltage-activated ca(2+) influx in anterior pituitary lactotrophs and somatotrophs. J. Neuroendocrinol., 25 (1): 76-86. [PMID:22882461]

47. Vajna R, Schramm M, Pereverzev A, Arnhold S, Grabsch H, Klöckner U, Perez-Reyes E, Hescheler J, Schneider T. (1998) New isoform of the neuronal Ca2+ channel alpha1E subunit in islets of Langerhans and kidney--distribution of voltage-gated Ca2+ channel alpha1 subunits in cell lines and tissues. Eur. J. Biochem., 257 (1): 274-85. [PMID:9799129]

48. Vieira LB, Kushmerick C, Hildebrand ME, Garcia E, Stea A, Cordeiro MN, Richardson M, Gomez MV, Snutch TP. (2005) Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6. J. Pharmacol. Exp. Ther., 314 (3): 1370-7. [PMID:15933156]

49. Wang G, Dayanithi G, Newcomb R, Lemos JR. (1999) An R-type Ca(2+) current in neurohypophysial terminals preferentially regulates oxytocin secretion. J. Neurosci., 19 (21): 9235-41. [PMID:10531427]

50. Watanabe M, Sakuma Y, Kato M. (2004) High expression of the R-type voltage-gated Ca2+ channel and its involvement in Ca2+-dependent gonadotropin-releasing hormone release in GT1-7 cells. Endocrinology, 145 (5): 2375-83. [PMID:14736732]

51. Weiergräber M, Henry M, Radhakrishnan K, Hescheler J, Schneider T. (2007) Hippocampal seizure resistance and reduced neuronal excitotoxicity in mice lacking the Cav2.3 E/R-type voltage-gated calcium channel. J. Neurophysiol., 97 (5): 3660-9. [PMID:17376845]

52. Wennemuth G, Westenbroek RE, Xu T, Hille B, Babcock DF. (2000) CaV2.2 and CaV2.3 (N- and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse sperm. J. Biol. Chem., 275 (28): 21210-7. [PMID:10791962]

53. Westenbroek RE, Babcock DF. (1999) Discrete regional distributions suggest diverse functional roles of calcium channel alpha1 subunits in sperm. Dev. Biol., 207 (2): 457-69. [PMID:10068476]

54. Westenbroek RE, Hoskins L, Catterall WA. (1998) Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J. Neurosci., 18 (16): 6319-30. [PMID:9698323]

55. Williams ME, Marubio LM, Deal CR, Hans M, Brust PF, Philipson LH, Miller RJ, Johnson EC, Harpold MM, Ellis SB. (1994) Structure and functional characterization of neuronal alpha 1E calcium channel subtypes. J. Biol. Chem., 269 (35): 22347-57. [PMID:8071363]

56. Wu LG, Borst JG, Sakmann B. (1998) R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc. Natl. Acad. Sci. U.S.A., 95 (8): 4720-5. [PMID:9539805]

57. Wu LG, Saggau P. (1995) Block of multiple presynaptic calcium channel types by omega-conotoxin-MVIIC at hippocampal CA3 to CA1 synapses. J. Neurophysiol., 73 (5): 1965-72. [PMID:7623094]

58. Yokoyama K, Kurihara T, Saegusa H, Zong S, Makita K, Tanabe T. (2004) Blocking the R-type (Cav2.3) Ca2+ channel enhanced morphine analgesia and reduced morphine tolerance. Eur. J. Neurosci., 20 (12): 3516-9. [PMID:15610184]

59. Zamponi GW, Bourinet E, Snutch TP. (1996) Nickel block of a family of neuronal calcium channels: subtype- and subunit-dependent action at multiple sites. J. Membr. Biol., 151 (1): 77-90. [PMID:8661496]

60. Zhang Q, Bengtsson M, Partridge C, Salehi A, Braun M, Cox R, Eliasson L, Johnson PR, Renström E, Schneider T et al.. (2007) R-type Ca(2+)-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat. Cell Biol., 9 (4): 453-60. [PMID:17369816]

61. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N et al.. (2014) An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. J. Neurosci., 34 (36): 11929-47. [PMID:25186741]

Contributors

Show »

How to cite this page

William A. Catterall, Edward Perez-Reyes, Terrance P. Snutch, Joerg Striessnig.
Voltage-gated calcium channels: Cav2.3. Last modified on 22/09/2017. Accessed on 15/11/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=534.