β<sub>1</sub>-adrenoceptor | Adrenoceptors | IUPHAR/BPS Guide to PHARMACOLOGY

β1-adrenoceptor

Target id: 28

Nomenclature: β1-adrenoceptor

Family: Adrenoceptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for β1-adrenoceptor in GtoImmuPdb

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 477 10q24-q26 ADRB1 adrenoceptor beta 1 10
Mouse 7 466 19 D2 Adrb1 adrenergic receptor, beta 1 15
Rat 7 466 1q55 Adrb1 adrenoceptor beta 1 26
Previous and Unofficial Names
ADRB1R | Adrenergic receptor beta 1 | B1AR | beta-1 adrenergic receptor | beta-1 adrenoreceptor | Adrb-1 | beta 1-AR | adrenergic receptor
Database Links
Specialist databases
GPCRDB adrb1_human (Hs), adrb1_mouse (Mm), adrb1_rat (Rn)
Other databases
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the β1-Adrenergic G Protein-Coupled Receptor
PDB Id:  2VT4
Ligand:  cyanopindolol
Resolution:  2.7Å
Species:  Turkey
References:  47
Image of receptor 3D structure from RCSB PDB
Description:  Turkey β1-adrenergic receptor with stabilising mutations and partial bound agonist Dobutamine
PDB Id:  2Y01
Ligand:  dobutamine
Resolution:  2.6Å
Species:  Turkey
References:  46
Image of receptor 3D structure from RCSB PDB
Description:  Turkey β1-adrenergic receptor with stabilising mutations and bound agonist Isoprenaline
PDB Id:  2Y03
Ligand:  isoprenaline
Resolution:  2.85Å
Species:  Turkey
References:  46
Image of receptor 3D structure from RCSB PDB
Description:  Turkey β1-adrenergic receptor with stabilising mutations and partial bound agonist Salbutamol
PDB Id:  2Y04
Ligand:  salbutamol
Resolution:  3.05Å
Species:  Turkey
References:  46
Image of receptor 3D structure from RCSB PDB
Description:  Turkey β1-adrenergic receptor with stabilising mutations and bound agonist Carazolol
PDB Id:  2YCW
Ligand:  carazolol
Resolution:  3.0Å
Species:  Turkey
References:  32
Image of receptor 3D structure from RCSB PDB
Description:  Turkey β1-Adrenergic receptor with stabilising mutations and bound antagonist Cyanopindolol
PDB Id:  2YCX
Ligand:  cyanopindolol
Resolution:  3.25Å
Species:  Turkey
References:  32
Image of receptor 3D structure from RCSB PDB
Description:  Turkey β1-adrenergic receptor with stabilising mutations and partial bound agonist Dobutamine
PDB Id:  2Y00
Ligand:  dobutamine
Resolution:  2.5Å
Species:  Turkey
References:  46
Image of receptor 3D structure from RCSB PDB
Description:  Turkey β1-adrenergic receptor with stabilising mutations and bound antagonist Cyanopindolol
PDB Id:  2YCY
Ligand:  cyanopindolol
Resolution:  3.15Å
Species:  Turkey
References:  32
Image of receptor 3D structure from RCSB PDB
Description:  NMR and circular dichroism studies of synthetic peptides derived from the third intracellular loop of the beta-adrenoceptor
PDB Id:  1DEP
Resolution:  0.0Å
Species:  Turkey
References:  19
Image of receptor 3D structure from RCSB PDB
Description:  Turkey β1-adrenergic receptor with stabilising mutations and bound agonist Carmoterol
PDB Id:  2Y02
Ligand:  carmoterol
Resolution:  2.6Å
Species:  Turkey
References:  46
Image of receptor 3D structure from RCSB PDB
Description:  Turkey β1-adrenergic receptor with stabilising mutations and bound antagonist Iodocyanopindolol
PDB Id:  2YCZ
Ligand:  iodocyanopindolol
Resolution:  3.65Å
Species:  Turkey
References:  32
Associated Proteins
Interacting Proteins
Name Effect References
β1-adrenoceptor 29
β2-adrenoceptor 21-22,29,51
α2A-adrenoceptor 49
Natural/Endogenous Ligands
(-)-adrenaline
(-)-noradrenaline
Comments: Noradrenaline exhibits greater potency than adrenaline
Potency order of endogenous ligands (Human)
(-)-noradrenaline > (-)-adrenaline

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H](-)CGP 12177 Hs Partial agonist 6.6 – 9.9 pKd 16
pKd 6.6 – 9.9 [16]
CGP 12177 Hs Partial agonist 9.4 pKi 25
pKi 9.4 [25]
pindolol Hs Partial agonist 9.3 pKi 20
pKi 9.3 (Ki 5.2x10-10 M) [20]
(-)-Ro 363 Hs Agonist 8.0 pKi 31
pKi 8.0 [31]
xamoterol Hs Partial agonist 7.0 pKi 14
pKi 7.0 (Ki 1x10-7 M) [14]
isoprenaline Hs Full agonist 6.6 – 7.0 pKi 11,40
pKi 6.6 – 7.0 [11,40]
indacaterol Hs Agonist 6.7 pKi 5
pKi 6.7 (Ki 1.8x10-7 M) [5]
T-0509 Hs Full agonist 6.6 pKi 40
pKi 6.6 [40]
prenalterol Hs Partial agonist 6.6 pKi 8,14
pKi 6.6 [8,14]
arformoterol Hs Agonist 6.5 pKi 6
pKi 6.5 (Ki 3.19x10-7 M) [6]
noradrenaline Hs Full agonist 6.0 pKi 11
pKi 6.0 [11]
(±)-adrenaline Hs Full agonist 6.0 pKi 11
pKi 6.0 [11]
denopamine Hs Partial agonist 5.8 pKi 14,43
pKi 5.8 (Ki 1.584x10-6 M) [14,43]
(-)-noradrenaline Hs Agonist 5.5 – 6.0 pKi 11,13
pKi 5.5 – 6.0 [11,13]
(-)-adrenaline Hs Agonist 5.4 – 6.0 pKi 11,13
pKi 5.4 – 6.0 [11,13]
dobutamine Hs Partial agonist 5.5 pKi 14
pKi 5.5 [14]
solabegron Hs Agonist 5.4 pEC50 45
pEC50 5.4 [45]
mirabegron Hs Agonist <5.0 pEC50 44
pEC50 <5.0 (EC50 >1x10-5 M) [44]
abediterol Hs Agonist 7.4 pIC50 2
pIC50 7.4 (IC50 3.62x10-8 M) [2]
Description: Membrane radioligand displacement assay using [3H]CGP12177 as tracer.
Agonist Comments
CGP 12177 is listed as a selective partial agonist at the β1 -adrenoceptor. It has now been established that the agonist action of this ligand is a result of action at a non-catecholamine activated site on the β1-adrenoceptor. This site is resistant to propranolol but is eliminated in β1-adrenoceptor knockout mice, confirming the site of action as the β1-adrenoceptor. This site was previously referred to as the β4-adrenoceptor. See reference [16] for additional information.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]ICYP Hs Antagonist 10.4 – 11.3 pKd 14,25,40
pKd 10.4 – 11.3 (Kd 3.9x10-11 – 4.99x10-12 M) It is necessary to use an excess of a β2-AR-selective ligand such as ICI 118551 in combination with this radioligand in order to allow visualisation of β1-AR binding in native tissue. [14,25,40]
[125I](-)ICYP Hs Antagonist 10.0 – 11.3 pKd 17,25,40
pKd 10.0 – 11.3 [17,25,40]
[3H](-)CGP 12177 Hs Antagonist 6.6 – 9.2 pKd 4,16
pKd 6.6 – 9.2 [4,16]
carvedilol Hs Antagonist 9.5 pKi 9
pKi 9.5 [9]
levobetaxolol Hs Antagonist 9.1 pKi 41
pKi 9.1 (Ki 7.6x10-10 M) [41]
CGP 12177 Hs Antagonist 8.8 – 9.3 pKi 4,16
pKi 8.8 – 9.3 [4,16]
CGP 20712A Hs Antagonist 8.5 – 9.2 pKi 4,9,25
pKi 8.5 – 9.2 (Ki 3.16x10-9 – 6.3x10-10 M) [4,9,25]
betaxolol Hs Antagonist 8.8 pKi 25
pKi 8.8 [25]
SR59230A Hs Antagonist 8.6 pKi 9
pKi 8.6 [9]
(-)-propranolol Hs Antagonist 8.2 – 8.9 pKi 4,16,25
pKi 8.2 – 8.9 [4,16,25]
LK 204-545 Hs Antagonist 8.5 pKi 25
pKi 8.5 [25]
NIP Hs Antagonist 8.4 pKi 25
pKi 8.4 [25]
levobunolol Hs Antagonist 8.4 pKi 3
pKi 8.4 (Ki 3.99x10-9 M) [3]
labetalol Hs Antagonist 8.2 pKi 3
pKi 8.2 (Ki 5.84x10-9 M) [3]
bupranolol Hs Antagonist 7.3 – 9.0 pKi 9,25
pKi 7.3 – 9.0 [9,25]
cicloprolol Hs Antagonist 8.0 pKi 25
pKi 8.0 [25]
metoprolol Hs Antagonist 7.0 – 7.6 pKi 4,9,13,25
pKi 7.0 – 7.6 [4,9,13,25]
atenolol Hs Antagonist 6.7 – 7.6 pKi 4,16,25
pKi 6.7 – 7.6 [4,16,25]
NIHP Hs Antagonist 7.1 pKi 25
pKi 7.1 [25]
H87/07 Hs Antagonist 7.0 pKi 25
pKi 7.0 [25]
nadolol Hs Antagonist 6.9 pKi 9
pKi 6.9 [9]
esmolol Hs Antagonist 6.9 pKi 3
pKi 6.9 (Ki 1.137x10-7 M) [3]
propafenone Hs Antagonist 6.7 pKi 3
pKi 6.7 (Ki 2.05x10-7 M) [3]
practolol Hs Antagonist 6.1 – 6.8 pKi 4,25
pKi 6.1 – 6.8 [4,25]
acebutolol Hs Antagonist 6.4 pKi 3
pKi 6.4 (Ki 4.22x10-7 M) [3]
sotalol Hs Antagonist 6.1 pKi 3
pKi 6.1 (Ki 8.33x10-7 M) [3]
nebivolol Oc Antagonist 8.1 – 8.7 pIC50 34
pIC50 8.1 – 8.7 [34]
View species-specific antagonist tables
Antagonist Comments
CGP 12177 acts as an antagonist at the catecholamine site of the β1-adrenoceptor, in addition to acting as a partial agonist at the second site on the β1-adrenoceptor. For more information see references [16].
Propafenone may also act to block α-subunits of sodium ion channels (see the Voltage-gated sodium channels family in the Ion Channels section of this website for further details).
Primary Transduction Mechanisms
Transducer Effector/Response
Gs family Adenylate cyclase stimulation
Comments:  Stimulation of adenylate cyclase (AC) causes the conversion of ATP into cAMP. This activates protein kinase A, which in turn phosphorylates several substrates, for example L-type Ca2+ channels.
References:  42,48
Secondary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Guanylate cyclase stimulation
Comments:  Stimulation of guanylate cyclase (GC) causes an increase in cGMP levels, and subsequent activation of protein kinase G.
References:  24
Tissue Distribution
Lung > brain > spleen > heart, kidney > liver > muscle.
Species:  Mouse
Technique:  Radioligand binding.
References:  1
Brain: Pineal gland, thalamus, amygdala, septum, hippocampus, anterior basal ganglia.
Species:  Rat
Technique:  Northern blotting.
References:  26
Heart.
Species:  Rat
Technique:  Northern blotting.
References:  26
Heart > lung.
Species:  Rat
Technique:  Radioligand binding.
References:  30
Brain: Caudate, cortex, cerebellum, hippocampus, diencephalon.
Species:  Rat
Technique:  Radioligand binding.
References:  30
Myocardium.
Species:  Rat
Technique:  Radioligand binding.
References:  12
Internal anal sphincter (IAS) smooth muscle.
Species:  Rat
Technique:  Western blotting.
References:  24
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of cAMP levels in rat heart and lung tissue.
Species:  Rat
Tissue:  Heart and lung.
Response measured:  cAMP accumulation.
References:  30
Measurement of cAMP levels in CHO-K1 cells transfected with the human β1 receptor.
Species:  Human
Tissue:  CHO-K1 cells
Response measured:  cAMP accumulation.
References:  18,40
Force generation of isolated atrial trabeculae electrically stimulated at 1Hz.
Species:  Human
Tissue:  Atrial trabeculae.
Response measured:  Contraction.
References:  18
Measurement of cAMP and Ca2+ levels in CHW fibroblast cells endogenously expressing Gs, AC and PKA and transfected with both the β1-adrenoceptor and the L-type Ca2+ channel.
Species:  Human
Tissue:  CHW-1102 fibroblasts.
Response measured:  PTX-insensitive cAMP and Ca2+ accumulation.
References:  50
Physiological Functions
All the β-adrenoceptors mediate relaxation of the internal anal sphincter (IAS) smooth muscle, the β1 subtype achieving this via the Gi/o/cGMP pathway.
Species:  Rat
Tissue:  Internal anal sphincter (IAS).
References:  24
Relaxation of colon and oesophagus.
Species:  Mouse
Tissue:  Colon, oesophagus.
References:  33
Apoptosis.
Species:  Rat
Tissue:  Ventricular cardiomyocytes.
References:  35
Tachycardia.
Species:  Mouse
Tissue:  Atrium.
References:  38
Increase in contractile force, positive inotropy.
Species:  Mouse
Tissue:  Right cardiac ventricle.
References:  38
Renin release.
Species:  Human
Tissue:  Kidney.
References:  7
Physiological Consequences of Altering Gene Expression
Most homozygous β1 knockout mice die prenatally, but those that reach adulthood show reduced chronotropic and inotropic responses to β-adrenoceptor agonists and reduced stimulation of adenylyl cyclase in cardiac membrane.
These demonstrate the functional differences between the receptor subtypes, and the importance of the β1-adrenoceptor in mouse development and cardiac function.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  38
β1-adrenoceptor knockout mice exhibit a normal heart rate and blood pressure except during exercise where they have a significantly reduced heart rate but no reduction in maximum exercise capacity or matabolic index.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  39
β1- and β2-adrenoceptor double knockout mice appear to have unaltered basal heart rate, blood pressure and meatabolic rate. Stimulation of these receptors by agonists or exercise reveals they exhibit a normal exercise capacity but at a submaximal heart rate.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  37
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0001777 abnormal body temperature regulation PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0002971 abnormal brown adipose tissue morphology PMID: 12161655 
Adrb1tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk
either: (involves: 129/Sv) or (involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2)
MGI:87937  MP:0001544 abnormal cardiovascular system physiology PMID: 8693001 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0001544 abnormal cardiovascular system physiology PMID: 10358009 
Adrb1tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk
either: (involves: 129/Sv) or (involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2)
MGI:87937  MP:0008872 abnormal physiological response to xenobiotic PMID: 8693001 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0008872 abnormal physiological response to xenobiotic PMID: 10358009 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 10358009 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0005140 decreased cardiac muscle contractility PMID: 10358009 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0005333 decreased heart rate PMID: 10358009 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0005290 decreased oxygen consumption PMID: 10358009 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0005290 decreased oxygen consumption PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0001260 increased body weight PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0009119 increased brown fat cell size PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0005669 increased circulating leptin level PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0009294 increased interscapular fat pad weight PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0010024 increased total body fat amount PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0001261 obese PMID: 12161655 
Adrb1tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk
either: (involves: 129/Sv) or (involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2)
MGI:87937  MP:0002080 prenatal lethality PMID: 8693001 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Variation in resting heart rate
OMIM: 607276
Role: 
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human S49G Highest mean resting heart rates were seen in individuals with the Ser49Gly polymorphism in ADRB1 36
Biologically Significant Variants
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A common Gly389 -> Arg polymorphism has been identified in humans.
Although originally thought that Gly389 was the wild-type, both Gly389 and Arg389 are considered to be common.
This polymorphism is located in the intracellular cytoplasmic tail, resulting in differing Gs binding properties.
The Arg398 polymorphism enhances Gs binding and consequently an increase in adenylyl cyclase activity.
Due to their prevalence, the polymorphisms are not thought to be the primary cause of disease, although may be a small risk factor in common, multi-factorial diseases such as hypertension. They also may result in differing responses to β-blocker therapy.
Amino acid change:  G389R
References:  28
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A Ser49 -> Gly polymorphism has been identified.
It is associated with a higher resting heart rate in individuals of chinese/japanese descent. Ser homozygotes have a more rapid heart rate than Ser/Gly heterozygotes, who have a more rapid heart rate than Gly homozygotes.
Amino acid change:  S49G
References:  27,36
General Comments
For a review on the β-adrenoceptor polymorphisms see reference [23].

References

Show »

1. Andre C, Erraji L, Gaston J, Grimber G, Briand P, Guillet JG. (1996) Transgenic mice carrying the human beta 2-adrenergic receptor gene with its own promoter overexpress beta 2-adrenergic receptors in liver. Eur J Biochem, 241: 417-424. [PMID:8917438]

2. Aparici M, Gómez-Angelats M, Vilella D, Otal R, Carcasona C, Viñals M, Ramos I, Gavaldà A, De Alba J, Gras J et al.. (2012) Pharmacological characterization of abediterol, a novel inhaled β(2)-adrenoceptor agonist with long duration of action and a favorable safety profile in preclinical models. J. Pharmacol. Exp. Ther., 342 (2): 497-509. [PMID:22588259]

3. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicology Program: Dept of Health and Human Services. Accessed on 02/05/2014. Modified on 02/05/2014. DrugMatrix, https://ntp.niehs.nih.gov/drugmatrix/index.html

4. Baker JG. (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol, 144: 317-322. [PMID:15655528]

5. Beattie D, Beer D, Bradley ME, Bruce I, Charlton SJ, Cuenoud BM, Fairhurst RA, Farr D, Fozard JR, Janus D et al.. (2012) An investigation into the structure-activity relationships associated with the systematic modification of the β(2)-adrenoceptor agonist indacaterol. Bioorg. Med. Chem. Lett., 22 (19): 6280-5. [PMID:22932315]

6. Beattie D, Bradley M, Brearley A, Charlton SJ, Cuenoud BM, Fairhurst RA, Gedeck P, Gosling M, Janus D, Jones D et al.. (2010) A physical properties based approach for the exploration of a 4-hydroxybenzothiazolone series of beta2-adrenoceptor agonists as inhaled long-acting bronchodilators. Bioorg. Med. Chem. Lett., 20 (17): 5302-7. [PMID:20655218]

7. Bilezikian JP. (1987) Defining the Role of Adrenergic Receptors in Human Physiology. In Adrenergic Receptors in Man. Edited by Insel PA (Marcel Dekker) 37-68. [ISBN:0824776291]

8. Bristow MR, Hershberger RE, Port JD, Minobe W, Rasmussen R. (1989) Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol, 35: 295-303. [PMID:2564629]

9. Candelore MR, Deng L, Tota L, Guan XM, Amend A, Liu Y, Newbold R, Cascieri MA, Weber AE. (1999) Potent and selective human beta(3)-adrenergic receptor antagonists. J Pharmacol Exp Ther, 290: 649-655. [PMID:10411574]

10. Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK. (1987) Cloning of the cDNA for the human β1-adrenergic receptor. Proc. Natl. Acad. Sci. U.S.A., 84: 7920-7924. [PMID:2825170]

11. Frielle T, Daniel KW, Caron MG, Lefkowitz RJ. (1988) Structural basis of beta-adrenergic receptor subtype specificity studied with chimeric beta 1/beta 2-adrenergic receptors. Proc Natl Acad Sci U S A, 85: 9494-9498. [PMID:2849109]

12. Hancock AA, DeLean AL, Lefkowitz RJ. (1979) Quantitative resolution of beta-adrenergic receptor subtypes by selective ligand binding: application of a computerized model fitting technique. Mol Pharmacol., 16: 1-9. [PMID:39239]

13. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN. (2004) Comparative pharmacology of human beta-adrenergic receptor subtypes - characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol., 369: 151-159. [PMID:14730417]

14. Isogaya M, Sugimoto Y, Tanimura R, Tanaka R, Kikkawa H, Nagao T, Kurose H. (1999) Binding pockets of the beta(1)- and beta(2)-adrenergic receptors for subtype-selective agonists. Mol Pharmacol, 56: 875-885. [PMID:10531390]

15. Jasper JR, Link RE, Chruscinski AJ, Kobilka BK, Bernstein D. (1993) Primary structure of the mouse beta 1-adrenergic receptor gene. Biochim Biophys Acta, 1178: 307-307. [PMID:8395893]

16. Joseph SS, Lynham JA, Colledge WH, Kaumann AJ. (2004) Binding of (-)-[3H]-CGP12177 at two sites in recombinant human beta 1-adrenoceptors and interaction with beta-blockers. Naunyn Schmiedebergs Arch Pharmacol, 369: 525-532. [PMID:15060759]

17. Joseph SS, Lynham JA, Grace AA, Colledge WH, Kaumann AJ. (2004) Markedly reduced effects of (-)-isoprenaline but not of (-)-CGP12177 and unchanged affinity of beta-blockers at Gly389-beta1-adrenoceptors compared to Arg389-beta1-adrenoceptors. Br J Pharmacol, 142: 51-56. [PMID:15037517]

18. Joseph SS, Lynham JA, Molenaar P, Grace AA, Colledge WH, Kaumann AJ. (2003) Intrinsic sympathomimetic activit of (-)-pindolol mediated through a (-)-propranolol-resistant site of the beta1-adrenoceptor in human atrium and recombinant receptors. Naunyn Schmiedegerg's Arch Pharmacol, 368: 496-503. [PMID:14608456]

19. Jung H, Windhaber R, Palm D, Schnackerz KD. (1995) NMR and circular dichroism studies of synthetic peptides derived from the third intracellular loop of the beta-adrenoceptor. FEBS Lett., 358 (2): 133-6. [PMID:7828722]

20. Krushinski Jr JH, Schaus JM, Thompson DC, Calligaro DO, Nelson DL, Luecke SH, Wainscott DB, Wong DT. (2007) Indoloxypropanolamine analogues as 5-HT(1A) receptor antagonists. Bioorg. Med. Chem. Lett., 17 (20): 5600-4. [PMID:17804228]

21. Lavoie C, Hébert TE. (2003) Pharmacological characterization of putative beta1-beta2-adrenergic receptor heterodimers. Can. J. Physiol. Pharmacol., 81 (2): 186-95. [PMID:12710533]

22. Lavoie C, Mercier JF, Salahpour A, Umapathy D, Breit A, Villeneuve LR, Zhu WZ, Xiao RP, Lakatta EG, Bouvier M et al.. (2002) Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. J. Biol. Chem., 277 (38): 35402-10. [PMID:12140284]

23. Leineweber K, Buscher R, Bruck H, Brodde OE. (2004) Beta-adrenoceptor polymorphisms. Naunyn Schmiedebergs Arch Pharmacol, 369: 1-22. [PMID:14647973]

24. Li F, De Godoy M, Rattan S. (2004) Role of adenylate and guanylate cyclases in beta1-, beta2-, and beta3-adrenoceptor-mediated relaxation of internal anal sphincter smooth muscle. J Pharmacol Exp Ther, 308: 1111-1120. [PMID:14711933]

25. Louis SN, Nero TL, Iakovidis D, Jackman GP, Louis WJ. (1999) LK 204-545, a highly selective beta1-adrenoceptor antagonist at human beta-adrenoceptors. Eur J Pharmacol, 367: 431-435. [PMID:10079020]

26. Machida CA, Bunzow JR, Searles RP, Van Tol H, Tester B, Neve KA, Teal P, Nipper V, Civelli O. (1990) Molecular cloning and expression of the rat beta 1-adrenergic receptor gene. J. Biol. Chem., 265: 12960-12965. [PMID:1695899]

27. Maqbool A, Hall AS, Ball SG, Balmforth AJ. (1999) Common polymorphisms of beta1-adrenoceptor: identification and rapid screening assay. Lancet, 353: 897-897. [PMID:10093986]

28. Mason DA, Moore JD, Green SA, Liggett SB. (1999) A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J. Biol. Chem., 274: 12670-12674. [PMID:10212248]

29. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M. (2002) Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem., 277 (47): 44925-31. [PMID:12244098]

30. Minneman KP, Hegstrand LR, Molinoff PB. (1979) The pharmacological specificity of beta-1 and beta-2 adrenergic receptors in rat heart and lung in vitro. Mol Pharmacol., 16: 21-33. [PMID:39243]

31. Molenaar P, Sarsero D, Arch JR, Kelly J, Henson SM, Kaumann AJ. (1997) Effects of (-)-RO363 at human atrial beta-adrenoceptor subtypes, the human cloned beta 3-adrenoceptor and rodent intestinal beta 3-adrenoceptors. Br J Pharmacol, 120: 165-176. [PMID:9117106]

32. Moukhametzianov R, Warne T, Edwards PC, Serrano-Vega MJ, Leslie AG, Tate CG, Schertler GF. (2011) Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta1-adrenergic receptor. Proc. Natl. Acad. Sci. U.S.A., 108 (20): 8228-32. [PMID:21540331]

33. Oostendorp J, Preitner F, Moffatt J, Jimenez M, Giacobino JP, Molenaar P, Kaumann AJ. (2000) Contribution of beta-adrenoceptor subtypes to relaxation of colon and oesophagus and pacemaker activity of ureter in wildtype and beta(3)-adrenoceptor knockout mice. Br J Pharmacol, 130: 747-758. [PMID:10864880]

34. Pauwels PJ, Gommeren W, Van Lommen G, Janssen PA, Leysen JE. (1988) The receptor binding profile of the new antihypertensive agent nebivolol and its stereoisomers compared with various beta-adrenergic blockers. Mol. Pharmacol., 34 (6): 843-51. [PMID:2462161]

35. Ponicke K, Heinroth-Hoffmann I, Brodde OE. (2003) Role of beta 1- and beta 2-adrenoceptors in hypertrophic and apoptotic effects of noradrenaline and adrenaline in adult rat ventricular cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol, 367: 592-599. [PMID:12750877]

36. Ranade K, Jorgenson E, Sheu WH, Pei D, Hsiung CA, Chiang FT, Chen YD, Pratt R, Olshen RA, Curb D Cox DR, Botstein D, Risch N. (2002) A polymorphism in the beta1 adrenergic receptor is associated with resting heart rate. Am J Hum Genet, 70: 935-942. [PMID:11854867]

37. Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK. (1999) Cardiovascular and metabolic alterations in mice lacking both beta1- and beta2-adrenergic receptors. J Biol Chem, 274: 16701-16708. [PMID:10358009]

38. Rohrer DK, Desai KH, Jasper JR, Stevens ME, Regula DP, Barsh GS, Bernstein D, Kobilka BK. (1996) Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci U S A, 93: 7375-7380. [PMID:8693001]

39. Rohrer DK, Schauble EH, Desai KH, Kobilka BK, Bernstein D. (1998) Alterations in dynamic heart rate control in the beta 1-adrenergic receptor knockout mouse. Am J Physiol, 274: 1184-1193. [PMID:9575921]

40. Sato Y, Kurose H, Isogaya M, Nagao T. (1996) Molecular characterization of pharmacological properties of T-0509 for beta-adrenoceptors. Eur J Pharmacol., 315: 363-367. [PMID:8982677]

41. Sharif NA, Xu SX, Crider JY, McLaughlin M, Davis TL. (2001) Levobetaxolol (Betaxon) and other beta-adrenergic antagonists: preclinical pharmacology, IOP-lowering activity and sites of action in human eyes. J Ocul Pharmacol Ther, 17 (4): 305-17. [PMID:11572462]

42. Stiles GL, Caron MG, Lefkowitz RJ. (1984) Beta-adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev, 64: 661-743. [PMID:6143332]

43. Suzuki T, Nantel F, Bonin H, Valiquette M, Bouvier M. (1993) Cellular characterization of the pharmacological selectivity and tachyphylactic properties of denopamine for the human beta adrenergic receptors. J Pharmacol Exp Ther, 267: 785-790. [PMID:7902433]

44. Takasu T, Ukai M, Sato S, Matsui T, Nagase I, Maruyama T, Sasamata M, Miyata K, Uchida H, Yamaguchi O. (2007) Effect of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective beta3-adrenoceptor agonist, on bladder function. J. Pharmacol. Exp. Ther., 321 (2): 642-7. [PMID:17293563]

45. Uehling DE, Shearer BG, Donaldson KH, Chao EY, Deaton DN, Adkison KK, Brown KK, Cariello NF, Faison WL, Lancaster ME et al.. (2006) Biarylaniline phenethanolamines as potent and selective beta3 adrenergic receptor agonists. J. Med. Chem., 49 (9): 2758-71. [PMID:16640337]

46. Warne T, Moukhametzianov R, Baker JG, Nehmé R, Edwards PC, Leslie AG, Schertler GF, Tate CG. (2011) The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor. Nature, 469 (7329): 241-4. [PMID:21228877]

47. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF. (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature, 454: 486-491. [PMID:18594507]

48. Wenzel-Seifert K, Liu HY, Seifert R. (2002) Similarities and differences in the coupling of human beta1- and beta2-adrenoceptors to Gs(alpha) splice variants. Biochem Pharmacol., 64: 9-20. [PMID:12106601]

49. Xu J, He J, Castleberry AM, Balasubramanian S, Lau AG, Hall RA. (2003) Heterodimerization of alpha 2A- and beta 1-adrenergic receptors. J. Biol. Chem., 278 (12): 10770-7. [PMID:12529373]

50. Yatani A, Tajima Y, Green SA. (1999) Coupling of beta-adrenergic receptors to cardiac L-type Ca2+ channels: preferential coupling of the beta1 versus beta2 receptor subtype and evidence for PKA-independent activation of the channel. Cell Signal, 11: 337-342. [PMID:10376806]

51. Zhu WZ, Chakir K, Zhang S, Yang D, Lavoie C, Bouvier M, Hébert TE, Lakatta EG, Cheng H, Xiao RP. (2005) Heterodimerization of beta1- and beta2-adrenergic receptor subtypes optimizes beta-adrenergic modulation of cardiac contractility. Circ. Res., 97 (3): 244-51. [PMID:16002745]

Contributors

Show »

How to cite this page

Richard A. Bond, David B. Bylund, Douglas C. Eikenburg, J. Paul Hieble, Rebecca Hills, Kenneth P. Minneman, Sergio Parra.
Adrenoceptors: β1-adrenoceptor. Last modified on 19/02/2018. Accessed on 15/11/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=28.