TRPV1

Target id: 507

Nomenclature: TRPV1

Family: Transient Receptor Potential channels

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     TRPV1 has curated GtoImmuPdb data

Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 1 839 17p13.2 TRPV1 transient receptor potential cation channel subfamily V member 1 23
Mouse 6 1 839 11 B3 Trpv1 transient receptor potential cation channel 15
Rat 6 1 838 10q24 Trpv1 transient receptor potential cation channel 11
Previous and Unofficial Names
OTRPC1 | VR1 | capsaicin receptor | osm-9-like TRP channel 1 | vanilloid receptor 1 | transient receptor potential cation channel
Database Links
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
GenitoUrinary Development Molecular Anatomy Project
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  Reconstruction of TRPV1 ion channel in complex with capsaicin by single particle cryo-microscopy
PDB Id:  3J5R
Ligand:  capsaicin
Resolution:  4.2Å
Species:  Rat
References:  9
Image of receptor 3D structure from RCSB PDB
Description:  Structure of TRPV1 ion channel determined by single particle electron cryo-microscopy
PDB Id:  3J5P
Resolution:  3.275Å
Species:  Rat
References:  9
Associated Proteins
Heteromeric Pore-forming Subunits
Name References
TRPV3 47
TRPV2 29,42
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
PI3 kinase 48
calmodulin 39
A-kinase-anchoring protein (AKAP)79/150 60
Functional Characteristics
γ = 35 pS at – 60 mV; 77 pS at + 60 mV, conducts mono and di-valent cations with a selectivity for divalents (PCa/PNa = 9.6); voltage- and time- dependent outward rectification; potentiated by ethanol; activated/potentiated/upregulated by PKC stimulation; extracellular acidification facilitates activation by PKC; desensitisation inhibited by PKA; inhibited by Ca2+/ calmodulin; cooling reduces vanilloid-evoked currents; may be tonically active at body temperature
Ion Selectivity and Conductance
Species:  Rat
Rank order:  Ca2+ > Mg2+ > Cs+ [35.0 - 80.0 pS] = K+ = Na+
References:  11
Voltage Dependence
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  50.0 – 150.0 100.0 – 600.0 55 HEK 293 cells transiently transfected with hTRPV1 Human
Inactivation  - -
Comments  Activation of TRPV1 by thermal or chemical stimuli is associated with leftward shift of the voltage dependence of activation (9.1 mVºC-1). Whether voltage sensitivity underlies channel activation or represents an independent, allosterically coupled property is currently unresolved [30,34].
Other chemical activators (Human)
NO-mediated cysteine S-nitrosylation
Physical activators (Human)
depolarization (V½ ~ 0 mV at 35°C), noxious heat (> 43°C at pH 7.4)

Download all structure-activity data for this target as a CSV file

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
resiniferatoxin Mm Agonist 9.8 pEC50 - Physiological 15
pEC50 9.8 [15]
Holding voltage: Physiological
arvanil Mm Agonist 9.6 pEC50 - Physiological 15
pEC50 9.6 [15]
Holding voltage: Physiological
olvanil Mm Agonist 8.4 pEC50 - Physiological 15
pEC50 8.4 [15]
Holding voltage: Physiological
resiniferatoxin Hs Agonist 8.4 pEC50 - Physiological 46
pEC50 8.4 (EC50 3.98x10-9 M) [46]
Holding voltage: Physiological
olvanil Rn Agonist 8.1 pEC50 - Physiological 26
pEC50 8.1 [26]
Holding voltage: Physiological
capsaicin Mm Agonist 8.0 pEC50 - Physiological 15
pEC50 8.0 [15]
Holding voltage: Physiological
olvanil Hs Agonist 7.7 pEC50 - Physiological 46
pEC50 7.7 (EC50 1.99x10-8 M) [46]
Holding voltage: Physiological
capsaicin Hs Agonist 7.5 pEC50 - -100.0 – 160.0 55
pEC50 7.5 (EC50 3.16x10-8 M) [55]
Holding voltage: -100.0 – 160.0 mV
resiniferatoxin Rn Agonist 7.5 pEC50 - -40.0 11
pEC50 7.5 [11]
Holding voltage: -40.0 mV
DkTx Rn Activation 6.6 pEC50 - Physiological 8
pEC50 6.6 (EC50 2.3x10-10 M) [8]
Holding voltage: Physiological
vanillotoxin-3 Rn Agonist 6.3 pEC50 - -80.0 44
pEC50 6.3 (EC50 4.5x10-7 M) [44]
Holding voltage: -80.0 mV
capsaicin Rn Agonist 6.1 pEC50 - -40.0 11
pEC50 6.1 [11]
Holding voltage: -40.0 mV
anandamide Hs Agonist 5.9 pEC50 - -70.0 45
pEC50 5.9 [45]
Holding voltage: -70.0 mV
vanillotoxin-2 Rn Agonist 5.9 pEC50 - -80.0 44
pEC50 5.9 (EC50 1.35x10-6 M) [44]
Holding voltage: -80.0 mV
extracellular H+ Hs - 5.4 pEC50 - -
pEC50 5.4 (EC50 3.98x10-6 M) at 37°C
anandamide Rn Agonist 5.3 pEC50 - -40.0 61
pEC50 5.3 [61]
Holding voltage: -40.0 mV
PPAHV Rn Agonist 5.0 – 5.5 pEC50 - -60.0 35
pEC50 5.0 – 5.5 [35]
Holding voltage: -60.0 mV
12S-HPETE Rn Agonist 5.1 pEC50 - -60.0 25
pEC50 5.1 (EC50 7.94x10-6 M) [25]
Holding voltage: -60.0 mV
15S-HPETE Rn Agonist 5.1 pEC50 - -60.0 25
pEC50 5.1 (EC50 7.94x10-6 M) [25]
Holding voltage: -60.0 mV
5S-HPETE Rn Agonist 5.0 pEC50 - -60.0 25
pEC50 5.0 [25]
Holding voltage: -60.0 mV
vanillotoxin-1 Rn Agonist 5.0 pEC50 - -80.0 44
pEC50 5.0 (EC50 9.9x10-6 M) [44]
Holding voltage: -80.0 mV
LTB4 Rn Agonist 4.9 pEC50 - -60.0 25
pEC50 4.9 (EC50 1.25x10-5 M) [25]
Holding voltage: -60.0 mV
piperine Hs Agonist 4.4 pEC50 - -70.0 36
pEC50 4.4 [36]
Holding voltage: -70.0 mV
allicin Rn Agonist 3.9 – 4.6 pEC50 - Physiological 32
pEC50 3.9 – 4.6 [32]
Holding voltage: Physiological
2-APB Mm Agonist 3.7 – 3.9 pEC50 - -40.0 24
pEC50 3.7 – 3.9 [24]
Holding voltage: -40.0 mV
camphor Hs - - - - -
diphenylboronic anhydride Hs - - - - -
5S-HETE Hs - - - - -
[3H]resiniferatoxin Hs Activation - - - -
phenylacetylrinvanil Hs - - - - - 1
[1]
View species-specific activator tables
Activator Comments
TRPV1 is also activated by heat, ethanol, protons and phorbol-12-myristate-13-acetate [4,11,52].
Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
AZD1386 Hs Inhibition 7.6 pIC50 - - 38
pIC50 7.6 (IC50 2.5x10-8 M) [38]
Gating Inhibitor Comments
Phosphatidylinositol-4,5-bisphosphate is also an inhibitor of channel gating [41].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
asivatrep Rn Antagonist 8.2 pIC50 27
pIC50 8.2 (IC50 6.2x10-9 M) [27]
Description: Antagonism of capsaicin-induced calcium influx in isolated primary rat spinal dorsal root ganglia cells.
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
SB452533 Hs Antagonist 7.7 pKB - -
pKB 7.7
[3H]A778317 Hs - 8.5 pKd - - 5
pKd 8.5 (Kd 3.4x10-9 M) [5]
agatoxin 489 Rn Inhibition 6.5 pKi - -40.0 28
pKi 6.5 [28]
Holding voltage: -40.0 mV
AMG517 Hs - 9.0 pIC50 - - 7
pIC50 9.0 (IC50 9x10-10 M) [7]
[125I]resiniferatoxin Rn Antagonist 8.4 pIC50 - -50.0 56
pIC50 8.4 (IC50 3.98x10-9 M) [56]
Holding voltage: -50.0 mV
5'-iodoresiniferatoxin Hs - 8.4 pIC50 - -
pIC50 8.4 (IC50 3.9x10-9 M)
AMG628 Rn - 8.4 pIC50 - - 57
pIC50 8.4 (IC50 3.7x10-9 M) [57]
A425619 Hs - 8.3 pIC50 - - 17
pIC50 8.3 (IC50 5x10-9 M) [17]
A778317 Hs - 8.3 pIC50 - - 5
pIC50 8.3 (IC50 5x10-9 M) [5]
SB366791 Hs - 8.2 pIC50 - - 22
pIC50 8.2 (IC50 5.7x10-9 M) [22]
6-iodo-nordihydrocapsaicin Hs - 8.0 pIC50 - -
pIC50 8.0 (IC50 1x10-8 M)
JYL1421 Rn Antagonist 8.0 pIC50 - - 58
pIC50 8.0 (IC50 9.2x10-9 M) [58]
JNJ17203212 Hs Antagonist 7.8 pIC50 - Physiological 50
pIC50 7.8 (IC50 1.6x10-8 M) [50]
Holding voltage: Physiological
AMG 9810 Hs Inhibition 7.8 pIC50 - Physiological 19
pIC50 7.8 [19]
Holding voltage: Physiological
BCTC Hs Antagonist 7.5 pIC50 - - 14
pIC50 7.5 (IC50 3.49x10-8 M) [14]
BCTC Rn Antagonist 7.5 pIC50 - Physiological 54
pIC50 7.5 [54]
Holding voltage: Physiological
capsazepine Hs Antagonist 7.4 pIC50 - -60.0 35
pIC50 7.4 (IC50 3.9x10-8 M) [35]
Holding voltage: -60.0 mV
SB705498 Hs Antagonist 7.1 pIC50 - - 21
pIC50 7.1 (IC50 7.94x10-8 M) [21]
ruthenium red Hs Antagonist 7.0 pIC50 - -60.0 35
pIC50 7.0 [35]
Holding voltage: -60.0 mV
ruthenium red Rn Antagonist 6.7 pIC50 - -60.0 35
pIC50 6.7 [35]
Holding voltage: -60.0 mV
capsazepine Rn Antagonist 6.7 pIC50 - -60.0 35
pIC50 6.7 [35]
Holding voltage: -60.0 mV
allicin Hs - - - - -
2-APB Hs - - - - -
NADA Hs - - - - -
View species-specific channel blocker tables
Channel Blocker Comments
Of the compounds listed above, there is good evidence to denote agatoxin 489 and ruthenium red as true channel blockers. The others should be considered antagonists.
Immunopharmacology Comments
Several lines of evidence suggest that TRPV1 is implicated in some inflammatory processes [2-3,31,33,43]. TRPV1 is expressed on mouse T cells, mouse and human dendritic cells, mouse monocytes/macrophages, and human mast cells [40]. Pharmaceutical development is targeting TRPV1 antagonists as novel anti-inflammatory agents (e.g. the clinical candidate asivatrep).
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process ID:  2
Comment: 
GO Annotation:  Associated to GO processes, IEA only
GO Processes:  fever generation (GO:0001660) IEA
microglial cell activation (GO:0001774) IEA
References: 
Immuno Process:  Cytokine production & signalling
Immuno Process ID:  9
Comment: 
GO Annotation:  Associated to GO processes, IEA only
GO Processes:  cellular response to tumor necrosis factor (GO:0071356) IEA
References: 
Immuno Process:  Cellular signalling
Immuno Process ID:  11
Comment: 
GO Annotation:  Associated to GO processes, IEA only
GO Processes:  microglial cell activation (GO:0001774) IEA
References: 
Tissue Distribution
Dorsal root ganglia, brain, kidney, pancreas, testes, uterus, spleen, stomach, small intestine, lung, liver.
Species:  Human
Technique:  RT-PCR
References:  23
Dorsal root and trigeminal ganglia, caudal hypothalamus, subset of arteriolar smooth muscle cells.
Species:  Mouse
Technique:  Transgenic reporter lines
References:  12-13,37
Trigeminal ganglia, dorsal root ganglia, kidney.
Species:  Rat
Technique:  In situ hybridisation, Northern Blot
References:  11
Dorsal root ganglia, kidney, pancreas, placenta.
Species:  Rat
Technique:  RT-PCR
References:  23
Bladder
Species:  Rat
Technique:  Immunocytochemistry, RT-PCR
References:  6
Functional Assays
Two-electrode voltage clamp technique.
Species:  Rat
Tissue:  Xenopus laevis oocytes injected with TRPV1 cDNA.
Response measured:  Activation by capsaicin and resiniferatoxin.
References:  11
Patch clamp (whole-cell and single-channel recordings).
Species:  Rat
Tissue:  HEK cells transfected with TRPV1 vector.
Response measured:  Activation by capsaicin, resiniferatoxin and heat.
References:  11
Patch clamp (whole-cell recordings).
Species:  Mouse
Tissue:  Dorsal root ganglion neurones.
Response measured:  Activation by capsaicin, resiniferatoxin and heat.
References:  10
Intracellular Ca2+ imaging.
Species:  Rat
Tissue:  HEK 293 cells transfected with TRPV1.
Response measured:  Activation by capsaicin and anandamide.
References:  45
Patch clamp (whole-cell recordings).
Species:  Human
Tissue:  HEK 293 cells transfected with TRPV1.
Response measured:  Activation by capsaicin and heat.
References:  23
Two-electrode voltage clamp technique.
Species:  Human
Tissue:  Xenopus laevis oocytes injected with TRPV1 cDNA.
Response measured:  Activation by capsaicin and pH.
References:  23
Intracellular Ca2+ imaging.
Species:  Human
Tissue:  HEK 293 cells transfected with TRPV1.
Response measured:  Activation by capsaicin, olvanil, resiniferatoxin and anandamide.
References:  46
Intracellular Ca2+ imaging.
Species:  Mouse
Tissue:  HEK 293 cells transfected with TRPV1.
Response measured:  Activation by agonists and pH.
References:  15
Physiological Functions
Thermosensation (moderate heat) and nociception.
Species:  Rat
Tissue:  Dorsal root ganlgia neurones.
References:  11
Detection an integration of noxious stimuli (actute nociceptive pain).
Species:  Rat
Tissue:  Sensory neurones.
References:  51
Physiological Consequences of Altering Gene Expression
TRPV1 null mice exhibit various phenotypes including insensitivity to capsaicin and other vanilloid irritants, diminished sensitivity to noxious heat and tissue acidosis, loss of thermal hyperalgesia.
Species:  Mouse
Tissue: 
Technique:  Gene knockout by homologous recombination.
References:  10,16,49
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0005402 abnormal action potential PMID: 15509739 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0004924 abnormal behavior PMID: 17251423 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0009745 abnormal behavioral response to xenobiotic PMID: 19705551 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0005535 abnormal body temperature PMID: 18503767 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0008722 abnormal chemokine secretion PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0000427 abnormal hair cycle PMID: 16645591 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0008859 abnormal hair cycle catagen phase PMID: 16645591 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0008860 abnormal hair cycle telogen phase PMID: 16645591 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0005555 abnormal kidney excretion PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0002734 abnormal mechanical nociception PMID: 17553498 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0002272 abnormal nervous system electrophysiology PMID: 16943565 
Trpv1tm1Jbd Trpv1tm1Jbd/Trpv1tm1Jbd
involves: 129P2/OlaHsd * C57BL/6J
MGI:1341787  MP:0002272 abnormal nervous system electrophysiology PMID: 10821274 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0002272 abnormal nervous system electrophysiology PMID: 16327782 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0004948 abnormal neuronal precursor proliferation PMID: 15266010 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0002736 abnormal nociception after inflammation PMID: 10764638 
Trpv1tm1Jbd Trpv1tm1Jbd/Trpv1tm1Jbd
involves: 129P2/OlaHsd * C57BL/6J
MGI:1341787  MP:0002736 abnormal nociception after inflammation PMID: 10821274 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0008872 abnormal physiological response to xenobiotic PMID: 15121805  15128844  17347480  17553498  18341994 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0002703 abnormal renal tubule morphology PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0010055 abnormal sensory neuron physiology PMID: 10764638 
Trpv1tm1Jbd Trpv1tm1Jbd/Trpv1tm1Jbd
involves: 129P2/OlaHsd
MGI:1341787  MP:0010055 abnormal sensory neuron physiology PMID: 18499726 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0001986 abnormal taste sensitivity PMID: 19244541 
Trpv1tm1Jbd Trpv1tm1Jbd/Trpv1tm1Jbd
involves: 129P2/OlaHsd * C57BL/6J
MGI:1341787  MP:0002733 abnormal thermal nociception PMID: 10821274 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ * C57BL/6
MGI:1341787  MP:0001756 abnormal urination PMID: 12161756 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0004484 altered response of heart to induced stress PMID: 16314376 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0002862 altered righting response PMID: 19705551 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0009287 decreased abdominal fat pad weight PMID: 18503767 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0001364 decreased anxiety-related response PMID: 17251423 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0003912 decreased drinking behavior PMID: 16943565 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0009269 decreased fat cell size PMID: 18503767 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0003821 decreased left ventricle diastolic pressure PMID: 16314376 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0008844 decreased subcutaneous adipose tissue amount PMID: 18503767 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ * C57BL/6
MGI:1341787  MP:0008734 decreased susceptibility to endotoxin shock PMID: 15763167 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0002917 decreased synaptic depression PMID: 18341994 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0005264 glomerulosclerosis PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0003043 hypoalgesia PMID: 10764638 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0002578 impaired ability to fire action potentials PMID: 16943565 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0002578 impaired ability to fire action potentials PMID: 15509739 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0009454 impaired contextual conditioning behavior PMID: 17251423 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0001405 impaired coordination PMID: 19705551 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0009456 impaired cued conditioning behavior PMID: 17251423 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ * C57BL/6
MGI:1341787  MP:0003829 impaired febrile response PMID: 15763167 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0003545 increased alcohol consumption PMID: 19705551 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0008997 increased blood osmolality PMID: 16327782 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0001260 increased body weight PMID: 17347480 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0008531 increased chemical nociceptive threshold PMID: 10764638 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0003022 increased coronary flow rate PMID: 16314376 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ * C57BL/6
MGI:1341787  MP:0004499 increased incidence of chemically-induced tumors PMID: 19155296 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0008705 increased interleukin-6 secretion PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0003823 increased left ventricular developed pressure PMID: 16314376 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0002962 increased protein excretion PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0005659 increased resistance to diet-induced obesity PMID: 18503767 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0002310 increased resistance to hepatic steatosis PMID: 18503767 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0005165 increased susceptibility to injury PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
involves: 129X1/SvJ
MGI:1341787  MP:0001973 increased thermal nociceptive threshold PMID: 10764638 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0001973 increased thermal nociceptive threshold PMID: 15128844 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0008560 increased tumor necrosis factor secretion PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0001859 kidney inflammation PMID: 19794112 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1/J
MGI:1341787  MP:0001475 reduced long term depression PMID: 18341994 
Trpv1tm1Jul Trpv1tm1Jul/Trpv1tm1Jul
B6.129X1-Trpv1
MGI:1341787  MP:0001473 reduced long term potentiation PMID: 17251423 
Gene Expression and Pathophysiology
Overexpression
Tissue or cell type:  Bowel, colon.
Pathophysiology:  Inflammatory bowel disease, Crohn's disease and ulcerative colitis.
Species:  Human
Technique: 
References:  20,59
Overexpression
Tissue or cell type:  Vulval vestibulus.
Pathophysiology:  Vulvodynia.
Species:  Human
Technique: 
References:  53
Overexpression.
Tissue or cell type:  Synovia of joints, synoviocytes.
Pathophysiology:  Osteoarthritis.
Species:  Human
Technique: 
References:  18

References

Show »

1. Appendino G, De Petrocellis L, Trevisani M, Minassi A, Daddario N, Moriello AS, Gazzieri D, Ligresti A, Campi B, Fontana G et al.. (2005) Development of the first ultra-potent "capsaicinoid" agonist at transient receptor potential vanilloid type 1 (TRPV1) channels and its therapeutic potential. J. Pharmacol. Exp. Ther.312 (2): 561-70. [PMID:15356216]

2. Assas BM, Wakid MH, Zakai HA, Miyan JA, Pennock JL. (2016) Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis. Immunology147 (3): 292-304. [PMID:26643862]

3. Bertin S, de Jong PR, Jefferies WA, Raz E. (2014) Novel immune function for the TRPV1 channel in T lymphocytes. Channels (Austin)8 (6): 479-80. [PMID:25530461]

4. Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW. (2003) Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. U.S.A.100 (21): 12480-5. [PMID:14523239]

5. Bianchi BR, El Kouhen R, Neelands TR, Lee CH, Gomtsyan A, Raja SN, Vaidyanathan SN, Surber B, McDonald HA, Surowy CS et al.. (2007) [3H]A-778317 [1-((R)-5-tert-butyl-indan-1-yl)-3-isoquinolin-5-yl-urea]: a novel, stereoselective, high-affinity antagonist is a useful radioligand for the human transient receptor potential vanilloid-1 (TRPV1) receptor. J. Pharmacol. Exp. Ther.323 (1): 285-93. [PMID:17660385]

6. Birder LA, Kanai AJ, de Groat WC, Kiss S, Nealen ML, Burke NE, Dineley KE, Watkins S, Reynolds IJ, Caterina MJ. (2001) Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc. Natl. Acad. Sci. U.S.A.98 (23): 13396-401. [PMID:11606761]

7. Blum CA, Caldwell T, Zheng X, Bakthavatchalam R, Capitosti S, Brielmann H, De Lombaert S, Kershaw MT, Matson D, Krause JE et al.. (2010) Discovery of novel 6,6-heterocycles as transient receptor potential vanilloid (TRPV1) antagonists. J. Med. Chem.53 (8): 3330-48. [PMID:20307063]

8. Bohlen CJ, Priel A, Zhou S, King D, Siemens J, Julius D. (2010) A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell141 (5): 834-45. [PMID:20510930]

9. Cao E, Liao M, Cheng Y, Julius D. (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature504 (7478): 113-8. [PMID:24305161]

10. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science288 (5464): 306-13. [PMID:10764638]

11. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature389 (6653): 816-24. [PMID:9349813]

12. Cavanaugh DJ, Chesler AT, Bráz JM, Shah NM, Julius D, Basbaum AI. (2011) Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J. Neurosci.31 (28): 10119-27. [PMID:21752988]

13. Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, O'Donnell D, Nicoll RA, Shah NM, Julius D et al.. (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J. Neurosci.31 (13): 5067-77. [PMID:21451044]

14. Chaudhari SS, Kadam AB, Khairatkar-Joshi N, Mukhopadhyay I, Karnik PV, Raghuram A, Rao SS, Vaiyapuri TS, Wale DP, Bhosale VM et al.. (2013) Synthesis and pharmacological evaluation of novel N-aryl-3,4-dihydro-1'H-spiro[chromene-2,4'-piperidine]-1'-carboxamides as TRPM8 antagonists. Bioorg. Med. Chem.21 (21): 6542-53. [PMID:24055075]

15. Correll CC, Phelps PT, Anthes JC, Umland S, Greenfeder S. (2004) Cloning and pharmacological characterization of mouse TRPV1. Neurosci. Lett.370 (1): 55-60. [PMID:15489017]

16. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K et al.. (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature405 (6783): 183-7. [PMID:10821274]

17. El Kouhen R, Surowy CS, Bianchi BR, Neelands TR, McDonald HA, Niforatos W, Gomtsyan A, Lee CH, Honore P, Sullivan JP et al.. (2005) A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. J. Pharmacol. Exp. Ther.314 (1): 400-9. [PMID:15837819]

18. Fernihough J, Gentry C, Bevan S, Winter J. (2005) Regulation of calcitonin gene-related peptide and TRPV1 in a rat model of osteoarthritis. Neurosci. Lett.388 (2): 75-80. [PMID:16039054]

19. Gavva NR, Tamir R, Qu Y, Klionsky L, Zhang TJ, Immke D, Wang J, Zhu D, Vanderah TW, Porreca F et al.. (2005) AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J. Pharmacol. Exp. Ther.313 (1): 474-84. [PMID:15615864]

20. Geppetti P, Trevisani M. (2004) Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br. J. Pharmacol.141 (8): 1313-20. [PMID:15051629]

21. Gunthorpe MJ, Hannan SL, Smart D, Jerman JC, Arpino S, Smith GD, Brough S, Wright J, Egerton J, Lappin SC et al.. (2007) Characterization of SB-705498, a potent and selective vanilloid receptor-1 (VR1/TRPV1) antagonist that inhibits the capsaicin-, acid-, and heat-mediated activation of the receptor. J. Pharmacol. Exp. Ther.321 (3): 1183-92. [PMID:17392405]

22. Gunthorpe MJ, Rami HK, Jerman JC, Smart D, Gill CH, Soffin EM, Luis Hannan S, Lappin SC, Egerton J, Smith GD et al.. (2004) Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology46 (1): 133-49. [PMID:14654105]

23. Hayes P, Meadows HJ, Gunthorpe MJ, Harries MH, Duckworth DM, Cairns W, Harrison DC, Clarke CE, Ellington K, Prinjha RK, Barton AJ, Medhurst AD, Smith GD, Topp S, Murdock P, Sanger GJ, Terrett J, Jenkins O, Benham CD, Randall AD, Gloger IS, Davis JB. (2000) Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. Pain88 (2): 205-15. [PMID:11050376]

24. Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX. (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J. Biol. Chem.279 (34): 35741-8. [PMID:15194687]

25. Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D, Oh U. (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. U.S.A.97 (11): 6155-60. [PMID:10823958]

26. Jerman JC, Brough SJ, Prinjha R, Harries MH, Davis JB, Smart D. (2000) Characterization using FLIPR of rat vanilloid receptor (rVR1) pharmacology. Br. J. Pharmacol.130 (4): 916-22. [PMID:10864900]

27. Kim S-Y, Kim JK, Lee K-W, Woo BY, Shin SS, Moh J-H, Kim S-il, Jeong YS, Lim KM, Choi JK et al.. (2010) Compounds, isomer thereof, or pharmaceutically acceptable salts thereof as vanilloid receptor antagonist; and pharmaceutical compositions containing the same. Patent number: US7858621. Assignee: Amorepacific Corporation. Priority date: 27/07/2006. Publication date: 28/12/2010.

28. Kitaguchi T, Swartz KJ. (2005) An inhibitor of TRPV1 channels isolated from funnel Web spider venom. Biochemistry44 (47): 15544-9. [PMID:16300403]

29. Liapi A, Wood JN. (2005) Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur. J. Neurosci.22 (4): 825-34. [PMID:16115206]

30. Liedtke WB, Heller S, Latorre R, Vargas G, Orta G, Brauchi S. (2007) Voltage and Temperature Gating of ThermoTRP Channels. Frontiers in Neuroscience, . [PMID:21204490]

31. Lowin T, Apitz M, Anders S, Straub RH. (2015) Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner. Arthritis Res. Ther.17: 321. [PMID:26567045]

32. Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A. (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol.15 (10): 929-34. [PMID:15916949]

33. Majhi RK, Sahoo SS, Yadav M, Pratheek BM, Chattopadhyay S, Goswami C. (2015) Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J.282 (14): 2661-81. [PMID:25903376]

34. Matta JA, Ahern GP. (2007) Voltage is a partial activator of rat thermosensitive TRP channels. J. Physiol. (Lond.)585 (Pt 2): 469-82. [PMID:17932142]

35. McIntyre P, McLatchie LM, Chambers A, Phillips E, Clarke M, Savidge J, Toms C, Peacock M, Shah K, Winter J, Weerasakera N, Webb M, Rang HP, Bevan S, James IF. (2001) Pharmacological differences between the human and rat vanilloid receptor 1 (VR1). Br. J. Pharmacol.132 (5): 1084-94. [PMID:11226139]

36. McNamara FN, Randall A, Gunthorpe MJ. (2005) Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br. J. Pharmacol.144 (6): 781-90. [PMID:15685214]

37. Mishra SK, Tisel SM, Orestes P, Bhangoo SK, Hoon MA. (2011) TRPV1-lineage neurons are required for thermal sensation. EMBO J.30 (3): 582-93. [PMID:21139565]

38. MRC. AZD1386 TRPV1 ion channel inhibitor. Accessed on 28/10/2014. Modified on 28/10/2014. MRC/AstraZeneca: Mechanisms of Disease Call, http://webarchive.nationalarchives.gov.uk/20120104105854/http://www.mrc.ac.uk/consumption/groups/public/documents/content/mrc008366.pdf

39. Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M. (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc. Natl. Acad. Sci. U.S.A.100 (13): 8002-6. [PMID:12808128]

40. Parenti A, De Logu F, Geppetti P, Benemei S. (2016) What is the evidence for the role of TRP channels in inflammatory and immune cells?. Br. J. Pharmacol.173 (6): 953-69. [PMID:26603538]

41. Prescott ED, Julius D. (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science300 (5623): 1284-8. [PMID:12764195]

42. Rutter AR, Ma QP, Leveridge M, Bonnert TP. (2005) Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. Neuroreport16 (16): 1735-9. [PMID:16237318]

43. Samivel R, Kim DW, Son HR, Rhee YH, Kim EH, Kim JH, Bae JS, Chung YJ, Chung PS, Raz E et al.. (2016) The role of TRPV1 in the CD4+ T cell-mediated inflammatory response of allergic rhinitis. Oncotarget7 (1): 148-60. [PMID:26700618]

44. Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, Julius D. (2006) Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature444 (7116): 208-12. [PMID:17093448]

45. Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD, Davis JB. (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br. J. Pharmacol.129 (2): 227-30. [PMID:10694225]

46. Smart D, Jerman JC, Gunthorpe MJ, Brough SJ, Ranson J, Cairns W, Hayes PD, Randall AD, Davis JB. (2001) Characterisation using FLIPR of human vanilloid VR1 receptor pharmacology. Eur. J. Pharmacol.417 (1-2): 51-8. [PMID:11301059]

47. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB. (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature418 (6894): 186-90. [PMID:12077606]

48. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE. (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J. Gen. Physiol.128 (5): 509-22. [PMID:17074976]

49. Sugiura T, Bielefeldt K, Gebhart GF. (2007) Mouse colon sensory neurons detect extracellular acidosis via TRPV1. Am. J. Physiol., Cell Physiol.292 (5): C1768-74. [PMID:17251322]

50. Swanson DM, Dubin AE, Shah C, Nasser N, Chang L, Dax SL, Jetter M, Breitenbucher JG, Liu C, Mazur C et al.. (2005) Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J. Med. Chem.48 (6): 1857-72. [PMID:15771431]

51. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D. (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron21 (3): 531-43. [PMID:9768840]

52. Trevisani M, Smart D, Gunthorpe MJ, Tognetto M, Barbieri M, Campi B, Amadesi S, Gray J, Jerman JC, Brough SJ, Owen D, Smith GD, Randall AD, Harrison S, Bianchi A, Davis JB, Geppetti P. (2002) Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat. Neurosci.5 (6): 546-51. [PMID:11992116]

53. Tympanidis P, Casula MA, Yiangou Y, Terenghi G, Dowd P, Anand P. (2004) Increased vanilloid receptor VR1 innervation in vulvodynia. Eur. J. Pain8 (2): 129-33. [PMID:14987622]

54. Valenzano KJ, Grant ER, Wu G, Hachicha M, Schmid L, Tafesse L, Sun Q, Rotshteyn Y, Francis J, Limberis J, Malik S, Whittemore ER, Hodges D. (2003) N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine -1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: I. in vitro characterization and pharmacokinetic properties. J. Pharmacol. Exp. Ther.306 (1): 377-86. [PMID:12721338]

55. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature430 (7001): 748-54. [PMID:15306801]

56. Wahl P, Foged C, Tullin S, Thomsen C. (2001) Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist. Mol. Pharmacol.59 (1): 9-15. [PMID:11125018]

57. Wang HL, Katon J, Balan C, Bannon AW, Bernard C, Doherty EM, Dominguez C, Gavva NR, Gore V, Ma V et al.. (2007) Novel vanilloid receptor-1 antagonists: 3. The identification of a second-generation clinical candidate with improved physicochemical and pharmacokinetic properties. J. Med. Chem.50 (15): 3528-39. [PMID:17585751]

58. Wang Y, Szabo T, Welter JD, Toth A, Tran R, Lee J, Kang SU, Suh YG, Blumberg PM, Lee J. (2002) High affinity antagonists of the vanilloid receptor. Mol. Pharmacol.62 (4): 947-56. [PMID:12237342]

59. Yiangou Y, Facer P, Dyer NH, Chan CL, Knowles C, Williams NS, Anand P. (2001) Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet357 (9265): 1338-9. [PMID:11343743]

60. Zhang X, Li L, McNaughton PA. (2008) Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron59 (3): 450-61. [PMID:18701070]

61. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED. (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature400: 452-457. [PMID:10440374]

Contributors

Show »

How to cite this page

David Julius, David E. Clapham.
Transient Receptor Potential channels: TRPV1. Last modified on 02/08/2017. Accessed on 14/12/2017. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=507.