Top ▲

Nav1.5

Click here for help

Immunopharmacology Ligand target has curated data in GtoImmuPdb

Target id: 582

Nomenclature: Nav1.5

Family: Voltage-gated sodium channels (NaV)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 24 4 2016 3p22.2 SCN5A sodium voltage-gated channel alpha subunit 5
Mouse 24 4 2019 9 71.33 cM Scn5a sodium channel, voltage-gated, type V, alpha
Rat 24 4 2019 8q32 Scn5a sodium voltage-gated channel alpha subunit 5 16,39
Previous and Unofficial Names Click here for help
cardiac sodium channel | Skm2 | SkMII | sodium channel protein type 5 | sodium channel, voltage-gated, type V, alpha subunit | sodium channel, voltage gated, type V alpha subunit | sodium channel
Database Links Click here for help
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the Cardiac Sodium Channel.
PDB Id:  6UZ0
Ligand:  flecainide
Resolution:  3.24Å
Species:  Rat
References:  14
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
Not determined
Auxiliary Subunits
Name References
β4 9,20,29
β3 9-10,17,20
β2 9,20,67
β1 4,9,17,20,26,68
Other Associated Proteins
Name References
Not determined
Associated Protein Comments
Subunit associations are based on co-localization, co-expression in heterologous cells, and co-immunoprecipitation. No biochemical data on Nav1.5 purified from cardiac tissue are available.
Functional Characteristics Click here for help
Activation V0.5 = -26 mV. Fast inactivation (τ = 1 ms for peak sodium current).
Ion Selectivity and Conductance Comments
Single channel conductance for Nav1.5 is ~20 pS and is not reported to be depended on species [1956,2884,2885]
Voltage Dependence Click here for help
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -41.0 - 66 HEK 293 cells Rat
Inactivation  -89.0 - 66
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -44.0 - 49 HEK 293 cells Human
Inactivation  -87.0 - 49
Comments  Cs fluoride as major intracellular solute
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  25.9 - 27 HEK-293, tsA-201 Rat
Inactivation  60.4 - 27
Comments  Cs aspartate as the major intracellular solute.

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
aconitine Small molecule or natural product Hs Partial agonist - - 3x10-5 - 1x10-4 -140.0 34,64
Conc range: 3x10-5 - 1x10-4 M [34,64]
Holding voltage: -140.0 mV
batrachotoxin Small molecule or natural product Click here for species-specific activity table Rn Full agonist 7.6 pKd - Physiological 50
pKd 7.6 (Kd 2.51x10-8 M) [50]
Holding voltage: Physiological
veratridine Small molecule or natural product Click here for species-specific activity table Rn Partial agonist 6.3 pEC50 - -30.0 58
pEC50 6.3 (EC50 5.01x10-7 M) [58]
Holding voltage: -30.0 mV
View species-specific activator tables
Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
funapide Small molecule or natural product Click here for species-specific activity table Hs Inhibition 7.1 pIC50 - - 32
pIC50 7.1 (IC50 8.4x10-8 M) [32]
Description: Inhibition of human Nav1.5 expressed in HEK293 cells by electrophysiology assay
GNE-131 Small molecule or natural product Click here for species-specific activity table Hs Inhibition 7.0 pIC50 - - 11
pIC50 7.0 (IC50 1.1x10-7 M) [11]
Description: IC50s were generated on a PatchXpress automated voltage-clamp platform, with the membrane potential maintained at a voltage yielding full inactivation of the channel.
GS-458967 Small molecule or natural product Hs Inhibition 6.9 pIC50 - - 5,18
pIC50 6.9 (IC50 1.3x10-7 M) [5,18]
relutrigine Small molecule or natural product Click here for species-specific activity table Hs Inhibition 6.8 pIC50 - - 15
pIC50 6.8 (IC50 1.72x10-7 M) [15]
AM-6120 Peptide Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 5.2 pIC50 - - 65
pIC50 5.2 (IC50 6.64x10-6 M) [65]
Description: Determined in a PatchXpress electrophysiology experiment using HEK293 cells stably expressing hNaV1.5.
eleclazine Small molecule or natural product Primary target of this compound Hs Inhibition - - - - 2
[2]
Gating inhibitors Click here for help
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
α-scorpion toxin 2 Peptide Click here for species-specific activity table Rn Slows inactivation 7.7 pKd - Physiological 40
pKd 7.7 Inhibitor of fast activation [40]
Holding voltage: Physiological
jingzhaotoxin-III Peptide Hs Voltage-dependent inhibition 6.5 pKi - -80.0 41
pKi 6.5 [41]
Holding voltage: -80.0 mV
Description: Whole-cell voltage clamp of human embryonic kidney cells (HEK293) transfected with human Nav1.5.
protoxin II Peptide Click here for species-specific activity table Hs Voltage-dependent inhibition 6.5 pKi - -80.0 30
pKi 6.5 [30]
Holding voltage: -80.0 mV
Description: Whole-cell voltage clamp of human Nav1.5 channels expressed in human embryonic kidney cells (HEK293).
Conditions: Holding potential of -80 mV.
ATX-II Peptide Click here for species-specific activity table Hs Slows inactivation 7.3 pEC50 - -80.0 37
pEC50 7.3 Inhibitor of fast activation [37]
Holding voltage: -80.0 mV
AFT-II Peptide Click here for species-specific activity table Hs Slows inactivation 7.2 pEC50 - -80.0 37
pEC50 7.2 Inhibitor of fast activation [37]
Holding voltage: -80.0 mV
Bc-III Peptide Click here for species-specific activity table Hs Slows inactivation 6.5 pEC50 - -80.0 37
pEC50 6.5 Inhibitor of fast activation [37]
Holding voltage: -80.0 mV
View species-specific gating inhibitor tables
Gating Inhibitor Comments
μ-conotoxin SmIIIA toxin has much higher affinity for tetrodotoxin-sensitive Nav channels, including Nav1.1, Nav1.2, Nav1.3, and Nav1.4.
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
saxitoxin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Pore blocker 7.4 pKd - -80.0 8,66
pKd 7.4 [8,66]
Holding voltage: -80.0 mV
GNE-616 Small molecule or natural product Click here for species-specific activity table Hs Inhibition <6.0 pKd - - 28
pKd <6.0 (Kd >1x10-6 M) [28]
Description: Kd determined in a Dynaflow Manual Patch Clamp experiment.
tetrodotoxin Small molecule or natural product Click here for species-specific activity table Rn Pore blocker 5.8 pKd - -80.0 8,66
pKd 5.8 (Kd 1.52x10-6 M) [8,66]
Holding voltage: -80.0 mV
lidocaine Small molecule or natural product Approved drug Primary target of this compound Ligand has a PDB structure Hs Pore blocker 4.8 pKd - -70.0 – -55.0 36
pKd 4.8 [36]
Holding voltage: -70.0 – -55.0 mV
μ-conotoxin SmIIIA Peptide Click here for species-specific activity table Rn Pore blocker 5.5 pKi - -80.0 63
pKi 5.5 [63]
Holding voltage: -80.0 mV
Description: Two-microelectrode of Xenopus oocytes expression rat Nav1.5.
Conditions: Holding potential of -80mV
amiodarone Small molecule or natural product Approved drug Ligand has a PDB structure Rn Pore blocker 5.7 pIC50 - Physiological 52
pIC50 5.7 [52]
Holding voltage: Physiological
bupivacaine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Pore blocker 4.2 – 5.7 pIC50 - - 48
pIC50 5.7 (IC50 2.18x10-6 M) Blockade of inactivated channel [48]
pIC50 4.2 (IC50 6.95x10-5 M) Open-channel block [48]
quinidine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Guide to Malaria Pharmacology Ligand Rn Pore blocker 4.4 – 5.0 pIC50 - Physiological 13,51
pIC50 4.4 – 5.0 [13,51]
Holding voltage: Physiological
lidocaine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Pore blocker 4.2 pIC50 - Physiological 13
pIC50 4.2 [13]
Holding voltage: Physiological
ropivacaine Small molecule or natural product Approved drug Hs Pore blocker 3.5 – 4.6 pIC50 - - 48
pIC50 4.6 (IC50 2.73x10-5 M) Blockade of inactivated channel [48]
pIC50 3.5 (IC50 3.222x10-4 M) Open-channel block [48]
View species-specific channel blocker tables
Immunopharmacology Comments
Nav1.5 is involved in the positive selection of CD4+ T cells [19].
Cell Type Associations
Immuno Cell Type:  T cells
References:  19,55
Tissue Distribution Click here for help
Heart.
Species:  Mouse
Technique:  Immunohistochemistry
References:  20-21
Developing skeletal muscle.
Species:  Rat
Technique:  Northern Blot
References:  16
Heart (intercalated disks in ventricular myocytes).
Species:  Rat
Technique:  Immunohistochemistry
References:  7
Physiological Functions Click here for help
Action potential generation and conduction.
Species:  Human
Tissue:  Heart
References:  43,61
Action potential generation and conduction.
Species:  Mouse
Tissue:  Heart
References:  21,39
Physiological Consequences of Altering Gene Expression Click here for help
The SCN5A -/+ mouse shows a phenotype resembling Lenègre's disease, including age-related lengthening of the P-wave and PR- and QRS-interval duration.
Species:  Mouse
Tissue:  Heart
Technique:  Various
References:  43
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0002972 abnormal cardiac muscle contractility PMID: 11972032 
Scn5atm1Pec Scn5atm1Pec/Scn5atm1Pec
involves: Swiss
MGI:98251  MP:0001544 abnormal cardiovascular system physiology PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0001629 abnormal heart rate PMID: 11972032 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0005294 abnormal heart ventricle morphology PMID: 11972032 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 11972032 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 15809371 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 16403066 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 17145985 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0004215 abnormal myocardial fiber physiology PMID: 11972032 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0004215 abnormal myocardial fiber physiology PMID: 16403066 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0004215 abnormal myocardial fiber physiology PMID: 17145985 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0006142 abnormal sinoatrial node conduction PMID: 17145985 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0004067 abnormal trabecula carnea morphology PMID: 11972032 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0010505 abnormal T wave PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0003141 cardiac fibrosis PMID: 15809371 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0001698 decreased embryo size PMID: 11972032 
Scn5atm1Clhh Scn5atm1Clhh/Scn5atm1Clhh
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0001698 decreased embryo size PMID: 16403066 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0005333 decreased heart rate PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0005333 decreased heart rate PMID: 15809371 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0005333 decreased heart rate PMID: 17145985 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0004567 decreased myocardial fiber number PMID: 11972032 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0006207 embryonic lethality during organogenesis PMID: 11972032 
Scn5atm1Pec Scn5atm1Pec/Scn5atm1Pec
involves: Swiss
MGI:98251  MP:0006207 embryonic lethality during organogenesis PMID: 11533705 
Scn5atm1Clhh Scn5atm1Clhh/Scn5atm1Clhh
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0006207 embryonic lethality during organogenesis PMID: 16403066 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 16403066 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0001636 irregular heartbeat PMID: 11533705 
Scn5atm1Clhh Scn5atm1Clhh/Scn5atm1Clhh
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0001636 irregular heartbeat PMID: 16403066 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0001636 irregular heartbeat PMID: 16403066 
Scn5atm1Clhh Scn5atm1Clhh/Scn5atm1Clhh
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0001651 necrosis PMID: 16403066 
Scn5atm1(SCN5A)Rdn Scn5atm1(SCN5A)Rdn/Scn5atm1(SCN5A)Rdn
involves: 129S6/SvEvTac
MGI:98251  MP:0002169 no abnormal phenotype detected PMID: 17083109 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0002082 postnatal lethality PMID: 16403066 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0002083 premature death PMID: 11533705 
Scn5atm1Care Scn5atm1Care/Scn5atm1Care
FVB.129P2-Scn5a
MGI:98251  MP:0002080 prenatal lethality PMID: 17145985 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0003896 prolonged PR interval PMID: 11972032 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0003896 prolonged PR interval PMID: 15809371 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0003896 prolonged PR interval PMID: 17145985 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0004071 prolonged P wave PMID: 11972032 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0004071 prolonged P wave PMID: 15809371 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0010392 prolonged QRS complex duration PMID: 15809371 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0010392 prolonged QRS complex duration PMID: 17145985 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0003233 prolonged QT interval PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0003233 prolonged QT interval PMID: 15809371 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0003233 prolonged QT interval PMID: 17145985 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0002064 seizures PMID: 16403066 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0008950 ventricular tachycardia PMID: 11972032 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0008950 ventricular tachycardia PMID: 16403066 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Atrial fibrillation, familial, 10; ATFB10
Synonyms: Familial atrial fibrillation [Orphanet: ORPHA334] [Disease Ontology: DOID:0050650]
Disease Ontology: DOID:0050650
OMIM: 614022
Orphanet: ORPHA334
Disease:  Atrial stand still
Synonyms: Atrial cardiomyopathy with heart block
OMIM: 108770
Orphanet: ORPHA1344
Disease:  Brugada syndrome 1; BRGDA1
Synonyms: Brugada syndrome [Orphanet: ORPHA130] [Disease Ontology: DOID:0050451]
Disease Ontology: DOID:0050451
OMIM: 601144
Orphanet: ORPHA130
Role: 
Drugs: 
References:  6,12,33
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human R367H 56
Missense Human A735V 56
Missense Human E1053K 31
Missense Human R1193Q 56,59
Missense Human R1232W 6
Missense Human G1262S 53
Missense Human R1512W 42
Missense Human T1620M 6
Missense Human Y1795H 38
Missense Human A1924T 42
Nonsense Human W1421X 35
Disease:  Cardiomyopathy, dilated, 1E; CMD1E
Synonyms: Dilated cardiomyopathy [Disease Ontology: DOID:12930]
Familial isolated dilated cardiomyopathy [Orphanet: ORPHA154]
Disease Ontology: DOID:12930
OMIM: 601154
Orphanet: ORPHA154
Disease:  Long QT syndrome 3; LQT3
Synonyms: Long QT syndrome [Disease Ontology: DOID:2843]
Romano-Ward syndrome [Orphanet: ORPHA101016]
Disease Ontology: DOID:2843
OMIM: 603830
Orphanet: ORPHA101016
Role: 
Drugs: 
References:  44-45,61
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
In-frame deletion Human K1505-P1506-Q1507 Impairs fast activation 61
Missense Human S941N 47
Missense Human A997S 1
Missense Human N1325S Impairs fast activation and negatively shifts activation. 60
Missense Human R1623Q 24
Missense Human R1664H Positively shifts activation and inactivation. 60
Missense Human E1784K 22,62
Missense Human Y1795C 38
Missense Human R1826H 1
Disease:  Progressive familial heart block, type IA; PFHB1A
Synonyms: Familial progressive cardiac conduction defect [Orphanet: ORPHA871]
OMIM: 113900
Orphanet: ORPHA871
Role: 
References:  43
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Frameshift: Deletion Human 5280delG A one nucleotide deletion causes a frameshift and premature stop codon leading to a truncated protein 46
Missense Human G298S 57
Missense Human D1595N 57
Splice site Human IVS22+2 T>C Causes skipping of exon 22. 46
Disease:  Sick sinus syndrome 1, autosomal recessive; SSS1
Synonyms: Familial sick sinus syndrome [Orphanet: ORPHA166282]
Sick sinus syndrome [Disease Ontology: DOID:13884]
Sick sinus syndrome, congenital [OMIM: 608567]
Sinus bradycardia syndrome, familial [OMIM: 608567]
Sinus node disease, familial, autosomal recessive [OMIM: 608567]
Sinus rhythm, congenital absence of [OMIM: 608567]
Disease Ontology: DOID:13884
OMIM: 608567
Orphanet: ORPHA166282
Role: 
Comments: 
References:  45
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human E161K 54
Missense Human T187I 25
Missense Human L212P 23
Missense Human T220I 3
Missense Human P1298L 3
Missense Human G1408R 3
Missense Human R1632H 3
Missense Human E1784K 3
Disease:  Sudden infant death syndrome
Disease Ontology: DOID:9007
OMIM: 272120
Disease:  Ventricular fibrillation during myocardial infarction, susceptibility to
Synonyms: Idiopathic ventricular fibrillation, not Brugada type
OMIM: 603829
Orphanet: ORPHA228140
Biologically Significant Variants Click here for help
Type:  Splice variant
Species:  Human
Description:  Isoform e
Amino acids:  1983
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform f
Amino acids:  1962
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform b
Amino acids:  2015
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform a
Amino acids:  2016
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform d
Amino acids:  1998
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform c
Amino acids:  2016
Nucleotide accession: 
Protein accession: 

References

Show »

1. Ackerman MJ, Siu BL, Sturner WQ, Tester DJ, Valdivia CR, Makielski JC, Towbin JA. (2001) Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA, 286 (18): 2264-9. [PMID:11710892]

2. Belardinelli L, Rajamani S, Zeng D. (2015) Compound and methods for treating long qt syndrome. Patent number: US20150038489 A1. Assignee: Gilead Sciences, Inc.. Priority date: 01/08/2013. Publication date: 05/02/2015.

3. Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ, Rhodes TH, George Jr AL. (2003) Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest, 112 (7): 1019-28. [PMID:14523039]

4. Biskup C, Zimmer T, Benndorf K. (2004) FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera. Nat Biotechnol, 22 (2): 220-4. [PMID:14730318]

5. Bossu A, Houtman MJC, Meijborg VMF, Varkevisser R, Beekman HDM, Dunnink A, de Bakker JMT, Mollova N, Rajamani S, Belardinelli L et al.. (2018) Selective late sodium current inhibitor GS-458967 suppresses Torsades de Pointes by mostly affecting perpetuation but not initiation of the arrhythmia. Br J Pharmacol, 175 (12): 2470-2482. [PMID:29582428]

6. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, Potenza D, Moya A, Borggrefe M, Breithardt G et al.. (1998) Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature, 392 (6673): 293-6. [PMID:9521325]

7. Cohen SA. (1996) Immunocytochemical localization of rH1 sodium channel in adult rat heart atria and ventricle. Presence in terminal intercalated disks. Circulation, 94 (12): 3083-6. [PMID:8989112]

8. Cribbs LL, Satin J, Fozzard HA, Rogart RB. (1990) Functional expression of the rat heart I Na+ channel isoform. Demonstration of properties characteristic of native cardiac Na+ channels. FEBS Lett, 275 (1-2): 195-200. [PMID:2175715]

9. Dhar Malhotra J, Chen C, Rivolta I, Abriel H, Malhotra R, Mattei LN, Brosius FC, Kass RS, Isom LL. (2001) Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation, 103 (9): 1303-10. [PMID:11238277]

10. Fahmi AI, Patel M, Stevens EB, Fowden AL, John JE, Lee K, Pinnock R, Morgan K, Jackson AP, Vandenberg JI. (2001) The sodium channel beta-subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart. J Physiol (Lond.), 537 (Pt 3): 693-700. [PMID:11744748]

11. Focken T, Chowdhury S, Zenova A, Grimwood ME, Chabot C, Sheng T, Hemeon I, Decker SM, Wilson M, Bichler P et al.. (2018) Design of Conformationally Constrained Acyl Sulfonamide Isosteres: Identification of N-([1,2,4]Triazolo[4,3- a]pyridin-3-yl)methane-sulfonamides as Potent and Selective hNaV1.7 Inhibitors for the Treatment of Pain. J Med Chem, 61 (11): 4810-4831. [PMID:29737846]

12. Hedley PL, Jørgensen P, Schlamowitz S, Moolman-Smook J, Kanters JK, Corfield VA, Christiansen M. (2009) The genetic basis of Brugada syndrome: a mutation update. Hum Mutat, 30 (9): 1256-66. [PMID:19606473]

13. Hill RJ, Duff HJ, Sheldon RS. (1989) Class I antiarrhythmic drug receptor: biochemical evidence for state-dependent interaction with quinidine and lidocaine. Mol Pharmacol, 36 (1): 150-9. [PMID:2546048]

14. Jiang D, Shi H, Tonggu L, Gamal El-Din TM, Lenaeus MJ, Zhao Y, Yoshioka C, Zheng N, Catterall WA. (2020) Structure of the Cardiac Sodium Channel. Cell, 180 (1): 122-134.e10. [PMID:31866066]

15. Kahlig KM, Scott L, Hatch RJ, Griffin A, Martinez Botella G, Hughes ZA, Wittmann M. (2022) The novel persistent sodium current inhibitor PRAX-562 has potent anticonvulsant activity with improved protective index relative to standard of care sodium channel blockers. Epilepsia, 63 (3): 697-708. [PMID:35037706]

16. Kallen RG, Sheng ZH, Yang J, Chen LQ, Rogart RB, Barchi RL. (1990) Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron, 4 (2): 233-42. [PMID:2155010]

17. Ko SH, Lenkowski PW, Lee HC, Mounsey JP, Patel MK. (2005) Modulation of Na(v)1.5 by beta1-- and beta3-subunit co-expression in mammalian cells. Pflugers Arch, 449 (4): 403-12. [PMID:15455233]

18. Koltun DO, Parkhill EQ, Elzein E, Kobayashi T, Notte GT, Kalla R, Jiang RH, Li X, Perry TD, Avila B et al.. (2016) Discovery of triazolopyridine GS-458967, a late sodium current inhibitor (Late INai) of the cardiac NaV 1.5 channel with improved efficacy and potency relative to ranolazine. Bioorg Med Chem Lett, 26 (13): 3202-3206. [PMID:27080178]

19. Lo WL, Donermeyer DL, Allen PM. (2012) A voltage-gated sodium channel is essential for the positive selection of CD4(+) T cells. Nat Immunol, 13 (9): 880-7. [PMID:22842345]

20. Maier SK, Westenbroek RE, McCormick KA, Curtis R, Scheuer T, Catterall WA. (2004) Distinct subcellular localization of different sodium channel alpha and beta subunits in single ventricular myocytes from mouse heart. Circulation, 109 (11): 1421-7. [PMID:15007009]

21. Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA. (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc Natl Acad Sci USA, 99 (6): 4073-8. [PMID:11891345]

22. Makita N, Behr E, Shimizu W, Horie M, Sunami A, Crotti L, Schulze-Bahr E, Fukuhara S, Mochizuki N, Makiyama T, Itoh H, Christiansen M, McKeown P, Miyamoto K, Kamakura S, Tsutsui H, Schwartz PJ, George AL, Roden DM. (2008) The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest, 118 (6): 2219-29. [PMID:18451998]

23. Makita N, Sasaki K, Groenewegen WA, Yokota T, Yokoshiki H, Murakami T, Tsutsui H. (2005) Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm, 2 (10): 1128-34. [PMID:16188595]

24. Makita N, Shirai N, Nagashima M, Matsuoka R, Yamada Y, Tohse N, Kitabatake A. (1998) A de novo missense mutation of human cardiac Na+ channel exhibiting novel molecular mechanisms of long QT syndrome. FEBS Lett, 423 (1): 5-9. [PMID:9506831]

25. Makiyama T, Akao M, Tsuji K, Doi T, Ohno S, Takenaka K, Kobori A, Ninomiya T, Yoshida H, Takano M et al.. (2005) High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. J Am Coll Cardiol, 46 (11): 2100-6. [PMID:16325048]

26. Malhotra JD, Thyagarajan V, Chen C, Isom LL. (2004) Tyrosine-phosphorylated and nonphosphorylated sodium channel beta1 subunits are differentially localized in cardiac myocytes. J Biol Chem, 279 (39): 40748-54. [PMID:15272007]

27. Mantegazza M, Yu FH, Catterall WA, Scheuer T. (2001) Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proc Natl Acad Sci USA, 98 (26): 15348-53. [PMID:11742069]

28. McKerrall SJ, Nguyen T, Lai KW, Bergeron P, Deng L, DiPasquale A, Chang JH, Chen J, Chernov-Rogan T, Hackos DH et al.. (2019) Structure- and Ligand-Based Discovery of Chromane Arylsulfonamide Nav1.7 Inhibitors for the Treatment of Chronic Pain. J Med Chem, 62 (8): 4091-4109. [PMID:30943032]

29. Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A, Ye B, Valdivia C, Ueda K, Canizales-Quinteros S, Tusié-Luna MT, Makielski JC, Ackerman MJ. (2007) SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation, 116 (2): 134-42. [PMID:17592081]

30. Middleton RE, Warren VA, Kraus RL, Hwang JC, Liu CJ, Dai G, Brochu RM, Kohler MG, Gao YD, Garsky VM et al.. (2002) Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry, 41 (50): 14734-47. [PMID:12475222]

31. Mohler PJ, Rivolta I, Napolitano C, LeMaillet G, Lambert S, Priori SG, Bennett V. (2004) Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci USA, 101 (50): 17533-8. [PMID:15579534]

32. Mulcahy JV, Pajouhesh H, Beckley JT, Delwig A, Du Bois J, Hunter JC. (2019) Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform NaV1.7. J Med Chem, 62 (19): 8695-8710. [PMID:31012583]

33. Márquez MF, Bonny A, Hernández-Castillo E, De Sisti A, Gómez-Flores J, Nava S, Hidden-Lucet F, Iturralde P, Cárdenas M, Tonet J. (2012) Long-term efficacy of low doses of quinidine on malignant arrhythmias in Brugada syndrome with an implantable cardioverter-defibrillator: a case series and literature review. Heart Rhythm, 9 (12): 1995-2000. [PMID:23059185]

34. Nilius B, Boldt W, Benndorf K. (1986) Properties of aconitine-modified sodium channels in single cells of mouse ventricular myocardium. Gen Physiol Biophys, 5 (5): 473-84. [PMID:2433183]

35. Niu DM, Hwang B, Hwang HW, Wang NH, Wu JY, Lee PC, Chien JC, Shieh RC, Chen YT. (2006) A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a nonsense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect. J Med Genet, 43 (10): 817-21. [PMID:16707561]

36. Nuss HB, Tomaselli GF, Marbán E. (1995) Cardiac sodium channels (hH1) are intrinsically more sensitive to block by lidocaine than are skeletal muscle (mu 1) channels. J Gen Physiol, 106 (6): 1193-209. [PMID:8786356]

37. Oliveira JS, Redaelli E, Zaharenko AJ, Cassulini RR, Konno K, Pimenta DC, Freitas JC, Clare JJ, Wanke E. (2004) Binding specificity of sea anemone toxins to Nav 1.1-1.6 sodium channels: unexpected contributions from differences in the IV/S3-S4 outer loop. J Biol Chem, 279 (32): 33323-35. [PMID:15169781]

38. Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P, Napolitano C, Priori SG, Kass RS. (2001) Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J Biol Chem, 276 (33): 30623-30. [PMID:11410597]

39. Rogart RB, Cribbs LL, Muglia LK, Kephart DD, Kaiser MW. (1989) Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. Proc Natl Acad Sci USA, 86 (20): 8170-4. [PMID:2554302]

40. Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA. (1996) Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J Biol Chem, 271 (27): 15950-62. [PMID:8663157]

41. Rong M, Chen J, Tao H, Wu Y, Jiang P, Lu M, Su H, Chi Y, Cai T, Zhao L et al.. (2011) Molecular basis of the tarantula toxin jingzhaotoxin-III (β-TRTX-Cj1α) interacting with voltage sensors in sodium channel subtype Nav1.5. FASEB J, 25 (9): 3177-85. [PMID:21665957]

42. Rook MB, Bezzina Alshinawi C, Groenewegen WA, van Gelder IC, van Ginneken AC, Jongsma HJ, Mannens MM, Wilde AA. (1999) Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. Cardiovasc Res, 44 (3): 507-17. [PMID:10690282]

43. Royer A, van Veen TA, Le Bouter S, Marionneau C, Griol-Charhbili V, Léoni AL, Steenman M, van Rijen HV, Demolombe S, Goddard CA, Richer C, Escoubet B, Jarry-Guichard T, Colledge WH, Gros D, de Bakker JM, Grace AA, Escande D, Charpentier F. (2005) Mouse model of SCN5A-linked hereditary Lenègre's disease: age-related conduction slowing and myocardial fibrosis. Circulation, 111 (14): 1738-46. [PMID:15809371]

44. Ruan Y, Liu N, Bloise R, Napolitano C, Priori SG. (2007) Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation, 116 (10): 1137-44. [PMID:17698727]

45. Ruan Y, Liu N, Priori SG. (2009) Sodium channel mutations and arrhythmias. Nat Rev Cardiol, 6 (5): 337-48. [PMID:19377496]

46. Schott JJ, Alshinawi C, Kyndt F, Probst V, Hoorntje TM, Hulsbeek M, Wilde AA, Escande D, Mannens MM, Le Marec H. (1999) Cardiac conduction defects associate with mutations in SCN5A. Nat Genet, 23 (1): 20-1. [PMID:10471492]

47. Schwartz PJ, Priori SG, Dumaine R, Napolitano C, Antzelevitch C, Stramba-Badiale M, Richard TA, Berti MR, Bloise R. (2000) A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med, 343 (4): 262-7. [PMID:10911008]

48. Schwoerer AP, Scheel H, Friederich P. (2015) A Comparative Analysis of Bupivacaine and Ropivacaine Effects on Human Cardiac SCN5A Channels. Anesth Analg, 120 (6): 1226-34. [PMID:25692452]

49. Sheets MF, Hanck DA. (1999) Gating of skeletal and cardiac muscle sodium channels in mammalian cells. J Physiol (Lond.), 514 ( Pt 2): 425-36. [PMID:9852324]

50. Sheldon RS, Cannon NJ, Duff HJ. (1986) Binding of [3H]batrachotoxinin A benzoate to specific sites on rat cardiac sodium channels. Mol Pharmacol, 30 (6): 617-23. [PMID:2431264]

51. Sheldon RS, Duff HJ, Thakore E, Hill RJ. (1994) Class I antiarrhythmic drugs: allosteric inhibitors of [3H] batrachotoxinin binding to rat cardiac sodium channels. J Pharmacol Exp Ther, 268 (1): 187-94. [PMID:8301556]

52. Sheldon RS, Hill RJ, Cannon NJ, Duff HJ. (1989) Amiodarone: biochemical evidence for binding to a receptor for class I drugs associated with the rat cardiac sodium channel. Circ Res, 65 (2): 477-82. [PMID:2546697]

53. Shin DJ, Jang Y, Park HY, Lee JE, Yang K, Kim E, Bae Y, Kim J, Kim J, Kim SS, Lee MH, Chahine M, Yoon SK. (2004) Genetic analysis of the cardiac sodium channel gene SCN5A in Koreans with Brugada syndrome. J Hum Genet, 49 (10): 573-8. [PMID:15338453]

54. Smits JP, Koopmann TT, Wilders R, Veldkamp MW, Opthof T, Bhuiyan ZA, Mannens MM, Balser JR, Tan HL, Bezzina CR et al.. (2005) A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J Mol Cell Cardiol, 38 (6): 969-81. [PMID:15910881]

55. Vaeth M, Feske S. (2018) Ion channelopathies of the immune system. Curr Opin Immunol, 52: 39-50. [PMID:29635109]

56. Vatta M, Dumaine R, Varghese G, Richard TA, Shimizu W, Aihara N, Nademanee K, Brugada R, Brugada J, Veerakul G, Li H, Bowles NE, Brugada P, Antzelevitch C, Towbin JA. (2002) Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum Mol Genet, 11 (3): 337-45. [PMID:11823453]

57. Wang DW, Viswanathan PC, Balser JR, George Jr AL, Benson DW. (2002) Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation, 105 (3): 341-6. [PMID:11804990]

58. Wang G, Dugas M, Armah BI, Honerjäger P. (1990) Sodium channel comodification with full activator reveals veratridine reaction dynamics. Mol Pharmacol, 37 (2): 144-8. [PMID:2154667]

59. Wang Q, Chen S, Chen Q, Wan X, Shen J, Hoeltge GA, Timur AA, Keating MT, Kirsch GE. (2004) The common SCN5A mutation R1193Q causes LQTS-type electrophysiological alterations of the cardiac sodium channel. J Med Genet, 41 (5): e66. [PMID:15121794]

60. Wang Q, Shen J, Li Z, Timothy K, Vincent GM, Priori SG, Schwartz PJ, Keating MT. (1995) Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet, 4 (9): 1603-7. [PMID:8541846]

61. Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, Moss AJ, Towbin JA, Keating MT. (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell, 80 (5): 805-11. [PMID:7889574]

62. Wei J, Wang DW, Alings M, Fish F, Wathen M, Roden DM, George AL. (1999) Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation, 99 (24): 3165-71. [PMID:10377081]

63. Wilson MJ, Yoshikami D, Azam L, Gajewiak J, Olivera BM, Bulaj G, Zhang MM. (2011) μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci USA, 108 (25): 10302-7. [PMID:21652775]

64. Wright SN. (2002) Comparison of aconitine-modified human heart (hH1) and rat skeletal (mu1) muscle Na+ channels: an important role for external Na+ ions. J Physiol (Lond.), 538 (Pt 3): 759-71. [PMID:11826163]

65. Wu B, Murray JK, Andrews KL, Sham K, Long J, Aral J, Ligutti J, Amagasu S, Liu D, Zou A et al.. (2018) Discovery of Tarantula Venom-Derived NaV1.7-Inhibitory JzTx-V Peptide 5-Br-Trp24 Analogue AM-6120 with Systemic Block of Histamine-Induced Pruritis. J Med Chem, 61 (21): 9500-9512. [PMID:30346167]

66. Zeng D, Kyle JW, Martin RL, Ambler KS, Hanck DA. (1996) Cardiac sodium channels expressed in a peripheral neurotumor-derived cell line, RT4-B8. Am J Physiol, 270 (5 Pt 1): C1522-31. [PMID:8967455]

67. Zimmer T, Benndorf K. (2007) The intracellular domain of the beta 2 subunit modulates the gating of cardiac Na v 1.5 channels. Biophys J, 92 (11): 3885-92. [PMID:17369409]

68. Zimmer T, Biskup C, Bollensdorff C, Benndorf K. (2002) The beta1 subunit but not the beta2 subunit colocalizes with the human heart Na+ channel (hH1) already within the endoplasmic reticulum. J Membr Biol, 186 (1): 13-21. [PMID:11891585]

Contributors

Show »

How to cite this page