CXCR2

Target id: 69

Nomenclature: CXCR2

Family: Chemokine receptors

Annotation status:  image of an orange circle Annotated and awaiting review. Please contact us if you can help with reviewing.  » Email us

This receptor has a proposed ligand; see the Latest Pairings page for more information.

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 360 2q35 CXCR2 C-X-C motif chemokine receptor 2 48,62
Mouse 7 359 1 C3 Cxcr2 chemokine (C-X-C motif) receptor 2 10
Rat 7 359 9q33 Cxcr2 C-X-C motif chemokine receptor 2 21
Previous and Unofficial Names
Names References
IL8RB 48
IL-8R2
KC receptor 10
CD182
CXC-R2
GRO/MGSA receptor
high affinity interleukin-8 receptor B
CD128
Gpcr16
chemokine (C-X-C motif) receptor 2
Database Links
Specialist databases
GPCRDB cxcr2_human (Hs), cxcr2_mouse (Mm), cxcr2_rat (Rn)
Other databases
ChEMBL Target
Ensembl Gene
Entrez Gene
GenitoUrinary Development Molecular Anatomy Project
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands
CXCL1 {Sp: Human}
CXCL6 {Sp: Human}
CXCL8 {Sp: Human}
CXCL2 {Sp: Human}
CXCL3 {Sp: Human}
CXCL5 {Sp: Human}
CXCL7 {Sp: Human}
CXCL1 {Sp: Mouse}
CXCL2 {Sp: Mouse}
CXCL3 {Sp: Mouse}
CXCL5 {Sp: Mouse}
CXCL1 {Sp: Rat}
CXCL2 {Sp: Rat}
CXCL3 {Sp: Rat}
CXCL5 {Sp: Rat}
Comments: macrophage derived lectin is a proposed ligand, single publication

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]CXCL8 (human) Hs Full agonist 9.0 – 9.4 pKd 32,70
pKd 9.0 – 9.4 (Kd 1.02x10-9 – 3.98x10-10 M) [32,70]
[125I]KC-Tyr Mm Full agonist 8.4 pKd 10
pKd 8.4 [10]
CXCL6 {Sp: Human} Hs Full agonist 7.0 pKd 83
pKd 7.0 [83]
HIV-1 matrix protein p17 Hs Agonist 6.9 pKd 28
pKd 6.9 (Kd 1.3x10-7 M) [28]
CXCL8 {Sp: Human} Hs Full agonist 8.8 – 9.5 pKi 8,32,48,79,82
pKi 8.8 – 9.5 [8,32,48,79,82]
CXCL1 {Sp: Human} Hs Full agonist 8.4 – 9.7 pKi 32,48,82
pKi 8.4 – 9.7 [32,48,82]
CXCL1 {Sp: Human} Mm Full agonist 8.1 pKi 10
pKi 8.1 [10]
CXCL1 {Sp: Rat} Mm Full agonist 7.2 – 8.8 pKi 10
pKi 8.8 [10]
pKi 7.2 [10]
CXCL8 {Sp: Human} Mm Full agonist 6.4 pKi 10
pKi 6.4 [10]
CXCL3 {Sp: Human} Hs Full agonist 7.8 – 9.2 pIC50 4
pIC50 7.8 – 9.2 [4]
vCXCL1 Hs Agonist 8.3 pIC50 52
pIC50 8.3 (IC50 5.6x10-9 M) [52]
CXCL2 {Sp: Human} Hs Full agonist 7.0 – 9.1 pIC50 4
pIC50 7.0 – 9.1 [4]
CXCL5 {Sp: Human} Hs Full agonist 6.9 – 9.0 pIC50 4
pIC50 6.9 – 9.0 [4]
CXCL7 {Sp: Human} Hs Full agonist 6.3 – 9.3 pIC50 4
pIC50 6.3 – 9.3 [4]
View species-specific agonist tables
Agonist Comments
The cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils, but binding affinity was not determined [86].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
navarixin Hs Antagonist 10.3 pIC50 6,22
pIC50 10.3 (IC50 4.9x10-11 M) [6,22]
AZD5069 Hs Antagonist 9.1 pIC50 64
pIC50 9.1 (IC50 7.9x10-10 M) [64]
Description: Measuring displacement of CXCL8 binding to recombinant CXCR2 in HEK cell membrane preparations.
danirixin Hs Antagonist 7.9 pIC50 60
pIC50 7.9 (IC50 1.25x10-8 M) [60]
SB 225002 Hs Antagonist 7.7 pIC50 78
pIC50 7.7 (IC50 1.99x10-8 M) [78]
elubirixin Hs Antagonist 7.7 pIC50 6
pIC50 7.7 (IC50 2.2x10-8 M) [6]
SX-517 Hs Antagonist 7.2 pIC50 53
pIC50 7.2 (IC50 6x10-8 M) [53]
NSC 157449 Hs Antagonist 6.3 pIC50 78
pIC50 6.3 [78]
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
reparixin Hs Negative 6.4 pIC50 8
pIC50 6.4 (IC50 4x10-7 M) [8]
Allosteric Modulator Comments
The mechanism of inhibition exhibited by reparixin is not fully resolved. The compound may act as a negative allosteric modulator, rather than an antagonist.
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Adenylate cyclase inhibition
Calcium channel
Comments:  The βγ subunit of the Gi G protein is necessary for chemotaxis [63] and calcium mobilisation [32].
References:  25,32,63
Secondary Transduction Mechanisms
Transducer Effector/Response
Calcium channel
Other - See Comments
Comments:  Additional information on signaling pathways can be found in [77]. Agonists at high concentrations induce phosphorylation of CXCR2, leading to homologous desensitization, receptor internalization and partial degradation [7,16,24,61]. CXCR2 couples mainly to G protein-coupled receptor kinase 6 (GRK6) to negatively regulate receptor sensitization and trafficking [69].
References:  43
Tissue Distribution
Neutrophils.
Species:  Human
Technique:  Western blotting.
References:  51
CX3CR1low CD14+ monocytes.
Species:  Human
Technique:  FACS
References:  27
CNS: hippocampus, dentate nucleus, pontine nuclei, locus coeruleus, paraventricular nucleus, and in the anterior horn, interomediolateral cell column, and Clarke's column of the spinal cord.
Species:  Human
Technique:  Immunohistochemistry.
References:  36
Polymorphonuclear neutrophils.
Species:  Human
Technique:  Flow cytometry.
References:  20
Bronchial epithelial cells.
Species:  Human
Technique:  RT-PCR and flow cytometry.
References:  23
Urinary tract epithelial cells.
Species:  Human
Technique:  Immunohistochemistry.
References:  29
Chondrocytes.
Species:  Human
Technique:  Flow cytometry.
References:  55
Umbilical vein endothelial cells (HUVECs).
Species:  Human
Technique:  immunocytochemistry.
References:  49
Basophils.
Species:  Human
Technique:  Flow cytometry and RT-PCR
References:  39,66
Mast cells.
Species:  Human
Technique:  RNAse protection assay and flow cytometry.
References:  65
NK cells and lymphocytes.
Species:  Human
Technique:  FACS
References:  14
Peritoneal exudate cells.
Species:  Mouse
Technique:  Northern blotting.
References:  10
Alveolar macrophages.
Species:  Mouse
Technique:  Immunohistochemistry.
References:  59
NKT cells.
Species:  Mouse
Technique:  FACS
References:  38
Bone-marrow endothelial progenitor cell (EPC).
Species:  Mouse
Technique:  FACS
References:  35
Hippocampal neurons.
Species:  Rat
Technique:  RT-PCR.
References:  56
Lung, speen, neutrophil.
Species:  Rat
Technique:  RNase protection assay and Northern blotting.
References:  21
Tissue Distribution Comments
The expression of CXCR1 and CXCR2 on NK cells is under debate. CXCR2 is also expressed by many non-hematopoietic cells, including endothelial cells and tumor cells.
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of chemotaxis of human mast cells, HMC-1, endogenously expressing the CXCR2 receptor.
Species:  Human
Tissue:  HMC-1 cells.
Response measured:  Chemotaxis.
References:  65
Measurement of intracellular Ca2+ levels in HEK 293 cells transfected with the human CXCR2 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Increase in intracellular Ca2+.
References:  48,83-84
Measurement of intracellular Ca2+ levels in HEK 293 cells transfected with the rat CXCR2 receptor.
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  Increase in intracellular Ca2+.
References:  21
Measurement of chemotaxis of mouse peripheral blood leukocytes endogenously expressing the CXCR2 receptor.
Species:  Mouse
Tissue:  Peripheral blood leukocytes.
Response measured:  Chemotaxis.
References:  10
Measurement of Ca2+ levels in Jurkat cells transfected with the human CXCR2 receptor.
Species:  Human
Tissue:  Jurkat cells.
Response measured:  Ca2+ mobilisation.
References:  42-43,80
Measurement of elastase released by human neutrophils endogenously expressing the CXCR2 receptor.
Species:  Human
Tissue:  Neutrophils.
Response measured:  Release of elastase.
References:  42-43,80
Measurement of focal adhesion kinase (FAK) activity and chemotaxis of HEK 293 and RBL cells transfected with the CXCR2 receptor.
Species:  Human
Tissue:  HEK 293 and RBL cells.
Response measured:  FAK phosphorylation and chemotaxis.
References:  25
Measurement of chemotaxis of HEK 293 cells transfected with the human CXCR2 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Chemotaxis.
References:  25,83
Measurement of cAMP levels in CHO cells transfected with the human CXCR2 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  32
Phosphorylation of focal adhesion kinase.
Species:  Human
Tissue:  Human CXCR2-transfected RBL 2H3 cells.
Response measured:  Elevated spreading.
References:  16
Physiological Functions
Chemotaxis.
Species:  Human
Tissue:  Mast cells.
References:  65
Chemotaxis.
Species:  Human
Tissue:  Neutrophils.
References:  78
Hypertrophic differentiation.
Species:  Human
Tissue:  Chondrocytes.
References:  55
Cell proliferation and inhibition of apoptosis.
Species:  Human
Tissue:  Umbilical vein endothelial cells.
References:  49
Cutaneous wound repair.
Species:  Mouse
Tissue:  In vivo.
References:  18,58
Chemotaxis.
Species:  Human
Tissue:  Microvascular endothelial cells (HMVECs).
References:  3
Neovascularisation (angiogenesis).
Species:  Rat
Tissue:  Cornea.
References:  3
Neutrophil recruitment.
Species:  Mouse
Tissue:  In vivo.
References:  17,30,33,45,58
Transendothelial movement of mast cell progenitors into intestinal tissue.
Species:  Mouse
Tissue:  In vivo (small intestine).
References:  1
Macrophage recruitment.
Species:  Rat
Tissue:  In vivo (kidney).
References:  85
Macrophage recruitment.
Species:  Mouse
Tissue:  In vivo.
References:  9
Ergress from bone marrow.
Species:  Mouse
Tissue:  Neutrophils.
References:  47
Host defense in murine urinary tract infection.
Species:  Mouse
Tissue:  Neutrophils.
References:  67
Proliferation and migration of endothelial cells.
Species:  Human
Tissue:  HUVECs and HMECs.
References:  3,50
Angiogenesis.
Species:  Rat
Tissue:  Cornea.
References:  3
Neutrophil recruitment to skin following infection by HSV-1.
Species:  Mouse
Tissue:  Neutrophils.
References:  74
Angiogenesis.
Species:  Mouse
Tissue:  Bone marrow-derived endothelial progenitor cells (EPCs).
References:  37
Bacterial sepsis.
Species:  Mouse
Tissue: 
References:  75
Neutrophil infiltration to pancreas during autoimmune diabetes.
Species:  Mouse
Tissue:  Neutrophils.
References:  19
Physiological Functions Comments
CXCR2 is implicated in ischemic injury, trauma and multiple sclerosis [72].
Physiological Consequences of Altering Gene Expression
CXCR2 receptor knockout mice exhibit a decreased number of mast cell progenitors found in the small intestine.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  1
CXCR2 receptor knockout mice exhibit delayed cutaneous wound healing (delayed epithelialisation and decreased neovascularisation). They have defective neutrophil recruitment as well as altered monocyte recruitment and Il-1β secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  18
CXCR2 knockout mice exhibit impaired corneal neovascular (angiogenic) response.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  3
CXCR2 knockout mice exhibit impaired neutrophil recruitment during inflammatory responses.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  17,30,33,41,45,58
CXCR2 receptor knockout mice exhibit decreased airway hyperreactivity in response to respiratory syncytial virus (RSV) infection compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  59
CXCR2 knockout mice subjected to ischaemia-reperfusion exhibit reduced myocardial infarct size and reduced inflammatory cell recruitment compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  76
CXCR2 knockin mice have been developed, where the mouse CXCR2 receptor is replaced by human CXCR2. This mouse model demonstrates that both the mouse and human forms of the receptor are functionally equivalent. This model allows us to test the role of the human receptor using animal studies.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  57
CXCR2 receptor knockout mice exhibit a dysfunctional neutrophil response to infection. The neutrophils are unable to cross epithelial barriers and therefore accumulate in large quantities the subepithelial tissue. Unable to clear the infection, the mice develop swollen kidneys, neutrophil abscesses, high numbers of bacteria and renal scarring.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  29,34
CXCR2 knockout mice exhibit enhanced numbers of myeloid progenitor cells in the femur, spleen and blood.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  11
CXCR2(-/-) mice failed to show PMN infiltration into the mucosa in a chronic colitis model, and showed limited signs of mucosal damage and reduced clinical symptoms.
Species:  Mouse
Tissue:  Colonic mucosa; PMN
Technique:  Gene knock-outs
References:  12
Reduced CXCR2 leads to lymphadenopathy due to increase in B cells and to splenomegaly, resulting from an increase in metamyelocytes, band, and mature neutrophils.
Species:  Mouse
Tissue:  B cells; Neutrophils
Technique:  Gene targeting in embryonic stem cells.
References:  13
CXCR2 deficiency leads to defects in clearing bacteria from kidneys and bladders and development of bacteremia and symptoms of systemic disease.
Species:  Mouse
Tissue:  Kidneys; Bladders; Neutrophils
Technique:  Gene knock-outs
References:  26
CXCR2 is involved in cerebral endothelial activation and leukocyte recruitment during neuroinflammation.
Species:  Mouse
Tissue:  CNS; Endothelial cells; Leukocytes
Technique:  Gene knock-outs
References:  81
XCR2 is involved in EPC-mediated advanced atherosclerosis.
Species:  Mouse
Tissue:  Bone-marrow endothelial progenitor cell (EPC)
Technique:  Adoptive transfer of Cxcr2-/- Tie2-GFP+ EPCs.
References:  35
CXCR2 is a negative determinant for pancreatic islet survival after transplantation.
Species:  Mouse
Tissue:  Pancreatic islets; Polymorphonuclear leukocytes and NKT cells.
Technique:  Genetic and pharmacological blockade.
References:  15
CXCR2 is involved in development of acute and chronic pancreatitis.
Species:  Mouse
Tissue:  Pancreas.
Technique:  Overall knockout and specific deletion of Cxcr2 from myeloid cells.
References:  73
CXCR2 regulates bone marrow blood vessel repair/regeneration and haematopoietic recovery following myeloablation and bone marrow transplantation.
Species:  Mouse
Tissue:  Bone marrow.
Technique:  Gene knock-outs
References:  31
Loss of CXCR2 suppresses chronic colonic inflammation and colitis-associated tumorigenesis.
Species:  Mouse
Tissue:  Colon; Myeloid-derived suppressor cells (MDSCs).
Technique:  Gene knock-outs
References:  44
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002334 abnormal airway responsiveness PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0002397 abnormal bone marrow morphology PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0008721 abnormal chemokine level PMID: 11801688 
Cxcr2tm1Mwm|Dstncorn1 Dstncorn1/Dstncorn1,Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * A/WySn * BALB/c * brachy stock
MGI:105303  MGI:1929270  MP:0001312 abnormal cornea morphology PMID: 18628996 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0003009 abnormal cytokine secretion PMID: 11714818 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002465 abnormal eosinophil physiology PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0008111 abnormal granulocyte differentiation PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0008751 abnormal interleukin level PMID: 11801688  14707102 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002442 abnormal leukocyte physiology PMID: 15356099 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0002348 abnormal lymph node medulla PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0000920 abnormal myelination PMID: 12176324 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0001601 abnormal myelopoiesis PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0001601 abnormal myelopoiesis PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002463 abnormal neutrophil physiology PMID: 11801688  15466624 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0002463 abnormal neutrophil physiology PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0008042 abnormal NK T cell physiology PMID: 11123307 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002281 abnormal respiratory mucosa goblet cell morphology PMID: 12626595 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0000955 abnormal spinal cord morphology PMID: 12176324 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0002357 abnormal spleen white pulp morphology PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002444 abnormal T cell physiology PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0005465 abnormal T-helper 1 physiology PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0005466 abnormal T-helper 2 physiology PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
B6.Cg-Il8rb
MGI:105303  MP:0003448 altered tumor morphology PMID: 14978086 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0005542 corneal vascularization PMID: 14707102 
Cxcr2tm1Mwm|Dstncorn1 Dstncorn1/Dstncorn1,Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * A/WySn * BALB/c * brachy stock
MGI:105303  MGI:1929270  MP:0005542 corneal vascularization PMID: 18628996 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002335 decreased airway responsiveness PMID: 12626595 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0001265 decreased body size PMID: 16094689 
Cxcr2tm1(IL8RB)Dktr Cxcr2tm1(IL8RB)Dktr/Cxcr2tm1(IL8RB)Dktr
involves: 129S2/SvPas * C57BL/6
MGI:105303  MP:0003918 decreased kidney weight PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
B6.Cg-Il8rb
MGI:105303  MP:0001273 decreased metastatic potential PMID: 14978086 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0000954 decreased oligodendrocyte progenitor number PMID: 12176324 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0009764 decreased sensitivity to induced morbidity/mortality PMID: 14500678 
Cxcr2tm1(IL8RB)Dktr Cxcr2tm1(IL8RB)Dktr/Cxcr2tm1(IL8RB)Dktr
involves: 129S2/SvPas * C57BL/6
MGI:105303  MP:0004953 decreased spleen weight PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0005398 decreased susceptibility to fungal infection PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0003436 decreased susceptibility to induced arthritis PMID: 19109198 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0004956 decreased thymus weight PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
B6.Cg-Il8rb
MGI:105303  MP:0003447 decreased tumor growth/size PMID: 14978086 
Cxcr2tm1Mwm|Tg(TRAMP)8247Ng Cxcr2tm1Mwm/Cxcr2tm1Mwm,Tg(TRAMP)8247Ng/?
involves: 129S2/SvPas * BALB/c * C57BL/6
MGI:105303  MGI:2680364  MP:0003447 decreased tumor growth/size PMID: 16941672 
Cxcr2+|Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2+
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002908 delayed wound healing PMID: 10951241 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002908 delayed wound healing PMID: 10951241 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0008542 enlarged cervical lymph nodes PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0000702 enlarged lymph nodes PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0000691 enlarged spleen PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0000240 extramedullary hematopoiesis PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0008720 impaired neutrophil migration PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0008720 impaired neutrophil migration PMID: 11069247  11714818 
Cxcr2+|Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2+
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0008719 impaired neutrophil recruitment PMID: 10951241 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0008719 impaired neutrophil recruitment PMID: 10951241  11046063  15385471 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0005014 increased B cell number PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0008596 increased circulating interleukin-6 level PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0004928 increased epididymis weight PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0000322 increased granulocyte number PMID: 16094689 
Cxcr2tm1(IL8RB)Dktr Cxcr2tm1(IL8RB)Dktr/Cxcr2tm1(IL8RB)Dktr
involves: 129S2/SvPas * C57BL/6
MGI:105303  MP:0000322 increased granulocyte number PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002497 increased IgE level PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0003917 increased kidney weight PMID: 16094689 
Cxcr2tm1(IL8RB)Dktr Cxcr2tm1(IL8RB)Dktr/Cxcr2tm1(IL8RB)Dktr
involves: 129S2/SvPas * C57BL/6
MGI:105303  MP:0000218 increased leukocyte cell number PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0000219 increased neutrophil cell number PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0004909 increased seminal vesicle weight PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0004952 increased spleen weight PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002412 increased susceptibility to bacterial infection PMID: 11069247 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0005027 increased susceptibility to parasitic infection PMID: 11714818 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002418 increased susceptibility to viral infection PMID: 14707102 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0010373 myeloid hyperplasia PMID: 8036519 
Cxcr2tm1(IL8RB)Dktr Cxcr2tm1(IL8RB)Dktr/Cxcr2tm1(IL8RB)Dktr
involves: 129S2/SvPas * C57BL/6
MGI:105303  MP:0002768 small adrenal glands PMID: 16094689 
Cxcr2tm1(IL8RB)Dktr Cxcr2tm1(IL8RB)Dktr/Cxcr2tm1(IL8RB)Dktr
involves: 129S2/SvPas * C57BL/6
MGI:105303  MP:0000601 small liver PMID: 16094689 
Gene Expression and Pathophysiology Comments
In patients with type 1 diabetes the CXCR1/2 negative allosteric modulator reparixin improved outcome in a phase 2 randomized, open-label pilot study with a single infusion of allogeneic islets [15]. Administration of reparixin in on-pump coronary artery bypass grafting (CABG) patients appears to be feasible and safe. It concurrently attenuated postoperative granulocytosis in peripheral blood [68].
In many malignancies, elevated CXCR2 activity has been connected to increased tumor growth and metastasis.
Biologically Significant Variants
Type:  Single nucleotide polymorphism
Species:  Human
Description:  Multiple single nucleotide polymorphisms in CXCR2 are associated with cystic fibrosis.
References:  46
Type:  Single nucleotide polymorphism
Species:  Human
Description:  Functional SNP in the 3'UTR of CXCR2 that is associated with reduced risk of lung cancer and provides protection from recurrent acute pyelonephritis
Amino acid change:  none
Nucleotide change:  C>T at position 127 of 3' UTR
SNP accession: 
References:  40,71
Type:  Single nucleotide polymorphism
Species:  Human
Description:  Single nucleotide polymorphisms in CXCR2 are associated with reduced WBC count.
References:  5
Type:  Frameshift mutation
Species:  Human
Description:  Family-based re-sequencing study in a pedigree with congenital neutropenia identified a loss-of-function mutation comprising a translational frameshift and premature termination codon after six novel amino acids.
Amino acid change:  H323fs6X
Nucleotide change:  968delA
References:  5
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The 785C ->T polymorphism may be associated with a reduced risk of developing chronic obstructive pulmonary disease.
Nucleotide change:  785C>T
References:  54

References

Show »

1. Abonia JP, Austen KF, Rollins BJ, Joshi SK, Flavell RA, Kuziel WA, Koni PA, Gurish MF. (2005) Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood105: 4308-4313. [PMID:15705791]

2. Adams JL, Smothers J, Srinivasan R, Hoos A. (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov14 (9): 603-22. [PMID:26228631]

3. Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM. (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol165: 5269-5277. [PMID:11046061]

4. Ahuja SK, Murphy PM. (1996) The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem271: 20545-20550. [PMID:8702798]

5. Auer PL, Teumer A, Schick U, O'Shaughnessy A, Lo KS, Chami N, Carlson C, de Denus S, Dubé MP, Haessler J et al.. (2014) Rare and low-frequency coding variants in CXCR2 and other genes are associated with hematological traits. Nat. Genet.46 (6): 629-34. [PMID:24777453]

6. Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD et al.. (2014) International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev.66 (1): 1-79. [PMID:24218476]

7. Ben-Baruch A, Grimm M, Bengali K, Evans GA, Chertov O, Wang JM, Howard OM, Mukaida N, Matsushima K, Oppenheim JJ. (1997) The differential ability of IL-8 and neutrophil-activating peptide-2 to induce attenuation of chemotaxis is mediated by their divergent capabilities to phosphorylate CXCR2 (IL-8 receptor B). J. Immunol.158 (12): 5927-33. [PMID:9190946]

8. Bertini R, Allegretti M, Bizzarri C, Moriconi A, Locati M, Zampella G, Cervellera MN, Di Cioccio V, Cesta MC, Galliera E, Martinez FO, Di Bitondo R, Troiani G, Sabbatini V, D'Anniballe G, Anacardio R, Cutrin JC, Cavalieri B, Mainiero F, Strippoli R, Villa P, Di Girolamo M, Martin F, Gentile M, Santoni A, Corda D, Poli G, Mantovani A, Ghezzi P, Colotta F. (2004) Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci U S A101: 11791-11796. [PMID:15282370]

9. Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA. (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J. Clin. Invest.101: 353-363. [PMID:9435307]

10. Bozic CR, Gerard NP, von Uexkull-Guldenband C, Kolakowski LF, Conklyn MJ, Breslow R, Showell HJ, Gerard C. (1994) The murine interleukin 8 type B receptor homologue and its ligands. Expression and biological characterization. J Biol Chem269: 29355-29358. [PMID:7961909]

11. Broxmeyer HE, Cooper S, Cacalano G, Hague NL, Bailish E, Moore MW. (1996) Involvement of Interleukin (IL) 8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J Exp Med184: 1825-1832. [PMID:8920870]

12. Buanne P, Di Carlo E, Caputi L, Brandolini L, Mosca M, Cattani F, Pellegrini L, Biordi L, Coletti G, Sorrentino C et al.. (2007) Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice. J. Leukoc. Biol.82 (5): 1239-46. [PMID:17656654]

13. Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hultgren B, Wood WI, Moore MW. (1994) Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science265 (5172): 682-4. [PMID:8036519]

14. Chuntharapai A, Lee J, Hébert CA, Kim KJ. (1994) Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes. J. Immunol.153 (12): 5682-8. [PMID:7527448]

15. Citro A, Cantarelli E, Maffi P, Nano R, Melzi R, Mercalli A, Dugnani E, Sordi V, Magistretti P, Daffonchio L et al.. (2012) CXCR1/2 inhibition enhances pancreatic islet survival after transplantation. J. Clin. Invest.122 (10): 3647-51. [PMID:22996693]

16. Cohen-Hillel E, Yron I, Meshel T, Soria G, Attal H, Ben-Baruch A. (2006) CXCL8-induced FAK phosphorylation via CXCR1 and CXCR2: cytoskeleton- and integrin-related mechanisms converge with FAK regulatory pathways in a receptor-specific manner. Cytokine33 (1): 1-16. [PMID:16406804]

17. Del Rio L, Bennouna S, Salinas J, Denkers EY. (2001) CXCR2 deficiency confers impaired neutrophil recruitment and increased susceptibility during Toxoplasma gondii infection. J Immunol167: 6503-6509. [PMID:11714818]

18. Devalaraja RM, Nanney LB, Du J, Qian Q, Yu Y, Devalaraja MN, Richmond A. (2000) Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol115: 234-244. [PMID:10951241]

19. Diana J, Lehuen A. (2014) Macrophages and β-cells are responsible for CXCR2-mediated neutrophil infiltration of the pancreas during autoimmune diabetes. EMBO Mol Med6 (8): 1090-104. [PMID:24968718]

20. Doroshenko T, Chaly Y, Savitskiy V, Maslakova O, Portyanko A, Gorudko I, Voitenok NN. (2002) Phagocytosing neutrophils down-regulate the expression of chemokine receptors CXCR1 and CXCR2. Blood100: 2668-2671. [PMID:12239185]

21. Dunstan CA, Salafranca MN, Adhikari S, Xia Y, Feng L, Harrison JK. (1996) Identification of two rat genes orthologous to the human interleukin-8 receptors. J Biol Chem271: 32770-32776. [PMID:8955112]

22. Dwyer MP, Yu Y, Chao J, Aki C, Chao J, Biju P, Girijavallabhan V, Rindgen D, Bond R, Mayer-Ezel R et al.. (2006) Discovery of 2-hydroxy-N,N-dimethyl-3-{2-[[(R)-1-(5- methylfuran-2-yl)propyl]amino]-3,4-dioxocyclobut-1-enylamino}benzamide (SCH 527123): a potent, orally bioavailable CXCR2/CXCR1 receptor antagonist. J. Med. Chem.49 (26): 7603-6. [PMID:17181143]

23. Farkas L, Hahn MC, Schmoczer M, Jentsch N, Krätzel K, Pfeifer M, Schulz C. (2005) Expression of CXC chemokine receptors 1 and 2 in human bronchial epithelial cells. Chest128: 3724-3734. [PMID:16304340]

24. Feniger-Barish R, Ran M, Zaslaver A, Ben-Baruch A. (1999) Differential modes of regulation of cxc chemokine-induced internalization and recycling of human CXCR1 and CXCR2. Cytokine11 (12): 996-1009. [PMID:10623425]

25. Feniger-Barish R, Yron I, Meshel T, Matityahu E, Ben-Baruch A. (2003) IL-8-induced migratory responses through CXCR1 and CXCR2: association with phosphorylation and cellular redistribution of focal adhesion kinase. Biochemistry42: 2874-2886. [PMID:12627953]

26. Frendéus B, Godaly G, Hang L, Karpman D, Lundstedt AC, Svanborg C. (2000) Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J. Exp. Med.192 (6): 881-90. [PMID:10993918]

27. Geissmann F, Jung S, Littman DR. (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity19 (1): 71-82. [PMID:12871640]

28. Giagulli C, Magiera AK, Bugatti A, Caccuri F, Marsico S, Rusnati M, Vermi W, Fiorentini S, Caruso A. (2012) HIV-1 matrix protein p17 binds to the IL-8 receptor CXCR1 and shows IL-8-like chemokine activity on monocytes through Rho/ROCK activation. Blood119 (10): 2274-83. [PMID:22262769]

29. Godaly G, Hang L, Frendéus B, Svanborg C. (2000) Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol165: 5287-5294. [PMID:11046063]

30. Gonçalves AS, Appelberg R. (2002) The involvement of the chemokine receptor CXCR2 in neutrophil recruitment in LPS-induced inflammation and in Mycobacterium avium infection. Scand J Immunol55: 585-591. [PMID:12028561]

31. Hale SJ, Hale AB, Zhang Y, Sweeney D, Fisher N, van der Garde M, Grabowska R, Pepperell E, Channon K, Martin-Rendon E et al.. (2015) CXCR2 modulates bone marrow vascular repair and haematopoietic recovery post-transplant. Br. J. Haematol.169 (4): 552-64. [PMID:25757087]

32. Hall DA, Beresford IJ, Browning C, Giles H. (1999) Signalling by CXC-chemokine receptors 1 and 2 expressed in CHO cells: a comparison of calcium mobilization, inhibition of adenylyl cyclase and stimulation of GTPgammaS binding induced by IL-8 and GROalpha. Br J Pharmacol126: 810-818. [PMID:10188995]

33. Hall LR, Diaconu E, Patel R, Pearlman E. (2001) CXC chemokine receptor 2 but not C-C chemokine receptor 1 expression is essential for neutrophil recruitment to the cornea in helminth-mediated keratitis (river blindness). J Immunol166: 4035-4041. [PMID:11238651]

34. Hang L, Frendéus B, Godaly G, Svanborg C. (2000) Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. J Infect Dis182: 1738-1748. [PMID:11069247]

35. Herlea-Pana O, Yao L, Heuser-Baker J, Wang Q, Wang Q, Georgescu C, Zou MH, Barlic-Dicen J. (2015) Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression. Cardiovasc. Res.106 (2): 324-37. [PMID:25765938]

36. Horuk R, Martin AW, Wang Z, Schweitzer L, Gerassimides A, Guo H, Lu Z, Hesselgesser J, Perez HD, Kim J, Parker J, Hadley TJ, Peiper SC. (1997) Expression of chemokine receptors by subsets of neurons in the central nervous system. J Immunol158: 2882-2890. [PMID:9058825]

37. Hou Y, Wu Y, Farooq SM, Guan X, Wang S, Liu Y, Oblak JJ, Holcomb J, Jiang Y, Strieter RM et al.. (2015) A critical role of CXCR2 PDZ-mediated interactions in endothelial progenitor cell homing and angiogenesis. Stem Cell Res14 (2): 133-43. [PMID:25622052]

38. Hsieh CY, Chen CL, Lin YS, Yeh TM, Tsai TT, Hong MY, Lin CF. (2014) Macrophage migration inhibitory factor triggers chemotaxis of CD74+CXCR2+ NKT cells in chemically induced IFN-γ-mediated skin inflammation. J. Immunol.193 (7): 3693-703. [PMID:25172501]

39. Iikura M, Miyamasu M, Yamaguchi M, Kawasaki H, Matsushima K, Kitaura M, Morita Y, Yoshie O, Yamamoto K, Hirai K. (2001) Chemokine receptors in human basophils: inducible expression of functional CXCR4. J Leukoc Biol70: 113-120. [PMID:11435493]

40. Javor J, Bucova M, Cervenova O, Kralinsky K, Sadova E, Suchankova M, Liptakova A. (2012) Genetic variations of interleukin-8, CXCR1 and CXCR2 genes and risk of acute pyelonephritis in children. Int. J. Immunogenet.39 (4): 338-45. [PMID:22325052]

41. Johnston RA, Mizgerd JP, Shore SA. (2005) CXCR2 is essential for maximal neutrophil recruitment and methacholine responsiveness after ozone exposure. Am J Physiol Lung Cell Mol Physiol288: L61-L67. [PMID:15361358]

42. Jones SA, Dewald B, Clark-Lewis I, Baggiolini M. (1997) Chemokine antagonists that discriminate between interleukin-8 receptors. Selective blockers of CXCR2. J Biol Chem272: 16166-16169. [PMID:9195914]

43. Jones SA, Wolf M, Qin S, Mackay CR, Baggiolini M. (1996) Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leukocytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Proc Natl Acad Sci U S A93: 6682-6686. [PMID:8692878]

44. Katoh H, Wang D, Daikoku T, Sun H, Dey SK, Dubois RN. (2013) CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell24 (5): 631-44. [PMID:24229710]

45. Kielian T, Barry B, Hickey WF. (2001) CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J Immunol166: 4634-4643. [PMID:11254722]

46. Kormann MS, Hector A, Marcos V, Mays LE, Kappler M, Illig T, Klopp N, Zeilinger S, Carevic M, Rieber N et al.. (2012) CXCR1 and CXCR2 haplotypes synergistically modulate cystic fibrosis lung disease. Eur. Respir. J.39 (6): 1385-90. [PMID:22088968]

47. Köhler A, De Filippo K, Hasenberg M, van den Brandt C, Nye E, Hosking MP, Lane TE, Männ L, Ransohoff RM, Hauser AE et al.. (2011) G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood117 (16): 4349-57. [PMID:21224471]

48. Lee J, Horuk R, Rice GC, Bennett GL, Camerato T, Wood WI. (1992) Characterization of two high affinity human interleukin-8 receptors. J Biol Chem267: 16283-16287. [PMID:1379593]

49. Li A, Dubey S, Varney ML, Singh RK. (2002) Interleukin-8-induced proliferation, survival, and MMP production in CXCR1 and CXCR2 expressing human umbilical vein endothelial cells. Microvasc Res64: 476-481. [PMID:12453441]

50. Li A, Varney ML, Valasek J, Godfrey M, Dave BJ, Singh RK. (2005) Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis8 (1): 63-71. [PMID:16132619]

51. Ludwig A, Ehlert JE, Flad HD, Brandt E. (2000) Identification of distinct surface-expressed and intracellular CXC-chemokine receptor 2 glycoforms in neutrophils: N-glycosylation is essential for maintenance of receptor surface expression. J Immunol165: 1044-1052. [PMID:10878382]

52. Lüttichau HR. (2010) The cytomegalovirus UL146 gene product vCXCL1 targets both CXCR1 and CXCR2 as an agonist. J. Biol. Chem.285 (12): 9137-46. [PMID:20044480]

53. Maeda DY, Peck AM, Schuler AD, Quinn MT, Kirpotina LN, Wicomb WN, Fan GH, Zebala JA. (2014) Discovery of 2-[5-(4-Fluorophenylcarbamoyl)pyridin-2-ylsulfanylmethyl]phenylboronic Acid (SX-517): Noncompetitive Boronic Acid Antagonist of CXCR1 and CXCR2. J. Med. Chem.57 (20): 8378-97. [PMID:25254640]

54. Matheson MC, Ellis JA, Raven J, Walters EH, Abramson MJ. (2006) Association of IL8, CXCR2 and TNF-alpha polymorphisms and airway disease. J Hum Genet, : -. [PMID:16429233]

55. Merz D, Liu R, Johnson K, Terkeltaub R. (2003) IL-8/CXCL8 and growth-related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation. J Immunol171: 4406-4415. [PMID:14530367]

56. Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ. (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci U S A95: 14500-14505. [PMID:9826729]

57. Mihara K, Smit MJ, Krajnc-Franken M, Gossen J, Rooseboom M, Dokter W. (2005) Human CXCR2 (hCXCR2) takes over functionalities of its murine homolog in hCXCR2 knockin mice. Eur J Immunol35: 2573-2582. [PMID:16094689]

58. Milatovic S, Nanney LB, Yu Y, White JR, Richmond A. (2003) Impaired healing of nitrogen mustard wounds in CXCR2 null mice. Wound Repair Regen11: 213-219. [PMID:12753603]

59. Miller AL, Strieter RM, Gruber AD, Ho SB, Lukacs NW. (2003) CXCR2 regulates respiratory syncytial virus-induced airway hyperreactivity and mucus overproduction. J Immunol170: 3348-3356. [PMID:12626595]

60. Miller BE, Mistry S, Smart K, Connolly P, Carpenter DC, Cooray H, Bloomer JC, Tal-Singer R, Lazaar AL. (2015) The pharmacokinetics and pharmacodynamics of danirixin (GSK1325756) - a selective CXCR2 antagonist - in healthy adult subjects. BMC Pharmacol Toxicol16 (1): 18. [PMID:26092545]

61. Mueller SG, White JR, Schraw WP, Lam V, Richmond A. (1997) Ligand-induced desensitization of the human CXC chemokine receptor-2 is modulated by multiple serine residues in the carboxyl-terminal domain of the receptor. J. Biol. Chem.272 (13): 8207-14. [PMID:9079638]

62. Murphy PM, Tiffany HL. (1991) Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science253: 1280-1283. [PMID:1891716]

63. Neptune ER, Bourne HR. (1997) Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci U S A94: 14489-14494. [PMID:9405640]

64. Nicholls DJ, Wiley K, Dainty I, MacIntosh F, Phillips C, Gaw A, Mårdh CK. (2015) Pharmacological characterization of AZD5069, a slowly reversible CXC chemokine receptor 2 antagonist. J. Pharmacol. Exp. Ther.353 (2): 340-50. [PMID:25736418]

65. Nilsson G, Mikovits JA, Metcalfe DD, Taub DD. (1999) Mast cell migratory response to interleukin-8 is mediated through interaction with chemokine receptor CXCR2/Interleukin-8RB. Blood93: 2791-2797. [PMID:10216072]

66. Ochensberger B, Tassera L, Bifrare D, Rihs S, Dahinden CA. (1999) Regulation of cytokine expression and leukotriene formation in human basophils by growth factors, chemokines and chemotactic agonists. Eur J Immunol29: 11-22. [PMID:9933081]

67. Olszyna DP, Florquin S, Sewnath M, Branger J, Speelman P, van Deventer SJ, Strieter RM, van der Poll T. (2001) CXC chemokine receptor 2 contributes to host defense in murine urinary tract infection. J. Infect. Dis.184 (3): 301-7. [PMID:11443555]

68. Opfermann P, Derhaschnig U, Felli A, Wenisch J, Santer D, Zuckermann A, Dworschak M, Jilma B, Steinlechner B. (2015) A pilot study on reparixin, a CXCR1/2 antagonist, to assess safety and efficacy in attenuating ischaemia-reperfusion injury and inflammation after on-pump coronary artery bypass graft surgery. Clin. Exp. Immunol.180 (1): 131-42. [PMID:25402332]

69. Raghuwanshi SK, Su Y, Singh V, Haynes K, Richmond A, Richardson RM. (2012) The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions. J. Immunol.189 (6): 2824-32. [PMID:22869904]

70. Richardson RM, Marjoram RJ, Barak LS, Snyderman R. (2003) Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J Immunol170: 2904-2911. [PMID:12626541]

71. Ryan BM, Robles AI, McClary AC, Haznadar M, Bowman ED, Pine SR, Brown D, Khan M, Shiraishi K, Kohno T et al.. (2015) Identification of a functional SNP in the 3'UTR of CXCR2 that is associated with reduced risk of lung cancer. Cancer Res.75 (3): 566-75. [PMID:25480945]

72. Semple BD, Kossmann T, Morganti-Kossmann MC. (2010) Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J. Cereb. Blood Flow Metab.30 (3): 459-73. [PMID:19904283]

73. Steele CW, Karim SA, Foth M, Rishi L, Leach JD, Porter RJ, Nixon C, Jeffry Evans TR, Carter CR, Nibbs RJ et al.. (2015) CXCR2 inhibition suppresses acute and chronic pancreatic inflammation. J. Pathol.,  [Epub ahead of print]. [PMID:25950520]

74. Stock AT, Smith JM, Carbone FR. (2014) Type I IFN suppresses Cxcr2 driven neutrophil recruitment into the sensory ganglia during viral infection. J. Exp. Med.211 (5): 751-9. [PMID:24752295]

75. Tancevski I, Nairz M, Duwensee K, Auer K, Schroll A, Heim C, Feistritzer C, Hoefer J, Gerner RR, Moschen AR et al.. (2014) Fibrates ameliorate the course of bacterial sepsis by promoting neutrophil recruitment via CXCR2. EMBO Mol Med6 (6): 810-20. [PMID:24755316]

76. Tarzami ST, Miao W, Mani K, Lopez L, Factor SM, Berman JW, Kitsis RN. (2003) Opposing effects mediated by the chemokine receptor CXCR2 on myocardial ischemia-reperfusion injury: recruitment of potentially damaging neutrophils and direct myocardial protection. Circulation108: 2387-2392. [PMID:14568904]

77. Waugh DJ, Wilson C. (2008) The interleukin-8 pathway in cancer. Clin. Cancer Res.14 (21): 6735-41. [PMID:18980965]

78. White JR, Lee JM, Young PR, Hertzberg RP, Jurewicz AJ, Chaikin MA, Widdowson K, Foley JJ, Martin LD, Griswold DE, Sarau HM. (1998) Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J. Biol. Chem.273: 10095-10098. [PMID:9553055]

79. Wilson S, Wilkinson G, Milligan G. (2005) The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J Biol Chem280: 28663-28674. [PMID:15946947]

80. Wolf M, Delgado MB, Jones SA, Dewald B, Clark-Lewis I, Baggiolini M. (1998) Granulocyte chemotactic protein 2 acts via both IL-8 receptors, CXCR1 and CXCR2. Eur J Immunol28: 164-170. [PMID:9485196]

81. Wu F, Zhao Y, Jiao T, Shi D, Zhu X, Zhang M, Shi M, Zhou H. (2015) CXCR2 is essential for cerebral endothelial activation and leukocyte recruitment during neuroinflammation. J Neuroinflammation12: 98. [PMID:25990934]

82. Wu L, Ruffing N, Shi X, Newman W, Soler D, Mackay CR, Qin S. (1996) Discrete steps in binding and signaling of interleukin-8 with its receptor. J Biol Chem271: 31202-31209. [PMID:8940121]

83. Wuyts A, Proost P, Lenaerts JP, Ben-Baruch A, Van Damme J, Wang JM. (1998) Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial-cell-derived neutrophil attractant-78. Eur J Biochem255: 67-73. [PMID:9692902]

84. Wuyts A, Van Osselaer N, Haelens A, Samson I, Herdewijn P, Ben-Baruch A, Oppenheim JJ, Proost P, Van Damme J. (1997) Characterization of synthetic human granulocyte chemotactic protein 2: usage of chemokine receptors CXCR1 and CXCR2 and in vivo inflammatory properties. Biochemistry36: 2716-2723. [PMID:9054580]

85. Zernecke A, Weber KS, Erwig LP, Kluth DC, Schröppel B, Rees AJ, Weber C. (2001) Combinatorial model of chemokine involvement in glomerular monocyte recruitment: role of CXC chemokine receptor 2 in infiltration during nephrotoxic nephritis. J Immunol166: 5755-5762. [PMID:11313419]

86. Zhang Z, Cherryholmes G, Chang F, Rose DM, Schraufstatter I, Shively JE. (2009) Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils. Eur. J. Immunol.39 (11): 3181-94. [PMID:19750480]

Contributors

Show »

How to cite this page

Adit Ben-Baruch, Israel F. Charo, Rebecca Hills, Richard Horuk, Kouji Matsushima, Philip M. Murphy, Joost J. Oppenheim.
Chemokine receptors: CXCR2. Last modified on 22/02/2017. Accessed on 29/03/2017. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=69.