Top ▲

M4 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 16

Nomenclature: M4 receptor

Family: Acetylcholine receptors (muscarinic)

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 479 11p11.2 CHRM4 cholinergic receptor muscarinic 4 3,35
Mouse 7 479 2 50.63 cM Chrm4 cholinergic receptor, muscarinic 4 59
Rat 7 478 3q24 Chrm4 cholinergic receptor, muscarinic 4 46,94,108
Previous and Unofficial Names Click here for help
HM3 [75-76] | Chrm-4 | cholinergic receptor, muscarinic 4 | cholinergic receptor
Database Links Click here for help
Specialist databases
GPCRdb acm4_human (Hs), acm4_mouse (Mm)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the M4 muscarinic acetylcholine receptor (M4-mT4L) bound to tiotropium.
PDB Id:  5DSG
Ligand:  tiotropium
Resolution:  2.6Å
Species:  Human
References:  92
Natural/Endogenous Ligands Click here for help
acetylcholine

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]iperoxo Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Agonist 10.1 pKd 82
pKd 10.1 (Kd 8x10-11 M) [82]
[3H]acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Agonist 8.2 pKd 52
pKd 8.2 (Kd 6.3x10-9 M) [52]
pentylthio-TZTP Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.7 pKi 44
pKi 8.7 [44]
NNC 11-1585 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.6 pKi 17
pKi 8.6 [17]
NNC 11-1607 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.1 pKi 17
pKi 8.1 [17]
xanomeline Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 7.4 – 7.7 pKi 61,77,102,109
pKi 7.4 – 7.7 [61,77,102,109]
NNC 11-1314 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.3 pKi 17
pKi 7.3 [17]
sabcomeline Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 7.2 pKi 109
pKi 7.2 [109]
McN-A-343 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.6 – 6.7 pKi 49
pKi 5.6 – 6.7 [49]
cevimeline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 6.0 pKi 58
pKi 6.0 (Ki 1.012x10-6 M) [58]
Description: Displacement of [3H]QNB from cloned receptor.
arecaidine propargyl ester Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.9 pKi 44
pKi 5.9 [44]
methacholine Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Rn Agonist 5.8 pKi 74,79
pKi 5.8 (Ki 1.6x10-6 M) [74,79]
arecoline Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.5 pKi 44,73,79
pKi 5.5 [44,73,79]
milameline Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 5.5 pKi 109
pKi 5.5 [109]
oxotremorine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.2 pKi 44,79
pKi 5.2 [44,79]
oxotremorine-M Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.2 pKi 44
pKi 5.2 [44]
pilocarpine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Partial agonist 5.2 pKi 44,79
pKi 5.2 [44,79]
acetylcholine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 4.5 – 5.6 pKi 44,47
pKi 4.5 – 5.6 [44,47]
methylfurmethide Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.7 pKi 44
pKi 4.7 [44]
carbachol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 4.3 – 4.9 pKi 44,109
pKi 4.3 – 4.9 [44,109]
furtrethonium Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.3 pKi 44
pKi 4.3 [44]
bethanechol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 4.0 pKi 44,79
pKi 4.0 [44,79]
(+)-aceclidine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.4 pEC50 27
pEC50 5.4 [27]
(-)-aceclidine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 4.8 pEC50 27
pEC50 4.8 [27]
iperoxo Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Agonist - - 82
[82]
View species-specific agonist tables
Agonist Comments
The binding data for McN-A-343 [49] is found on rat striatum.
Please consult references [5,53,79,101] for further details of the activity of some of the ligands in this list.
McN-A-343 and pilocarpine have been found to be partial agonists [53] and full agonists [79,101] at the M4 receptor.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]QNB Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 9.7 – 10.5 pKd 43,75
pKd 9.7 – 10.5 (Kd 2x10-10 – 3.16x10-11 M) [43,75]
[3H]N-methyl scopolamine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 9.9 – 10.2 pKd 11,43-44,48,51,101
pKd 9.9 – 10.2 (Kd 1.4x10-10 – 6x10-11 M) [11,43-44,48,51,101]
[3H]AF DX-384 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.7 pKd 12,64,97
pKd 8.7 [12,64,97]
biperiden Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.6 pKd 2
pKd 8.6 (Kd 2.4x10-9 M) [2]
otenzepad Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.0 pKd 28
pKd 7.0 [28]
tiotropium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 10.2 – 10.6 pKi 89,91
pKi 10.2 – 10.6 [89,91]
3-quinuclidinyl-benzilate Small molecule or natural product Hs Antagonist 10.4 pKi 10
pKi 10.4 (Ki 4x10-11 M) [10]
umeclidinium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 10.3 pKi 81
pKi 10.3 [81]
propantheline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 10.2 pKi 42
pKi 10.2 [42]
aclidinium Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 10.0 pKi 91
pKi 10.0 [91]
oxyphenonium Small molecule or natural product Approved drug Hs Antagonist 9.8 pKi 10
pKi 9.8 (Ki 1.45x10-10 M) [10]
atropine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 9.7 pKi 46
pKi 9.7 [46]
glycopyrrolate Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.1 – 10.0 pKi 87,89
pKi 9.1 – 10.0 [87,89]
AE9C90CB Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.5 pKi 84
pKi 9.5 [84]
mepenzolic acid Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.4 pKi 10
pKi 9.4 (Ki 3.6x10-10 M) [10]
scopolamine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 9.1 – 9.5 pKi 2,42
pKi 9.1 – 9.5 [2,42]
revefenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 9.3 pKi 39
pKi 9.3 (Ki 5.5x10-10 M) [39]
Description: Determined from a radioligand binding assay using membranes from CHO‐K1 cells expressing the hM4 receptor, and displacement of [3H]NMS tracer.
ipratropium Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 9.2 pKi 40
pKi 9.2 [40]
4-DAMP Small molecule or natural product Click here for species-specific activity table Rn Antagonist 9.1 pKi 46
pKi 9.1 [46]
atropine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.7 – 9.5 pKi 19,40,42,76
pKi 8.7 – 9.5 [19,40,42,76]
4-DAMP Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.9 pKi 25
pKi 8.9 [25]
oxybutynin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.4 – 8.7 pKi 24,84
pKi 8.4 – 8.7 [24,84]
muscarinic toxin 3 Peptide Click here for species-specific activity table Hs Antagonist 8.5 pKi 10
pKi 8.5 (Ki 3x10-9 M) [10]
silahexocyclium Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.5 pKi 7
pKi 8.5 [7]
tolterodine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.3 – 8.4 pKi 32,84
pKi 8.3 – 8.4 [32,84]
UH-AH 37 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.3 – 8.4 pKi 32,107
pKi 8.3 – 8.4 [32,107]
hexocyclium Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.3 pKi 7
pKi 8.3 [7]
dicyclomine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.3 pKi 10
pKi 8.3 (Ki 5x10-9 M) [10]
PCS1055 Small molecule or natural product Hs Antagonist 8.2 pKi 19
pKi 8.2 [19]
himbacine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.9 – 8.4 pKi 10,25,45,63
pKi 8.4 (Ki 4x10-9 M) [10]
pKi 7.9 – 8.2 [25,45,63]
amitriptyline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.1 pKi 85
pKi 8.1 (Ki 7.2x10-9 M) [85]
AQ-RA 741 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.8 – 8.2 pKi 25,32
pKi 7.8 – 8.2 [25,32]
tripitramine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.9 pKi 65
pKi 7.9 [65]
darifenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.3 – 8.1 pKi 32,40,84
pKi 7.3 – 8.1 [32,40,84]
hexahydrosiladifenidol Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.7 pKi 46
pKi 7.7 [46]
AFDX384 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.3 – 8.0 pKi 19,25
pKi 7.3 – 8.0 [19,25]
pirenzepine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.0 – 8.1 pKi 10,25,38,42,45,107
pKi 8.1 (Ki 8x10-9 M) [10]
pKi 7.0 – 7.6 [25,38,42,45,107]
PD 102807 Small molecule or natural product Hs Antagonist 7.4 – 7.6 pKi 19,70
pKi 7.4 – 7.6 [19,70]
p-F-HHSiD Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 – 7.5 pKi 28,42
pKi 7.1 – 7.5 [28,42]
dosulepin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.2 pKi 85
pKi 7.2 (Ki 6.1x10-8 M) [85]
hexahydrosiladifenidol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.5 – 7.7 pKi 7,28
pKi 6.5 – 7.7 [7,28]
muscarinic toxin 1 Peptide Click here for species-specific activity table Hs Antagonist 7.1 pKi 36
pKi 7.1 [36]
hexahydrodifenidol Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 pKi 7
pKi 7.1 [7]
pirenzepine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 7.1 pKi 46
pKi 7.1 [46]
methoctramine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.6 – 7.5 pKi 7,25,28,38
pKi 6.6 – 7.5 [7,25,28,38]
tropicamide Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.9 pKi 10
pKi 6.9 [10]
solifenacin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.8 pKi 84
pKi 6.8 [84]
(S)-dimetindene Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 6.5 pKi 9
pKi 6.5 (Ki 2.951x10-7 M) [9]
Description: Binding to hM4 receptors expressed in CHO cells.
otenzepad Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.5 pKi 46
pKi 6.5 [46]
guanylpirenzepine Small molecule or natural product Click here for species-specific activity table Rn Antagonist 6.2 pKi 100
pKi 6.2 [100]
muscarinic toxin 2 Peptide Click here for species-specific activity table Hs Antagonist 5.9 pKi 36
pKi 5.9 [36]
VU0255035 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.9 pKi 83
pKi 5.9 [83]
lithocholylcholine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.3 pKi 14
pKi 5.3 [14]
muscarinic toxin 7 Peptide Click here for species-specific activity table Hs Antagonist <5.0 pKi 66
pKi <5.0 [66]
ML381 Small molecule or natural product Click here for species-specific activity table Hs Antagonist >4.5 pKi 31
pKi >4.5 (Ki <3x10-5 M) [31]
View species-specific antagonist tables
Antagonist Comments
Biperiden is an approved drug antagonist of muscarinic acetylcholine receptors. We have tagged the M1 subtype as the drug's primary target as affinity is 10-fold higher at this receptor subtype [2].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
LY2033298 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Positive 4.9 – 5.5 pKB 13,88
pKB 4.9 – 5.5 [13,88]
KT 5720 Small molecule or natural product Click here for species-specific activity table Hs Neutral 6.4 pKd 55
pKd 6.4 [55]
WIN 51,708 Small molecule or natural product Click here for species-specific activity table Hs Negative 6.2 pKd 56
pKd 6.2 [56]
WIN 62,577 Small molecule or natural product Click here for species-specific activity table Hs Negative 5.9 pKd 56
pKd 5.9 [56]
Gö 7874 Small molecule or natural product Click here for species-specific activity table Hs Neutral 5.7 pKd 55
pKd 5.7 [55]
alcuronium Small molecule or natural product Click here for species-specific activity table Hs Negative 5.6 pKd 44
pKd 5.6 [44]
LY2119620 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Positive 5.5 pKd 20
pKd 5.5 [20]
brucine Small molecule or natural product Click here for species-specific activity table Hs Negative 4.7 – 6.0 pKd 44,54
pKd 4.7 – 6.0 [44,54]
staurosporine Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Neutral 5.3 pKd 55
pKd 5.3 [55]
strychnine Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Positive 4.8 – 5.0 pKd 44,51
pKd 4.8 – 5.0 [44,51]
vinburnine Small molecule or natural product Click here for species-specific activity table Hs Positive 4.6 pKd 44
pKd 4.6 [44]
N-benzyl brucine Small molecule or natural product Click here for species-specific activity table Hs Negative 4.5 pKd 54
pKd 4.5 [54]
N-benzyl brucine Small molecule or natural product Click here for species-specific activity table Hs Neutral 4.5 pKd 54
pKd 4.5 [54]
N-chloromethyl-brucine Small molecule or natural product Click here for species-specific activity table Hs Neutral 4.4 pKd 54
pKd 4.4 [54]
vincamine Small molecule or natural product Click here for species-specific activity table Hs Positive 4.2 pKd 44
pKd 4.2 [44]
thiochrome Small molecule or natural product Click here for species-specific activity table Hs Positive 4.0 pKd 52
pKd 4.0 [52]
brucine N-oxide Small molecule or natural product Click here for species-specific activity table Hs Neutral 3.6 pKd 54
pKd 3.6 [54]
brucine N-oxide Small molecule or natural product Click here for species-specific activity table Hs Positive 3.6 pKd 54
pKd 3.6 [54]
muscarinic toxin 3 Peptide Click here for species-specific activity table Hs Negative 8.7 pKi 45,69
pKi 8.7 [45,69]
VU0467154 Small molecule or natural product Ligand has a PDB structure Rn Positive 7.8 pEC50 6
pEC50 7.8 (EC50 1.78x10-8 M) [6]
VU0152100 Small molecule or natural product Rn Positive 6.4 pEC50 4
pEC50 6.4 (EC50 3.8x10-7 M) [4]
VU0152099 Small molecule or natural product Rn Positive 6.4 pEC50 4
pEC50 6.4 (EC50 4.03x10-7 M) [4]
VU0467154 Small molecule or natural product Ligand has a PDB structure Hs Positive 6.2 pEC50 6
pEC50 6.2 (EC50 6.31x10-7 M) [6]
Description: Potentiation of ACh response at human receptor
VU0467154 Small molecule or natural product Ligand has a PDB structure Monkey Positive 6.0 pEC50 6
pEC50 6.0 (EC50 1x10-6 M) [6]
VU0010010 Small molecule or natural product Hs Positive - - 18
[18]
View species-specific allosteric modulator tables
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
References:  62,75
Tissue Distribution Click here for help
Esophageal smooth muscle.
Species:  Human
Technique:  Radioligand binding.
References:  78
Bladder.
Species:  Human
Technique:  RT-PCR.
References:  95
CNS: forebrain.
Species:  Mouse
Technique:  immunocytochemistry.
References:  41
CNS: cerebral cortex, corpus striatum, thalamus, hypothalamus, pons-medulla.
Species:  Mouse
Technique:  Radioligand binding.
References:  67
Heart: intrinsic neurons.
Species:  Rat
Technique:  in situ hybridisation.
References:  37
CNS: basal forebrain, pedunculopontine and laterodorsal tegmental nuclei.
Species:  Rat
Technique:  in situ hybridisation.
References:  98
CNS: cerebral cortex, hippocampus, corpus striatum, olfactory tubercle, midbrain, pons-medulla, cerebellum.
Species:  Rat
Technique:  Immunoprecipitation.
References:  110
CNS: caudate putamen, nucleus accumbens, olfactory tubercle.
Species:  Rat
Technique:  in situ hybridisation.
References:  103
CNS: hippocampus.
Species:  Rat
Technique:  immunocytochemistry.
References:  57
Vestibular system.
Species:  Rat
Technique:  RT-PCR.
References:  99
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of IP1 levels in murine fibroblast cells (B82) transfected with the rat M4 receptor.
Species:  Rat
Tissue:  B82 cells.
Response measured:  Stimulation of IP1 accumulation.
References:  46
Measurement of cAMP levels in murine fibroblast cells (B82) transfected with the rat M4 receptor.
Species:  Rat
Tissue:  B82 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  46
Measurement of cAMP levels in JEG-3 cells transfected with the human M2 receptor, using a cAMP response element (CRE)-coupled luciferase construct as the reporter.
Species:  Human
Tissue:  JEG-3 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  62
Measurement of cAMP levels in CHO cells transfected with the human M4 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  17
Measurement of ERK1/2 activity in COS-7 cells transfected with the human M4 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Increase in ERK1/2 activity.
References:  80
Measurement of Ca2+ channel activity in rat superior cervical ganglion neurons endogenously expressing the M4 receptor.
Species:  Rat
Tissue:  Superior cervical ganglion neurons.
Response measured:  Inhibition of Ca2+ channels.
References:  29-30
Measurement of AC activity in rat striatal homogenates endogenously expressing the M4 receptor.
Species:  Rat
Tissue:  Corpus striatum.
Response measured:  Inhibition of AC activity.
References:  26,68
Measurement of the effects of a ligand on the level, or rate, of binding of GTPγ35S to membranes.
Species:  Human
Tissue:  CHO cells.
Response measured:  The binding of GTPγ35S to G proteins coupled to the receptor.
References:  1,50-53,55-56
Measurement of the effects of a ligand on the rate of hydrolysis of GTP by G proteins in membranes.
Species:  Human
Tissue:  CHO cell membranes.
Response measured:  Generation of 32Pi from [γ-32P]GTP.
References:  1,53
Physiological Functions Click here for help
Autoreceptor: modulation of acetylcholine release.
Species:  Rat
Tissue:  Urinary bladder.
References:  21
Autoreceptor: modulation of acetylcholine release.
Species:  Human
Tissue:  Urinary bladder detrusor muscle.
References:  22
Contraction.
Species:  Rat
Tissue:  Urinary bladder detrusor muscle.
References:  72
Inhibition of dopaminergic (D1 receptor) signalling.
Species:  Rat
Tissue:  Nucleus accumbens.
References:  71
Cell migration.
Species:  Human
Tissue:  Keratinocytes.
References:  16
Physiological Consequences of Altering Gene Expression Click here for help
Hippocampal, cortical and striatal brain slices from M2/M4 double knockout mice lack muscarinic agonist-induced inhibition of acetylcholine release that is seen with wild-type brain slices.
Striatal slices from M4 receptor single knockout mice exhibit the same loss of inhibition of acetylcholine release, but the inhibition remains intact in the hippocampal and cortical slices.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  111
Smooth muscle preparations (gallbladder) from M4 receptor knockout mice exhibit reduced agonist-induced contractions compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  86
Vas deferens tissue from M4 receptor knockout mice exhibits reduced agonist-induced inhibition of noradrenaline release compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  93
Striatal slices from M4 receptor knockout mice exhibit abolished agonist-induced potentiation of dopamine release.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  112
M4 receptor knockout mice exhibit enhanced dopaminergic locomotor activity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  33-34
Epidermal keratinocytes from M4 receptor knockout mice exhibit reduced agonist-induced migration compared to keratinocytes from wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  16
M4 receptor knockout mice exhibit increased basal hippocampal acetylcholine levels compared to wild-type mice.
M2/M4 double knockout mice exhibit a further increase in basal acetylcholine levels.
In addition, M4 and M2/M4 knockout mice exhibit an increase in hippocampal acetylcholine release in response to a novel environment.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  96
M4 receptor knockout mice exhibit a significantly reduced wound epithelialisation rate compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  15
Smooth muscle from the small intestine of M4 receptor knockout mice do not exhibit any alteration in EFS-induced acetylcholine release.
However, M2/M4 double knockout mice exhibit an increase in acetylcholine release.
Overall, it is thought that both M2 and M4 receptors mediate the autoinhibitory control of acetylcholine release in the mouse ileum, and that each can compensate for loss of the other.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  90
M4 receptor knockout mice exhibit an increase in anxiolysis compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  23
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Chrm4tm1Minm Chrm4tm1Minm/Chrm4tm1Minm
involves: 129X1/SvJ * DBA/2J
MGI:88399  MP:0009745 abnormal behavioral response to xenobiotic PMID: 12729838 
Chrm2tm1Jwe|Chrm4tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S4/SvJae * 129S6/SvEvTac * CF-1
MGI:88397  MGI:88399  MP:0004994 abnormal brain wave pattern PMID: 16110248 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88399  MP:0002206 abnormal CNS synaptic transmission PMID: 15919709 
Chrm1tm1Jwe|Chrm4tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MGI:88399  MP:0002206 abnormal CNS synaptic transmission PMID: 15919709 
Chrm2tm1Jwe|Chrm4tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S4/SvJae * 129S6/SvEvTac * CF-1
MGI:88397  MGI:88399  MP:0002206 abnormal CNS synaptic transmission PMID: 15919709 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88399  MP:0005085 abnormal gallbladder physiology PMID: 11961069 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88399  MP:0001629 abnormal heart rate PMID: 10688600 
Chrm4tm1Minm Chrm4tm1Minm/Chrm4tm1Minm
involves: 129X1/SvJ * DBA/2J
MGI:88399  MP:0001392 abnormal locomotor activity PMID: 12729838 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0004811 abnormal neuron physiology PMID: 20147565 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
B6.129S6-Chrm4
MGI:88399  MP:0001529 abnormal vocalization PMID: 18382674 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0002822 catalepsy PMID: 20147565 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88399  MP:0001262 decreased body weight PMID: 10468635 
Chrm1tm1Jwe|Chrm4tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MGI:88399  MP:0002917 decreased synaptic depression PMID: 15919709 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0009749 enhanced behavioral response to addictive substance PMID: 20147565 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0009754 enhanced behavioral response to cocaine PMID: 20147565 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0009746 enhanced behavioral response to xenobiotic PMID: 20147565 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88399  MP:0001399 hyperactivity PMID: 10468635 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0001399 hyperactivity PMID: 20147565 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0009747 impaired behavioral response to xenobiotic PMID: 20147565 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88399  MP:0000740 impaired smooth muscle contractility PMID: 11961069 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0001906 increased dopamine level PMID: 20147565 
General Comments
For reviews on muscarinic receptor knockout mice see [8,60,104-106].

References

Show »

1. Birdsall NJ, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M. (1999) Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: functional studies. Mol Pharmacol, 55 (4): 778-86. [PMID:10101037]

2. Bolden C, Cusack B, Richelson E. (1992) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J Pharmacol Exp Ther, 260 (2): 576-80. [PMID:1346637]

3. Bonner TI, Modi WS, Seuanez HN, O'Brien SJ. (1991) Chromosomal mapping of the five human genes encoding muscarinic acetylcholine receptors. Cytogenet Cell Genet, 58: 1850-1851.

4. Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, Breininger ML, Gentry PR, Yin H, Jadhav SB et al.. (2008) Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther, 327 (3): 941-53. [PMID:18772318]

5. Bräuner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P. (1996) Functional partial agonism at cloned human muscarinic acetylcholine receptors. Eur J Pharmacol, 313 (1-2): 145-50. [PMID:8905341]

6. Bubser M, Bridges TM, Dencker D, Gould RW, Grannan M, Noetzel MJ, Lamsal A, Niswender CM, Daniels JS, Poslusney MS et al.. (2014) Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents. ACS Chem Neurosci, 5 (10): 920-42. [PMID:25137629]

7. Buckley NJ, Bonner TI, Buckley CM, Brann MR. (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol, 35 (4): 469-76. [PMID:2704370]

8. Bymaster FP, McKinzie DL, Felder CC, Wess J. (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res, 28 (3-4): 437-42. [PMID:12675128]

9. Böhme TM, Keim C, Kreutzmann K, Linder M, Dingermann T, Dannhardt G, Mutschler E, Lambrecht G. (2003) Structure-activity relationships of dimethindene derivatives as new M2-selective muscarinic receptor antagonists. J Med Chem, 46 (5): 856-67. [PMID:12593665]

10. Carr BJ, Mihara K, Ramachandran R, Saifeddine M, Nathanson NM, Stell WK, Hollenberg MD. (2018) Myopia-Inhibiting Concentrations of Muscarinic Receptor Antagonists Block Activation of Alpha2A-Adrenoceptors In Vitro. Invest Ophthalmol Vis Sci, 59 (7): 2778-2791. [PMID:29860464]

11. Cembala TM, Sherwin JD, Tidmarsh MD, Appadu BL, Lambert DG. (1998) Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 125 (5): 1088-94. [PMID:9846649]

12. Ch'ng SS, Walker AJ, McCarthy M, Le TK, Thomas N, Gibbons A, Udawela M, Kusljic S, Dean B, Gogos A. (2020) The Impact of Removal of Ovarian Hormones on Cholinergic Muscarinic Receptors: Examining Prepulse Inhibition and Receptor Binding. Brain Sci, 10 (2). [PMID:32079174]

13. Chan WY, McKinzie DL, Bose S, Mitchell SN, Witkin JM, Thompson RC, Christopoulos A, Lazareno S, Birdsall NJ, Bymaster FP et al.. (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA, 105 (31): 10978-83. [PMID:18678919]

14. Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP. (2002) Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther, 303 (1): 29-35. [PMID:12235229]

15. Chernyavsky AI, Arredondo J, Wess J, Karlsson E, Grando SA. (2004) Novel signaling pathways mediating reciprocal control of keratinocyte migration and wound epithelialization through M3 and M4 muscarinic receptors. J Cell Biol, 166 (2): 261-72. [PMID:15263021]

16. Chernyavsky AI, Nguyen VT, Arredondo J, Ndoye A, Zia S, Wess J, Grando SA. (2003) The M4 muscarinic receptor-selective effects on keratinocyte crawling locomotion. Life Sci, 72 (18-19): 2069-73. [PMID:12628458]

17. Christopoulos A, Grant MK, Ayoubzadeh N, Kim ON, Sauerberg P, Jeppesen L, El-Fakahany EE. (2001) Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J Pharmacol Exp Ther, 298 (3): 1260-8. [PMID:11504829]

18. Conn PJ, Jones CK, Lindsley CW. (2009) Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci, 30 (3): 148-55. [PMID:19201489]

19. Croy CH, Chan WY, Castetter AM, Watt ML, Quets AT, Felder CC. (2016) Characterization of PCS1055, a novel muscarinic M4 receptor antagonist. Eur J Pharmacol, 782: 70-6. [PMID:27085897]

20. Croy CH, Schober DA, Xiao H, Quets A, Christopoulos A, Felder CC. (2014) Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors. Mol Pharmacol, 86 (1): 106-15. [PMID:24807965]

21. D'Agostino G, Barbieri A, Chiossa E, Tonini M. (1997) M4 muscarinic autoreceptor-mediated inhibition of -3H-acetylcholine release in the rat isolated urinary bladder. J Pharmacol Exp Ther, 283 (2): 750-6. [PMID:9353395]

22. D'Agostino G, Bolognesi ML, Lucchelli A, Vicini D, Balestra B, Spelta V, Melchiorre C, Tonini M. (2000) Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 receptor subtype. Br J Pharmacol, 129 (3): 493-500. [PMID:10711347]

23. Degroot A, Nomikos GG. (2006) Genetic deletion of muscarinic M4 receptors is anxiolytic in the shock-probe burying model. Eur J Pharmacol, 531 (1-3): 183-6. [PMID:16455072]

24. Del Bello F, Barocelli E, Bertoni S, Bonifazi A, Camalli M, Campi G, Giannella M, Matucci R, Nesi M, Pigini M et al.. (2012) 1,4-dioxane, a suitable scaffold for the development of novel M₃ muscarinic receptor antagonists. J Med Chem, 55 (4): 1783-7. [PMID:22243489]

25. Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther, 256 (2): 727-33. [PMID:1994002]

26. Ehlert FJ, Delen FM, Yun SH, Friedman DJ, Self DW. (1989) Coupling of subtypes of the muscarinic receptor to adenylate cyclase in the corpus striatum and heart. J Pharmacol Exp Ther, 251 (2): 660-71. [PMID:2810116]

27. Ehlert FJ, Griffin MT, Glidden PF. (1996) The interaction of the enantiomers of aceclidine with subtypes of the muscarinic receptor. J Pharmacol Exp Ther, 279 (3): 1335-44. [PMID:8968358]

28. Esqueda EE, Gerstin Jr EH, Griffin MT, Ehlert FJ. (1996) Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung. Biochem Pharmacol, 52 (4): 643-58. [PMID:8759038]

29. Fernandez-Fernandez JM, Wanaverbecq N, Halley P, Caulfield MP, Brown DA. (1999) Selective activation of heterologously expressed G protein-gated K+ channels by M2 muscarinic receptors in rat sympathetic neurones. J Physiol (Lond.), 515 ( Pt 3): 631-7. [PMID:10066893]

30. Fernández-Fernández JM, Abogadie FC, Milligan G, Delmas P, Brown DA. (2001) Multiple pertussis toxin-sensitive G-proteins can couple receptors to GIRK channels in rat sympathetic neurons when expressed heterologously, but only native G(i)-proteins do so in situ. Eur J Neurosci, 14 (2): 283-92. [PMID:11553279]

31. Gentry PR, Kokubo M, Bridges TM, Cho HP, Smith E, Chase P, Hodder PS, Utley TJ, Rajapakse A, Byers F et al.. (2014) Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe. ChemMedChem, 9 (8): 1677-82. [PMID:24692176]

32. Gillberg PG, Sundquist S, Nilvebrant L. (1998) Comparison of the in vitro and in vivo profiles of tolterodine with those of subtype-selective muscarinic receptor antagonists. Eur J Pharmacol, 349 (2-3): 285-92. [PMID:9671109]

33. Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng C, Wess J. (1999) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M(4) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA, 96 (18): 10483-8. [PMID:10468635]

34. Gomeza J, Zhang L, Kostenis E, Felder CC, Bymaster FP, Brodkin J, Shannon H, Xia B, Duttaroy A, Deng CX et al.. (2001) Generation and pharmacological analysis of M2 and M4 muscarinic receptor knockout mice. Life Sci, 68 (22-23): 2457-66. [PMID:11392613]

35. Grewal RP, Martinez M, Hoehe M, Bonner TI, Gershon ES, Detera-Wadleigh S. (1992) Genetic linkage mapping of the m4 human muscarinic receptor (CHRM4). Genomics, 13 (1): 239-40. [PMID:1577490]

36. Harvey AL, Kornisiuk E, Bradley KN, Cerveñansky C, Durán R, Adrover M, Sánchez G, Jerusalinsky D. (2002) Effects of muscarinic toxins MT1 and MT2 from green mamba on different muscarinic cholinoceptors. Neurochem Res, 27 (11): 1543-54. [PMID:12512959]

37. Hassall CJ, Stanford SC, Burnstock G, Buckley NJ. (1993) Co-expression of four muscarinic receptor genes by the intrinsic neurons of the rat and guinea-pig heart. Neuroscience, 56 (4): 1041-8. [PMID:8284034]

38. Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM. (1997) Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol, 120 (8): 1409-18. [PMID:9113359]

39. Hegde SS, Pulido-Rios MT, Luttmann MA, Foley JJ, Hunsberger GE, Steinfeld T, Lee T, Ji Y, Mammen MM, Jasper JR. (2018) Pharmacological properties of revefenacin (TD-4208), a novel, nebulized long-acting, and lung selective muscarinic antagonist, at human recombinant muscarinic receptors and in rat, guinea pig, and human isolated airway tissues. Pharmacol Res Perspect, 6 (3): e00400. [PMID:29736245]

40. Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe M, Mitsuya M et al.. (2001) Pharmacological properties of (2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: a novel mucarinic antagonist with M(2)-sparing antagonistic activity. J Pharmacol Exp Ther, 297 (2): 790-7. [PMID:11303071]

41. Hohmann CF, Potter ED, Levey AI. (1995) Development of muscarinic receptor subtypes in the forebrain of the mouse. J Comp Neurol, 358 (1): 88-101. [PMID:7560279]

42. Huang F, Buchwald P, Browne CE, Farag HH, Wu WM, Ji F, Hochhaus G, Bodor N. (2001) Receptor binding studies of soft anticholinergic agents. AAPS PharmSci, 3 (4): E30. [PMID:12049493]

43. Jakubík J, Bacáková L, el-Fakahany EE, Tucek S. (1995) Subtype selectivity of the positive allosteric action of alcuronium at cloned M1-M5 muscarinic acetylcholine receptors. J Pharmacol Exp Ther, 274 (3): 1077-83. [PMID:7562472]

44. Jakubík J, Bacáková L, El-Fakahany EE, Tucek S. (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol, 52 (1): 172-9. [PMID:9224827]

45. Jolkkonen M, van Giersbergen PL, Hellman U, Wernstedt C, Karlsson E. (1994) A toxin from the green mamba Dendroaspis angusticeps: amino acid sequence and selectivity for muscarinic m4 receptors. FEBS Lett, 352 (1): 91-4. [PMID:7925952]

46. Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI. (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci, 51 (12): 955-71. [PMID:1325587]

47. Keov P, Valant C, Devine SM, Lane JR, Scammells PJ, Sexton PM, Christopoulos A. (2013) Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M₁ muscarinic acetylcholine receptor. Mol Pharmacol, 84 (3): 425-37. [PMID:23798605]

48. Khattar SK, Bora RS, Priyadarsiny P, Gupta D, Khanna A, Narayanan KL, Babu V, Chugh A, Saini KS. (2006) High level stable expression of pharmacologically active human M1-M5 muscarinic receptor subtypes in mammalian cells. Biotechnol Lett, 28 (2): 121-9. [PMID:16369696]

49. Lambrecht G, Moser U, Grimm U, Pfaff O, Hermanni U, Hildebrandt C, Waelbroeck M, Christophe J, Mutschler E. (1993) New functionally selective muscarinic agonists. Life Sci, 52 (5-6): 481-8. [PMID:7680092]

50. Lazareno S, Birdsall NJ. (1993) Pharmacological characterization of acetylcholine-stimulated [35S]-GTP gamma S binding mediated by human muscarinic m1-m4 receptors: antagonist studies. Br J Pharmacol, 109 (4): 1120-7. [PMID:8401923]

51. Lazareno S, Birdsall NJ. (1995) Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol, 48 (2): 362-78. [PMID:7651370]

52. Lazareno S, Dolezal V, Popham A, Birdsall NJ. (2004) Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol, 65 (1): 257-66. [PMID:14722259]

53. Lazareno S, Farries T, Birdsall NJ. (1993) Pharmacological characterization of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors m1-m4. Life Sci, 52 (5-6): 449-56. [PMID:8441327]

54. Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJ. (1998) Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies. Mol Pharmacol, 53 (3): 573-89. [PMID:9495826]

55. Lazareno S, Popham A, Birdsall NJ. (2000) Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-(3)H]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol Pharmacol, 58 (1): 194-207. [PMID:10860942]

56. Lazareno S, Popham A, Birdsall NJ. (2002) Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol Pharmacol, 62 (6): 1492-505. [PMID:12435818]

57. Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci, 15 (5 Pt 2): 4077-92. [PMID:7751967]

58. Loudon JM, Bromidge SM, Brown F, Clark MS, Hatcher JP, Hawkins J, Riley GJ, Noy G, Orlek BS. (1997) SB 202026: a novel muscarinic partial agonist with functional selectivity for M1 receptors. J Pharmacol Exp Ther, 283 (3): 1059-68. [PMID:9399977]

59. Matsui M, Araki Y, Karasawa H, Matsubara N, Taketo MM, Seldin MF. (1999) Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet Syst, 74 (1): 15-21. [PMID:10549128]

60. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ. (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci, 75 (25): 2971-81. [PMID:15474550]

61. McDonald JK, van der Westhuizen ET, Pham V, Thompson G, Felder CC, Paul SM, Thal DM, Christopoulos A, Valant C. (2022) Biased Profile of Xanomeline at the Recombinant Human M4 Muscarinic Acetylcholine Receptor. ACS Chem Neurosci, 13 (8): 1206-1218. [PMID:35380782]

62. Migeon JC, Thomas SL, Nathanson NM. (1995) Differential coupling of m2 and m4 muscarinic receptors to inhibition of adenylyl cyclase by Gi alpha and G(o)alpha subunits. J Biol Chem, 270 (27): 16070-4. [PMID:7608168]

63. Miller JH, Aagaard PJ, Gibson VA, McKinney M. (1992) Binding and functional selectivity of himbacine for cloned and neuronal muscarinic receptors. J Pharmacol Exp Ther, 263 (2): 663-7. [PMID:1331410]

64. Miller JH, Gibson VA, McKinney M. (1991) Binding of [3H]AF-DX 384 to cloned and native muscarinic receptors. J Pharmacol Exp Ther, 259 (2): 601-7. [PMID:1941609]

65. Minarini A, Marucci G, Bellucci C, Giorgi G, Tumiatti V, Bolognesi ML, Matera R, Rosini M, Melchiorre C. (2008) Design, synthesis, and biological evaluation of pirenzepine analogs bearing a 1,2-cyclohexanediamine and perhydroquinoxaline units in exchange for the piperazine ring as antimuscarinics. Bioorg Med Chem, 16 (15): 7311-20. [PMID:18595721]

66. Näsman J, Jolkkonen M, Ammoun S, Karlsson E, Akerman KE. (2000) Recombinant expression of a selective blocker of M(1) muscarinic receptors. Biochem Biophys Res Commun, 271 (2): 435-9. [PMID:10799315]

67. Oki T, Takagi Y, Inagaki S, Taketo MM, Manabe T, Matsui M, Yamada S. (2005) Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res, 133 (1): 6-11. [PMID:15661360]

68. Olianas MC, Adem A, Karlsson E, Onali P. (1996) Rat striatal muscarinic receptors coupled to the inhibition of adenylyl cyclase activity: potent block by the selective m4 ligand muscarinic toxin 3 (MT3). Br J Pharmacol, 118 (2): 283-8. [PMID:8735628]

69. Olianas MC, Ingianni A, Maullu C, Adem A, Karlsson E, Onali P. (1999) Selectivity profile of muscarinic toxin 3 in functional assays of cloned and native receptors. J Pharmacol Exp Ther, 288 (1): 164-70. [PMID:9862767]

70. Olianas MC, Onali P. (1999) PD 102807, a novel muscarinic M4 receptor antagonist, discriminates between striatal and cortical muscarinic receptors coupled to cyclic AMP. Life Sci, 65 (21): 2233-40. [PMID:10576595]

71. Onali P, Olianas MC. (2002) Muscarinic M4 receptor inhibition of dopamine D1-like receptor signalling in rat nucleus accumbens. Eur J Pharmacol, 448 (2-3): 105-11. [PMID:12144929]

72. Orman B, Sterin-Borda L, Reina S, Borda ES. (2005) Neuronal nitric oxide synthase activity in rat urinary bladder detrusor: participation in M3 and M4 muscarinic receptor function. Auton Autacoid Pharmacol, 25 (3): 93-100. [PMID:15955028]

73. Ozenil M, Pacher K, Balber T, Vraka C, Roller A, Holzer W, Spreitzer H, Mitterhauser M, Wadsak W, Hacker M et al.. (2020) Enhanced arecoline derivatives as muscarinic acetylcholine receptor M1 ligands for potential application as PET radiotracers. Eur J Med Chem, 204: 112623. [PMID:32717485]

74. Pei XF, Gupta TH, Badio B, Padgett WL, Daly JW. (1998) 6beta-Acetoxynortropane: a potent muscarinic agonist with apparent selectivity toward M2-receptors. J Med Chem, 41 (12): 2047-55. [PMID:9622546]

75. Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ. (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature, 334 (6181): 434-7. [PMID:2841607]

76. Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ. (1987) Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J, 6 (13): 3923-9. [PMID:3443095]

77. Powers AS, Pham V, Burger WAC, Thompson G, Laloudakis Y, Barnes NW, Sexton PM, Paul SM, Christopoulos A, Thal DM et al.. (2023) Structural basis of efficacy-driven ligand selectivity at GPCRs. Nat Chem Biol, 19 (7): 805-814. [PMID:36782010]

78. Preiksaitis HG, Krysiak PS, Chrones T, Rajgopal V, Laurier LG. (2000) Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J Pharmacol Exp Ther, 295 (3): 879-88. [PMID:11082420]

79. Richards MH, van Giersbergen PL. (1995) Human muscarinic receptors expressed in A9L and CHO cells: activation by full and partial agonists. Br J Pharmacol, 114 (6): 1241-9. [PMID:7620715]

80. Rosenblum K, Futter M, Jones M, Hulme EC, Bliss TV. (2000) ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J Neurosci, 20 (3): 977-85. [PMID:10648702]

81. Salmon M, Luttmann MA, Foley JJ, Buckley PT, Schmidt DB, Burman M, Webb EF, DeHaas CJ, Kotzer CJ, Barrett VJ et al.. (2013) Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases. J Pharmacol Exp Ther, 345 (2): 260-70. [PMID:23435542]

82. Schrage R, Holze J, Klöckner J, Balkow A, Klause AS, Schmitz AL, De Amici M, Kostenis E, Tränkle C, Holzgrabe U et al.. (2014) New insight into active muscarinic receptors with the novel radioagonist [³H]iperoxo. Biochem Pharmacol, 90 (3): 307-19. [PMID:24863257]

83. Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM et al.. (2009) A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol Pharmacol, 76 (2): 356-68. [PMID:19407080]

84. Sinha S, Gupta S, Malhotra S, Krishna NS, Meru AV, Babu V, Bansal V, Garg M, Kumar N, Chugh A et al.. (2010) AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br J Pharmacol, 160 (5): 1119-27. [PMID:20590605]

85. Stanton T, Bolden-Watson C, Cusack B, Richelson E. (1993) Antagonism of the five cloned human muscarinic cholinergic receptors expressed in CHO-K1 cells by antidepressants and antihistaminics. Biochem Pharmacol, 45 (11): 2352-4. [PMID:8100134]

86. Stengel PW, Cohen ML. (2002) Muscarinic receptor knockout mice: role of muscarinic acetylcholine receptors M(2), M(3), and M(4) in carbamylcholine-induced gallbladder contractility. J Pharmacol Exp Ther, 301 (2): 643-50. [PMID:11961069]

87. Stocks MJ, Alcaraz L, Bailey A, Bowers K, Donald D, Edwards H, Hunt F, Kindon N, Pairaudeau G, Theaker J et al.. (2010) The discovery of new spirocyclic muscarinic M3 antagonists. Bioorg Med Chem Lett, 20 (24): 7458-61. [PMID:21036043]

88. Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn PJ. (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci USA, 100 (23): 13674-9. [PMID:14595031]

89. Sykes DA, Dowling MR, Leighton-Davies J, Kent TC, Fawcett L, Renard E, Trifilieff A, Charlton SJ. (2012) The Influence of receptor kinetics on the onset and duration of action and the therapeutic index of NVA237 and tiotropium. J Pharmacol Exp Ther, 343 (2): 520-8. [PMID:22854200]

90. Takeuchi T, Fujinami K, Goto H, Fujita A, Taketo MM, Manabe T, Matsui M, Hata F. (2005) Roles of M2 and M4 muscarinic receptors in regulating acetylcholine release from myenteric neurons of mouse ileum. J Neurophysiol, 93 (5): 2841-8. [PMID:15574798]

91. Tanis SP, Plewe MB, Johnson TW, Butler SL, Dalvie D, DeLisle D, Dress KR, Hu Q, Huang B, Kuehler JE et al.. (2010) Azaindole N-methyl hydroxamic acids as HIV-1 integrase inhibitors-II. The impact of physicochemical properties on ADME and PK. Bioorg Med Chem Lett, 20 (24): 7429-34. [PMID:21036042]

92. Thal DM, Sun B, Feng D, Nawaratne V, Leach K, Felder CC, Bures MG, Evans DA, Weis WI, Bachhawat P et al.. (2016) Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature, 531 (7594): 335-40. [PMID:26958838]

93. Trendelenburg AU, Gomeza J, Klebroff W, Zhou H, Wess J. (2003) Heterogeneity of presynaptic muscarinic receptors mediating inhibition of sympathetic transmitter release: a study with M2- and M4-receptor-deficient mice. Br J Pharmacol, 138 (3): 469-80. [PMID:12569072]

94. Tseng J, Erbe CB, Kwitek AE, Jacob HJ, Popper P, Wackym PA. (2002) Radiation hybrid mapping of five muscarinic acetylcholine receptor subtype genes in Rattus norvegicus. Hear Res, 174 (1-2): 86-92. [PMID:12433399]

95. Tyagi S, Tyagi P, Van-le S, Yoshimura N, Chancellor MB, de Miguel F. (2006) Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol, 176 (4 Pt 1): 1673-8. [PMID:16952712]

96. Tzavara ET, Bymaster FP, Felder CC, Wade M, Gomeza J, Wess J, McKinzie DL, Nomikos GG. (2003) Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Mol Psychiatry, 8 (7): 673-9. [PMID:12874603]

97. Valuskova P, Farar V, Forczek S, Krizova I, Myslivecek J. (2018) Autoradiography of 3H-pirenzepine and 3H-AFDX-384 in Mouse Brain Regions: Possible Insights into M1, M2, and M4 Muscarinic Receptors Distribution. Front Pharmacol, 9: 124. [PMID:29515448]

98. Vilaró MT, Palacios JM, Mengod G. (1994) Multiplicity of muscarinic autoreceptor subtypes? Comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the rat brain. Brain Res Mol Brain Res, 21 (1-2): 30-46. [PMID:8164520]

99. Wackym PA, Chen CT, Ishiyama A, Pettis RM, López IA, Hoffman L. (1996) Muscarinic acetylcholine receptor subtype mRNAs in the human and rat vestibular periphery. Cell Biol Int, 20 (3): 187-92. [PMID:8673067]

100. Waelbroeck M, De Neef P, Domenach V, Vandermeers-Piret MC, Vandermeers A. (1996) Binding of the labelled muscarinic toxin 125I-MT1 to rat brain muscarinic M1 receptors. Eur J Pharmacol, 305 (1-3): 187-92. [PMID:8813552]

101. Wang SZ, el-Fakahany EE. (1993) Application of transfected cell lines in studies of functional receptor subtype selectivity of muscarinic agonists. J Pharmacol Exp Ther, 266 (1): 237-43. [PMID:7687290]

102. Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, Jerman J, Middlemiss DN, Riley GJ, Brown AM. (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol, 125 (7): 1413-20. [PMID:9884068]

103. Weiner DM, Levey AI, Brann MR. (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA, 87 (18): 7050-4. [PMID:2402490]

104. Wess J. (2003) Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci, 24 (8): 414-20. [PMID:12915051]

105. Wess J. (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol, 44: 423-50. [PMID:14744253]

106. Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie L, Felder CC, Lamping KG et al.. (2003) M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Recept Channels, 9 (4): 279-90. [PMID:12893539]

107. Wess J, Lambrecht G, Mutschler E, Brann MR, Dörje F. (1991) Selectivity profile of the novel muscarinic antagonist UH-AH 37 determined by the use of cloned receptors and isolated tissue preparations. Br J Pharmacol, 102 (1): 246-50. [PMID:2043926]

108. Wood IC, Roopra A, Harrington C, Buckley NJ. (1995) Structure of the m4 cholinergic muscarinic receptor gene and its promoter. J Biol Chem, 270 (52): 30933-40. [PMID:8537349]

109. Wood MD, Murkitt KL, Ho M, Watson JM, Brown F, Hunter AJ, Middlemiss DN. (1999) Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry. Br J Pharmacol, 126 (7): 1620-4. [PMID:10323594]

110. Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB. (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol, 43 (2): 149-57. [PMID:8429821]

111. Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J. (2002) Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci, 22 (5): 1709-17. [PMID:11880500]

112. Zhang W, Yamada M, Gomeza J, Basile AS, Wess J. (2002) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J Neurosci, 22 (15): 6347-52. [PMID:12151512]

Contributors

Show »

How to cite this page