M<sub>4</sub> receptor | Acetylcholine receptors (muscarinic) | IUPHAR/BPS Guide to PHARMACOLOGY

Top ▲

M4 receptor

Target not currently curated in GtoImmuPdb

Target id: 16

Nomenclature: M4 receptor

Family: Acetylcholine receptors (muscarinic)

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 479 11p12-p11.2 CHRM4 cholinergic receptor muscarinic 4 3,31
Mouse 7 479 2 E1 Chrm4 cholinergic receptor 53
Rat 7 478 3q32-q35 Chrm4 cholinergic receptor 41,80,93
Previous and Unofficial Names
HM3 [66-67] | Chrm-4 | cholinergic receptor, muscarinic 4 | cholinergic receptor
Database Links
Specialist databases
GPCRDB acm4_human (Hs), acm4_mouse (Mm)
Other databases
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the M4 muscarinic acetylcholine receptor (M4-mT4L) bound to tiotropium.
PDB Id:  5DSG
Ligand:  tiotropium
Resolution:  2.6Å
Species:  Human
References:  78
Natural/Endogenous Ligands
acetylcholine

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Parameter Reference
[3H]acetylcholine Hs Agonist 8.2 pKd 46
pKd 8.2 [46]
pentylthio-TZTP Hs Full agonist 8.7 pKi 39
pKi 8.7 [39]
NNC 11-1585 Hs Full agonist 8.6 pKi 14
pKi 8.6 [14]
NNC 11-1607 Hs Full agonist 8.1 pKi 14
pKi 8.1 [14]
xanomeline Hs Partial agonist 7.4 – 7.7 pKi 87,94
pKi 7.4 – 7.7 [87,94]
NNC 11-1314 Hs Full agonist 7.3 pKi 14
pKi 7.3 [14]
sabcomeline Hs Partial agonist 7.2 pKi 94
pKi 7.2 [94]
McN-A-343 Hs Partial agonist 5.6 – 6.7 pKi 43
pKi 5.6 – 6.7 [43]
cevimeline Hs Agonist 6.0 pKi 52
pKi 6.0 (Ki 1.012x10-6 M) [52]
Description: Displacement of [3H]QNB from cloned receptor.
arecaidine propargyl ester Hs Full agonist 5.9 pKi 39
pKi 5.9 [39]
methacholine Rn Agonist 5.8 pKi 65
pKi 5.8 (Ki 1.6x10-6 M) [65]
arecoline Hs Full agonist 5.5 pKi 39
pKi 5.5 [39]
milameline Hs Partial agonist 5.5 pKi 94
pKi 5.5 [94]
oxotremorine Hs Full agonist 5.2 pKi 39
pKi 5.2 [39]
oxotremorine-M Hs Full agonist 5.2 pKi 39
pKi 5.2 [39]
pilocarpine Hs Partial agonist 5.2 pKi 39
pKi 5.2 [39]
acetylcholine Hs Full agonist 4.5 – 5.6 pKi 11,39,45
pKi 4.5 – 5.6 [11,39,45]
methylfurmethide Hs Full agonist 4.7 pKi 39
pKi 4.7 [39]
carbachol Hs Full agonist 4.3 – 4.9 pKi 39,94
pKi 4.3 – 4.9 [39,94]
furtrethonium Hs Full agonist 4.3 pKi 39
pKi 4.3 [39]
bethanechol Hs Full agonist 4.0 pKi 39
pKi 4.0 [39]
(+)-aceclidine Hs Full agonist 5.4 pEC50 23
pEC50 5.4 [23]
(-)-aceclidine Hs Partial agonist 4.8 pEC50 23
pEC50 4.8 [23]
View species-specific agonist tables
Agonist Comments
The binding data for McN-A-343 [43] is found on rat striatum.
Please consult references [5,47,69,86] for further details of the activity of some of the ligands in this list.
McN-A-343 and pilocarpine have been found to be partial agonists [47] and full agonists [69,86] at the M4 receptor.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Parameter Reference
[3H]QNB Hs Antagonist 9.7 – 10.5 pKd 15,67
pKd 9.7 – 10.5 (Kd 2x10-10 – 3.16x10-11 M) [15,67]
[3H]N-methyl scopolamine Hs Antagonist 9.9 – 10.2 pKd 9,11,15,36,39-40,42,45,62,86
pKd 9.9 – 10.2 (Kd 1.4x10-10 – 6x10-11 M) [9,11,15,36,39-40,42,45,62,86]
biperiden Hs Antagonist 8.6 pKd 2
pKd 8.6 (Kd 2.4x10-9 M) [2]
[3H]AF DX-384 Hs Antagonist 8.6 pKd 57
pKd 8.6 [57]
otenzepad Hs Antagonist 7.0 pKd 24
pKd 7.0 [24]
umeclidinium Hs Antagonist 10.3 pKi 71
pKi 10.3 [71]
propantheline Hs Antagonist 10.2 pKi 38
pKi 10.2 [38]
atropine Rn Antagonist 9.7 pKi 41
pKi 9.7 [41]
scopolamine Hs Antagonist 9.5 pKi 38
pKi 9.5 [38]
AE9C90CB Hs Antagonist 9.5 pKi 73
pKi 9.5 [73]
revefenacin Hs Antagonist 9.3 pKi 35
pKi 9.3 (Ki 5.5x10-10 M) [35]
Description: Determined from a radioligand binding assay using membranes from CHO‐K1 cells expressing the hM4 receptor, and displacement of [3H]NMS tracer.
ipratropium Hs Antagonist 9.2 pKi 36
pKi 9.2 [36]
4-DAMP Rn Antagonist 9.1 pKi 41
pKi 9.1 [41]
atropine Hs Antagonist 8.7 – 9.5 pKi 6,36,38,67
pKi 8.7 – 9.5 [6,36,38,67]
4-DAMP Hs Antagonist 8.9 pKi 21
pKi 8.9 [21]
oxybutynin Hs Antagonist 8.7 pKi 73
pKi 8.7 [73]
silahexocyclium Hs Antagonist 8.5 pKi 6
pKi 8.5 [6]
tolterodine Hs Antagonist 8.3 – 8.4 pKi 28,73
pKi 8.3 – 8.4 [28,73]
UH-AH 37 Hs Antagonist 8.3 – 8.4 pKi 28,92
pKi 8.3 – 8.4 [28,92]
hexocyclium Hs Antagonist 8.3 pKi 6
pKi 8.3 [6]
amitriptyline Hs Antagonist 8.1 pKi 74
pKi 8.1 (Ki 7.2x10-9 M) [74]
himbacine Hs Antagonist 7.9 – 8.2 pKi 21,40,56
pKi 7.9 – 8.2 [21,40,56]
AFDX384 Hs Antagonist 8.0 pKi 21
pKi 8.0 [21]
AQ-RA 741 Hs Antagonist 7.8 – 8.2 pKi 21,28
pKi 7.8 – 8.2 [21,28]
tripitramine Hs Antagonist 7.9 pKi 58
pKi 7.9 [58]
darifenacin Hs Antagonist 7.3 – 8.1 pKi 28,34,36,73
pKi 7.3 – 8.1 [28,34,36,73]
hexahydrosiladifenidol Rn Antagonist 7.7 pKi 41
pKi 7.7 [41]
p-F-HHSiD Hs Antagonist 7.1 – 7.5 pKi 24,38
pKi 7.1 – 7.5 [24,38]
pirenzepine Hs Antagonist 7.0 – 7.6 pKi 21,34,38,40,92
pKi 7.0 – 7.6 [21,34,38,40,92]
dosulepin Hs Antagonist 7.2 pKi 74
pKi 7.2 (Ki 6.1x10-8 M) [74]
hexahydrosiladifenidol Hs Antagonist 6.5 – 7.7 pKi 6,24
pKi 6.5 – 7.7 [6,24]
muscarinic toxin 1 Hs Antagonist 7.1 pKi 32
pKi 7.1 [32]
hexahydrodifenidol Hs Antagonist 7.1 pKi 6
pKi 7.1 [6]
pirenzepine Rn Antagonist 7.1 pKi 41
pKi 7.1 [41]
methoctramine Hs Antagonist 6.6 – 7.5 pKi 6,21,24,34
pKi 6.6 – 7.5 [6,21,24,34]
solifenacin Hs Antagonist 6.8 pKi 73
pKi 6.8 [73]
(S)-dimetindene Hs Antagonist 6.5 pKi 8
pKi 6.5 (Ki 2.951x10-7 M) [8]
Description: Binding to hM4 receptors expressed in CHO cells.
otenzepad Rn Antagonist 6.5 pKi 41
pKi 6.5 [41]
guanylpirenzepine Rn Antagonist 6.2 pKi 85
pKi 6.2 [85]
muscarinic toxin 2 Hs Antagonist 5.9 pKi 32
pKi 5.9 [32]
VU0255035 Hs Antagonist 5.9 pKi 72
pKi 5.9 [72]
lithocholylcholine Hs Antagonist 5.3 pKi 11
pKi 5.3 [11]
muscarinic toxin 7 Hs Antagonist <5.0 pKi 59
pKi <5.0 [59]
ML381 Hs Antagonist >4.5 pKi 27
pKi >4.5 (Ki <3x10-5 M) [27]
glycopyrrolate Hs Antagonist 9.8 pIC50 76
pIC50 9.8 (IC50 1.58x10-10 M) [76]
Description: Assay uses glycopyrronium bromide
View species-specific antagonist tables
Antagonist Comments
Biperiden is an approved drug antagonist of muscarinic acetylcholine receptors. We have tagged the M1 subtype as the drug's primary target as affinity is 10-fold higher at this receptor subtype [2].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Parameter Reference
KT 5720 Hs Neutral 6.4 pKd 49
pKd 6.4 [49]
WIN 51,708 Hs Negative 6.2 pKd 50
pKd 6.2 [50]
WIN 62,577 Hs Negative 5.9 pKd 50
pKd 5.9 [50]
Gö 7874 Hs Neutral 5.7 pKd 49
pKd 5.7 [49]
LY2119620 Hs Positive 5.7 pKd 17
pKd 5.7 [17]
alcuronium Hs Negative 5.6 pKd 39
pKd 5.6 [39]
brucine Hs Negative 4.7 – 6.0 pKd 39,48
pKd 4.7 – 6.0 [39,48]
staurosporine Hs Neutral 5.3 pKd 49
pKd 5.3 [49]
strychnine Hs Positive 4.8 – 5.0 pKd 39,45
pKd 4.8 – 5.0 [39,45]
vinburnine Hs Positive 4.6 pKd 39
pKd 4.6 [39]
N-benzyl brucine Hs Negative 4.5 pKd 48
pKd 4.5 [48]
N-benzyl brucine Hs Neutral 4.5 pKd 48
pKd 4.5 [48]
N-chloromethyl-brucine Hs Neutral 4.4 pKd 48
pKd 4.4 [48]
vincamine Hs Positive 4.2 pKd 39
pKd 4.2 [39]
thiochrome Hs Positive 4.0 pKd 46
pKd 4.0 [46]
brucine N-oxide Hs Neutral 3.6 pKd 48
pKd 3.6 [48]
brucine N-oxide Hs Positive 3.6 pKd 48
pKd 3.6 [48]
muscarinic toxin 3 Hs Negative 8.7 pKi 40,62
pKi 8.7 [40,62]
VU0152100 Rn Positive 6.4 pEC50 4
pEC50 6.4 (EC50 3.8x10-7 M) [4]
VU0152099 Rn Positive 6.4 pEC50 4
pEC50 6.4 (EC50 4.03x10-7 M) [4]
LY2033298 Hs Positive - - 10
[10]
VU0010010 Hs Positive - - 16
[16]
View species-specific allosteric modulator tables
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Adenylate cyclase inhibition
References:  55,66
Tissue Distribution
Esophageal smooth muscle.
Species:  Human
Technique:  Radioligand binding.
References:  68
Bladder.
Species:  Human
Technique:  RT-PCR.
References:  81
CNS: forebrain.
Species:  Mouse
Technique:  immunocytochemistry.
References:  37
CNS: cerebral cortex, corpus striatum, thalamus, hypothalamus, pons-medulla.
Species:  Mouse
Technique:  Radioligand binding.
References:  60
Heart: intrinsic neurons.
Species:  Rat
Technique:  in situ hybridisation.
References:  33
CNS: basal forebrain, pedunculopontine and laterodorsal tegmental nuclei.
Species:  Rat
Technique:  in situ hybridisation.
References:  83
CNS: cerebral cortex, hippocampus, corpus striatum, olfactory tubercle, midbrain, pons-medulla, cerebellum.
Species:  Rat
Technique:  Immunoprecipitation.
References:  95
CNS: caudate putamen, nucleus accumbens, olfactory tubercle.
Species:  Rat
Technique:  in situ hybridisation.
References:  88
CNS: hippocampus.
Species:  Rat
Technique:  immunocytochemistry.
References:  51
Vestibular system.
Species:  Rat
Technique:  RT-PCR.
References:  84
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of IP1 levels in murine fibroblast cells (B82) transfected with the rat M4 receptor.
Species:  Rat
Tissue:  B82 cells.
Response measured:  Stimulation of IP1 accumulation.
References:  41
Measurement of cAMP levels in murine fibroblast cells (B82) transfected with the rat M4 receptor.
Species:  Rat
Tissue:  B82 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  41
Measurement of cAMP levels in JEG-3 cells transfected with the human M2 receptor, using a cAMP response element (CRE)-coupled luciferase construct as the reporter.
Species:  Human
Tissue:  JEG-3 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  55
Measurement of cAMP levels in CHO cells transfected with the human M4 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  14
Measurement of ERK1/2 activity in COS-7 cells transfected with the human M4 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Increase in ERK1/2 activity.
References:  70
Measurement of Ca2+ channel activity in rat superior cervical ganglion neurons endogenously expressing the M4 receptor.
Species:  Rat
Tissue:  Superior cervical ganglion neurons.
Response measured:  Inhibition of Ca2+ channels.
References:  25-26
Measurement of AC activity in rat striatal homogenates endogenously expressing the M4 receptor.
Species:  Rat
Tissue:  Corpus striatum.
Response measured:  Inhibition of AC activity.
References:  22,61
Measurement of the effects of a ligand on the level, or rate, of binding of GTPγ35S to membranes.
Species:  Human
Tissue:  CHO cells.
Response measured:  The binding of GTPγ35S to G proteins coupled to the receptor.
References:  1,44-47,49-50
Measurement of the effects of a ligand on the rate of hydrolysis of GTP by G proteins in membranes.
Species:  Human
Tissue:  CHO cell membranes.
Response measured:  Generation of 32Pi from [γ-32P]GTP.
References:  1,47
Physiological Functions
Autoreceptor: modulation of acetylcholine release.
Species:  Rat
Tissue:  Urinary bladder.
References:  18
Autoreceptor: modulation of acetylcholine release.
Species:  Human
Tissue:  Urinary bladder detrusor muscle.
References:  19
Contraction.
Species:  Rat
Tissue:  Urinary bladder detrusor muscle.
References:  64
Inhibition of dopaminergic (D1 receptor) signalling.
Species:  Rat
Tissue:  Nucleus accumbens.
References:  63
Cell migration.
Species:  Human
Tissue:  Keratinocytes.
References:  13
Physiological Consequences of Altering Gene Expression
M4 receptor knockout mice exhibit an increase in anxiolysis compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  20
Hippocampal, cortical and striatal brain slices from M2/M4 double knockout mice lack muscarinic agonist-induced inhibition of acetylcholine release that is seen with wild-type brain slices.
Striatal slices from M4 receptor single knockout mice exhibit the same loss of inhibition of acetylcholine release, but the inhibition remains intact in the hippocampal and cortical slices.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  96
Smooth muscle preparations (gallbladder) from M4 receptor knockout mice exhibit reduced agonist-induced contractions compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  75
Vas deferens tissue from M4 receptor knockout mice exhibits reduced agonist-induced inhibition of noradrenaline release compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  79
Striatal slices from M4 receptor knockout mice exhibit abolished agonist-induced potentiation of dopamine release.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  97
M4 receptor knockout mice exhibit enhanced dopaminergic locomotor activity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  29-30
Epidermal keratinocytes from M4 receptor knockout mice exhibit reduced agonist-induced migration compared to keratinocytes from wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  13
M4 receptor knockout mice exhibit increased basal hippocampal acetylcholine levels compared to wild-type mice.
M2/M4 double knockout mice exhibit a further increase in basal acetylcholine levels.
In addition, M4 and M2/M4 knockout mice exhibit an increase in hippocampal acetylcholine release in response to a novel environment.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  82
M4 receptor knockout mice exhibit a significantly reduced wound epithelialisation rate compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  12
Smooth muscle from the small intestine of M4 receptor knockout mice do not exhibit any alteration in EFS-induced acetylcholine release.
However, M2/M4 double knockout mice exhibit an increase in acetylcholine release.
Overall, it is thought that both M2 and M4 receptors mediate the autoinhibitory control of acetylcholine release in the mouse ileum, and that each can compensate for loss of the other.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  77
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Chrm4tm1Minm Chrm4tm1Minm/Chrm4tm1Minm
involves: 129X1/SvJ * DBA/2J
MGI:88399  MP:0009745 abnormal behavioral response to xenobiotic PMID: 12729838 
Chrm2tm1Jwe|Chrm4tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S4/SvJae * 129S6/SvEvTac * CF-1
MGI:88397  MGI:88399  MP:0004994 abnormal brain wave pattern PMID: 16110248 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88399  MP:0002206 abnormal CNS synaptic transmission PMID: 15919709 
Chrm1tm1Jwe|Chrm4tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MGI:88399  MP:0002206 abnormal CNS synaptic transmission PMID: 15919709 
Chrm2tm1Jwe|Chrm4tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S4/SvJae * 129S6/SvEvTac * CF-1
MGI:88397  MGI:88399  MP:0002206 abnormal CNS synaptic transmission PMID: 15919709 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88399  MP:0005085 abnormal gallbladder physiology PMID: 11961069 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88399  MP:0001629 abnormal heart rate PMID: 10688600 
Chrm4tm1Minm Chrm4tm1Minm/Chrm4tm1Minm
involves: 129X1/SvJ * DBA/2J
MGI:88399  MP:0001392 abnormal locomotor activity PMID: 12729838 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0004811 abnormal neuron physiology PMID: 20147565 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
B6.129S6-Chrm4
MGI:88399  MP:0001529 abnormal vocalization PMID: 18382674 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0002822 catalepsy PMID: 20147565 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88399  MP:0001262 decreased body weight PMID: 10468635 
Chrm1tm1Jwe|Chrm4tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MGI:88399  MP:0002917 decreased synaptic depression PMID: 15919709 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0009749 enhanced behavioral response to addictive substance PMID: 20147565 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0009754 enhanced behavioral response to cocaine PMID: 20147565 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0009746 enhanced behavioral response to xenobiotic PMID: 20147565 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88399  MP:0001399 hyperactivity PMID: 10468635 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0001399 hyperactivity PMID: 20147565 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0009747 impaired behavioral response to xenobiotic PMID: 20147565 
Chrm4tm1Jwe Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88399  MP:0000740 impaired smooth muscle contractility PMID: 11961069 
Chrm4tm2.1Jwe|Tg(Drd1a-cre)AGsc Chrm4tm2.1Jwe/Chrm4tm2.1Jwe,Tg(Drd1a-cre)AGsc/0
involves: 129S6/SvEvTac * C57BL/6 * FVB/N
MGI:3761815  MGI:88399  MP:0001906 increased dopamine level PMID: 20147565 
General Comments
For reviews on muscarinic receptor knockout mice see [7,54,89-91].

References

Show »

1. Birdsall NJM, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M. (1999) Subtype selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: functional studies. Mol. Pharmacol., 55: 778-786. [PMID:10101037]

2. Bolden C, Cusack B, Richelson E. (1992) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther., 260 (2): 576-80. [PMID:1346637]

3. Bonner TI, Modi WS, Seuanez HN, O'Brien SJ. (1991) Chromosomal mapping of the five human genes encoding muscarinic acetylcholine receptors. Cytogenet. Cell Genet., 58: 1850-1851.

4. Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, Breininger ML, Gentry PR, Yin H, Jadhav SB et al.. (2008) Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J. Pharmacol. Exp. Ther., 327 (3): 941-53. [PMID:18772318]

5. Bräuner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P. (1996) Functional partial agonism at cloned human muscarinic acetylcholine receptors. Eur J Pharmacol, 313: 145-150. [PMID:8905341]

6. Buckley NJ, Bonner TI, Buckley CM, Brann MR. (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol, 35: 469-476. [PMID:2704370]

7. Bymaster FP, McKinzie DL, Felder CC, Wess J. (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res, 28: 437-442. [PMID:12675128]

8. Böhme TM, Keim C, Kreutzmann K, Linder M, Dingermann T, Dannhardt G, Mutschler E, Lambrecht G. (2003) Structure-activity relationships of dimethindene derivatives as new M2-selective muscarinic receptor antagonists. J. Med. Chem., 46 (5): 856-67. [PMID:12593665]

9. Cembala TM, Sherwin JD, Tidmarsh MD, Appadu BL, Lambert DG. (1998) Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 125: 1088-1094. [PMID:9846649]

10. Chan WY, McKinzie DL, Bose S, Mitchell SN, Witkin JM, Thompson RC, Christopoulos A, Lazareno S, Birdsall NJ, Bymaster FP et al.. (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc. Natl. Acad. Sci. U.S.A., 105 (31): 10978-83. [PMID:18678919]

11. Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP. (2002) Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther, 303: 29-35. [PMID:12235229]

12. Chernyavsky AI, Arredondo J, Wess J, Karlsson E, Grando SA. (2004) Novel signaling pathways mediating reciprocal control of keratinocyte migration and wound epithelialization through M3 and M4 muscarinic receptors. J Cell Biol, 166: 261-272. [PMID:15263021]

13. Chernyavsky AI, Nguyen VT, Arredondo J, Ndoye A, Zia S, Wess J, Grando SA. (2003) The M4 muscarinic receptor-selective effects on keratinocyte crawling locomotion. Life Sci, 72: 2069-2073. [PMID:12628458]

14. Christopoulos A, Grant MK, Ayoubzadeh N, Kim ON, Sauerberg P, Jeppesen L, El-Fakahany EE. (2001) Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J Pharmacol Exp Ther, 298: 1260-1268. [PMID:11504829]

15. Christopoulos A, Wilson K. (2001) Interaction of anandamide with the M(1) and M(4) muscarinic acetylcholine receptors. Brain Res, 915: 70-78. [PMID:11578621]

16. Conn PJ, Jones CK, Lindsley CW. (2009) Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol. Sci., 30 (3): 148-55. [PMID:19201489]

17. Croy CH, Schober DA, Xiao H, Quets A, Christopoulos A, Felder CC. (2014) Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors. Mol. Pharmacol., 86 (1): 106-15. [PMID:24807965]

18. D'Agostino G, Barbieri A, Chiossa E, Tonini M. (1997) M4 muscarinic autoreceptor-mediated inhibition of [3H]acetylcholine release in the rat isolated urinary bladder. J. Pharmacol. Exp. Ther., 283: 750-756. [PMID:9353395]

19. D'Agostino G, Bolognesi ML, Lucchelli A, Vicini D, Balestra B, Spelta V, Melchiorre C, Tonini M. (2000) Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 subtype. Br. J. Pharmacol., 129: 493-500. [PMID:10711347]

20. Degroot A, Nomikos GG. (2006) Genetic deletion of muscarinic M4 receptors is anxiolytic in the shock-probe burying model. Eur J Pharmacol, 531: 183-186. [PMID:16455072]

21. Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J. Pharmacol. Exp. Ther., 256 (2): 727-33. [PMID:1994002]

22. Ehlert FJ, Delen FM, Yun SH, Friedman DJ, Self DW. (1989) Coupling of subtypes of the muscarinic receptor to adenylate cyclase in the corpus striatum and heart. J Pharmacol Exp Ther, 251: 660-671. [PMID:2810116]

23. Ehlert FJ, Griffin MT, Glidden PF. (1996) The interaction of the enantiomers of aceclidine with subtypes of the muscarinic receptor. J Pharmacol Exp Ther, 279: 1335-1344. [PMID:8968358]

24. Esqueda EE, Gerstin EH, Griffin MT, Ehlert FJ. (1996) Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung. Biochem Pharmacol, 52: 643-658. [PMID:8759038]

25. Fernandez-Fernandez JM, Abogadie FC, Milligan G, Delmas P, Brown DA. (2001) Multiple pertussis toxin-sensitive G-proteins can couple receptors to GIRK channels in rat sympathetic neurons when expressed heterologously, but only native G(i)-proteins do so in situ. Eur J Neurosci, 14: 283-292. [PMID:11553279]

26. Fernandez-Fernandez JM, Wanaverbecq N, Halley P, Caulfield MP, Brown DA. (1999) Selective activation of heterologously expressed G protein-gated K+ channels by M2 muscarinic receptors in rat sympathetic neurones. J. Physiol., 515: 631-637. [PMID:10066893]

27. Gentry PR, Kokubo M, Bridges TM, Cho HP, Smith E, Chase P, Hodder PS, Utley TJ, Rajapakse A, Byers F et al.. (2014) Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe. ChemMedChem, 9 (8): 1677-82. [PMID:24692176]

28. Gillberg PG, Sundquist S, Nilvebrant L. (1998) Comparison of the in vitro and in vivo profiles of tolterodine with those of subtype-selective muscarinic receptor antagonists. Eur. J. Pharmacol., 349 (2-3): 285-92. [PMID:9671109]

29. Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng C, Wess J. (1999) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A., 96: 10483-10488. [PMID:10468635]

30. Gomeza J, Zhang L, Kostenis E, Felder CC, Bymaster FP, Brodkin J, Shannon H, Xia B, Duttaroy A, Deng CX, Wess J. (2001) Generation and pharmacological analysis of M2 and M4 muscarinic receptor knockout mice. Life Sci, 68: 2457-2466. [PMID:11392613]

31. Grewal RP, Martinez M, Hoehe M, Bonner TI, Gershon ES, Detera-Wadleigh S. (1992) Genetic linkage mapping of the m4 human muscarinic receptor (CHRM4). Genomics, 13: 239-240. [PMID:1577490]

32. Harvey AL, Kornisiuk E, Bradley KN, Cerveñansky C, Durán R, Adrover M, Sánchez G, Jerusalinsky D. (2002) Effects of muscarinic toxins MT1 and MT2 from green mamba on different muscarinic cholinoceptors. Neurochem Res, 27: 1543-1554. [PMID:12512959]

33. Hassall CJ, Stanford SC, Burnstock G, Buckley NJ. (1993) Co-expression of four muscarinic receptor genes by the intrinsic neurons of the rat and guinea-pig heart. Neuroscience, 56: 1041-1048. [PMID:8284034]

34. Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM. (1997) Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br. J. Pharmacol., 120 (8): 1409-18. [PMID:9113359]

35. Hegde SS, Pulido-Rios MT, Luttmann MA, Foley JJ, Hunsberger GE, Steinfeld T, Lee T, Ji Y, Mammen MM, Jasper JR. (2018) Pharmacological properties of revefenacin (TD-4208), a novel, nebulized long-acting, and lung selective muscarinic antagonist, at human recombinant muscarinic receptors and in rat, guinea pig, and human isolated airway tissues. Pharmacol Res Perspect, 6 (3): e00400. [PMID:29736245]

36. Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe M, Mitsuya M, Ohtake N, Mase T, Noguchi K. (2001) Pharmacological properties of (2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: a novel mucarinic antagonist with M(2)-sparing antagonistic activity. J Pharmacol Exp Ther, 297: 790-797. [PMID:11303071]

37. Hohmann CF, Potter ED, Levey AI. (1995) Development of muscarinic receptor subtypes in the forebrain of the mouse. J Comp Neurol, 358: 88-101. [PMID:7560279]

38. Huang F, Buchwald P, Browne CE, Farag HH, Wu WM, Ji F, Hochhaus G, Bodor N. (2001) Receptor binding studies of soft anticholinergic agents. AAPS PharmSci, 3: E30-E30. [PMID:12049493]

39. Jakubik J, Bacakova L, El-Fakahany EE, Tucek S. (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic receptors. Mol. Pharmacol., 52: 172-179. [PMID:9224827]

40. Jolkkonen M, Van Giersbergen PLM, Hellman U, Wernstedt C, Karlsson E. (1994) A toxin from the green mamba Dendroaspis angusticeps; amino acid sequence and selectivity for muscarinic m4 receptors. FEBS Lett., 352: 91-94. [PMID:7925952]

41. Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI. (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci, 51: 955-971. [PMID:1325587]

42. Khattar SK, Bora RS, Priyadarsiny P, Gupta D, Khanna A, Narayanan KL, Babu V, Chugh A, Saini KS. (2006) High level stable expression of pharmacologically active human M1-M5 muscarinic receptor subtypes in mammalian cells. Biotechnol Lett, 28: 121-129. [PMID:16369696]

43. Lambrecht G, Moser U, Grimm U, Pfaff O, Hermanni U, Hildebrandt C, Waelbroeck M, Christophe J, Mutschler E. (1993) New functionally selective muscarinic agonists. Life Sci, 52: 481-488. [PMID:7680092]

44. Lazareno S, Birdsall NJM. (1993) Pharmacological characterization of acetylcholine-stimulated [35S]-GTPγS binding mediated by human muscarinic m1-m4 receptors, antagonist studies. Br. J. Pharmacol., 109: 1120-1127. [PMID:8401923]

45. Lazareno S, Birdsall NJM. (1995) Detection, quantitation and verification of allosteric interactions of agents with labelled and unlabelled ligands at G protein-coupled receptors, interactions of strychnine and acetylcholine at muscarinic receptors. Mol. Pharmacol., 48: 362-378. [PMID:7651370]

46. Lazareno S, Dolezal V, Popham A, Birdsall NJ. (2004) Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol, 65: 257-266. [PMID:14722259]

47. Lazareno S, Farries T, Birdsall NJM. (1993) Pharmacological characterization of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors M1 - M4. Life Sci., 52: 449-456. [PMID:8441327]

48. Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJM. (1998) Subtype selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors, radioligand binding studies. Mol. Pharmacol., 53: 573-589. [PMID:9495826]

49. Lazareno S, Popham A, Birdsall NJ. (2000) Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-(3)H]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol Pharmacol, 58: 194-207. [PMID:10860942]

50. Lazareno S, Popham A, Birdsall NJ. (2002) Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol Pharmacol, 62: 1492-1505. [PMID:12435818]

51. Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci, 15: 4077-4092. [PMID:7751967]

52. Loudon JM, Bromidge SM, Brown F, Clark MS, Hatcher JP, Hawkins J, Riley GJ, Noy G, Orlek BS. (1997) SB 202026: a novel muscarinic partial agonist with functional selectivity for M1 receptors. J. Pharmacol. Exp. Ther., 283 (3): 1059-68. [PMID:9399977]

53. Matsui M, Araki Y, Karasawa H, Matsubara N, Taketo MM, Seldin MF. (1999) Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet Syst, 74: 15-21. [PMID:10549128]

54. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ. (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci, 75: 2971-2981. [PMID:15474550]

55. Migeon JC, Thomas SL, Nathanson NM. (1995) Differential coupling of m2 and m4 muscarinic receptors to inhibition of adenylyl cyclase by Gi alpha and G(o)alpha subunits. J Biol Chem, 270: 16070-16074. [PMID:7608168]

56. Miller JH, Aagaard PJ, Gibson VA, McKinney M. (1992) Binding and functional selectivity of himbacine for cloned and neuronal muscarinic receptors. J Pharmacol Exp Ther, 263: 663-667. [PMID:1331410]

57. Miller JH, Gibson VA, McKinney M. (1991) Binding of [3H]AF-DX 384 to cloned and native muscarinic receptors. J Pharmacol Exp Ther, 259: 601-607. [PMID:1941609]

58. Minarini A, Marucci G, Bellucci C, Giorgi G, Tumiatti V, Bolognesi ML, Matera R, Rosini M, Melchiorre C. (2008) Design, synthesis, and biological evaluation of pirenzepine analogs bearing a 1,2-cyclohexanediamine and perhydroquinoxaline units in exchange for the piperazine ring as antimuscarinics. Bioorg. Med. Chem., 16 (15): 7311-20. [PMID:18595721]

59. Näsman J, Jolkkonen M, Ammoun S, Karlsson E, Akerman KE. (2000) Recombinant expression of a selective blocker of M(1) muscarinic receptors. Biochem Biophys Res Commun, 271: 435-439. [PMID:10799315]

60. Oki T, Takagi Y, Inagaki S, Taketo MM, Manabe T, Matsui M, Yamada S. (2005) Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res, 133: 6-11. [PMID:15661360]

61. Olianas MC, Adem A, Karlsson E, Onali P. (1996) Rat striatal muscarinic receptors coupled to inhibition of adenylyl cyclase activity, potent block by the selective m4 ligand muscarinic toxin 3 (MT3). Br. J. Pharmacol., 118: 283-288. [PMID:8735628]

62. Olianas MC, Ingianni A, Maullu C, Adem A, Karlsson E, Onali P. (1999) Selectivity profile of muscarinic toxin 3 in functional assays of cloned and native receptors. J Pharmacol Exp Ther, 288: 164-170. [PMID:9862767]

63. Onali P, Olianas MC. (2002) Muscarinic M4 receptor inhibition of dopamine D1-like receptor signalling in rat nucleus accumbens. Eur J Pharmacol, 448: 105-111. [PMID:12144929]

64. Orman B, Sterin-Borda L, Reina S, Borda ES. (2005) Neuronal nitric oxide synthase activity in rat urinary bladder detrusor: participation in M3 and M4 muscarinic receptor function. Auton Autacoid Pharmacol, 25: 93-100. [PMID:15955028]

65. Pei XF, Gupta TH, Badio B, Padgett WL, Daly JW. (1998) 6beta-Acetoxynortropane: a potent muscarinic agonist with apparent selectivity toward M2-receptors. J. Med. Chem., 41 (12): 2047-55. [PMID:9622546]

66. Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ. (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature, 334: 434-437. [PMID:2841607]

67. Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ. (1987) Distinct primary structures, ligand binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J., 6: 3923-3929. [PMID:3443095]

68. Preiksaitis HG, Krysiak PS, Chrones T, Rajgopal V, Laurier LG. (2000) Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J Pharmacol Exp Ther, 295: 879-888. [PMID:11082420]

69. Richards MH, Van Giersbergen PL. (1995) Human muscarinic receptors expressed in A9L and CHO cells, activation by full and partial agonists. Br. J. Pharmacol., 114: 1242-1249. [PMID:7620715]

70. Rosenblum K, Futter M, Jones M, Hulme EC, Bliss TV. (2000) ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J Neurosci, 20: 977-985. [PMID:10648702]

71. Salmon M, Luttmann MA, Foley JJ, Buckley PT, Schmidt DB, Burman M, Webb EF, DeHaas CJ, Kotzer CJ, Barrett VJ et al.. (2013) Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases.