Top ▲

EP4 receptor

Click here for help

Immunopharmacology Ligand target has curated data in GtoImmuPdb

Target id: 343

Nomenclature: EP4 receptor

Family: Prostanoid receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 488 5p13.1 PTGER4 prostaglandin E receptor 4 6,12
Mouse 7 513 15 1.99 cM Ptger4 prostaglandin E receptor 4 (subtype EP4) 48
Rat 7 488 2q16 Ptger4 prostaglandin E receptor 4 18,116
Previous and Unofficial Names Click here for help
EP2 [6,12,43,48,116] | PGE receptor EP4 subtype | prostanoid EP4 receptor
Database Links Click here for help
Specialist databases
GPCRdb pe2r4_human (Hs), pe2r4_mouse (Mm), pe2r4_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human prostaglandin E receptor EP4 in complex with Fab and ONO-AE3-208
PDB Id:  5YWY
Ligand:  ONO-AE3-208
Resolution:  3.2Å
Species:  Human
References:  131
Image of receptor 3D structure from RCSB PDB
Description:  Cryo-EM Structure of the Prostaglandin E Receptor EP4 Coupled to G Protein
PDB Id:  7D7M
Resolution:  3.3Å
Species:  Human
References:  99
Natural/Endogenous Ligands Click here for help
PGD2
PGE1
PGE2
PGF
PGI2
Comments: PGE2 is the principal endogenous agonist
Potency order of endogenous ligands
PGE2 = PGE1 > PGF, PGI2 > PGD2, thromboxane A2

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]PGE2 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Rn Full agonist 9.0 pKd 18
pKd 9.0 [18]
PGE2 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Mm Full agonist 8.6 pKd 62
pKd 8.6 (Kd 2.5x10-9 M) [62]
[3H]PGE2 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Full agonist 7.6 – 9.5 pKd 1,26,134-135
pKd 7.6 – 9.5 (Kd 2.4x10-8 – 3x10-10 M) [1,26,134-135]
KMN-159 Small molecule or natural product Rn Agonist 9.6 pKi 103
pKi 9.6 (Ki 2.4x10-10 M) [103]
Description: Binding Ki for rat EP4 receptor
L902688 Small molecule or natural product Hs Agonist 9.4 pKi 148
pKi 9.4 (Ki 3.8x10-10 M) [148]
KMN-159 Small molecule or natural product Hs Agonist 9.4 pKi 11
pKi 9.4 (Ki 3.8x10-10 M) [11]
PGF Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 9.1 – 9.5 pKi 1,26,123
pKi 9.1 – 9.5 (Ki 8x10-10 – 3.2x10-10 M) [1,26,123]
PGE1 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Full agonist 9.2 pKi 18
pKi 9.2 [18]
rivenprost Small molecule or natural product Click here for species-specific activity table Mm Full agonist 9.2 pKi 146
pKi 9.2 [146]
ONO-AE1-437 Small molecule or natural product Mm Agonist 9.1 pKi 83
pKi 9.1 (Ki 7.1x10-10 M) [83]
PGE2 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Rn Full agonist 9.0 pKi 18
pKi 9.0 [18]
11-deoxy-PGE2 Small molecule or natural product Rn Full agonist 9.0 pKi 18
pKi 9.0 [18]
TCS 2510 Small molecule or natural product Hs Agonist 8.9 pKi 148
pKi 8.9 (Ki 1.2x10-9 M) [148]
11-deoxy-PGE1 Small molecule or natural product Hs Full agonist 8.9 pKi 26
pKi 8.9 [26]
PGD2 Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 8.7 – 9.0 pKi 26,123
pKi 8.7 – 9.0 (Ki 2x10-9 – 1x10-9 M) [26,123]
PGE1 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 8.8 pKi 26
pKi 8.8 (Ki 1.58x10-9 M) [26]
PGE1 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Mm Full agonist 8.7 pKi 62
pKi 8.7 [62]
PGE2 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Mm Full agonist 8.5 – 8.7 pKi 62,124
pKi 8.5 – 8.7 (Ki 3x10-9 – 2x10-9 M) [62,124]
PGE2 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 8.1 – 9.1 pKi 1,26,92,123,135
pKi 8.1 – 9.1 (Ki 7.94x10-9 – 7.94x10-10 M) [1,26,92,123,135]
13,14-dihydro-PGE1 Small molecule or natural product Hs Full agonist 8.5 pKi 26
pKi 8.5 [26]
L-161,982 (EP4A) Small molecule or natural product Immunopharmacology Ligand Hs Agonist 7.6 – 8.5 pKi 76,148
pKi 7.6 – 8.5 [76,148]
ONO-AE1-329 Small molecule or natural product Click here for species-specific activity table Mm Full agonist 8.0 pKi 124
pKi 8.0 (Ki 1x10-8 M) [124]
MB-28767 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.5 – 8.0 pKi 1,123
pKi 7.5 – 8.0 [1,123]
MB-28767 Small molecule or natural product Click here for species-specific activity table Rn Full agonist 7.6 pKi 18
pKi 7.6 [18]
11-deoxy-PGE1 Small molecule or natural product Click here for species-specific activity table Mm Full agonist 7.6 pKi 62
pKi 7.6 [62]
misoprostol (free acid form) Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.6 pKi 1
pKi 7.6 [1]
19(R)-OH-PGE2 Small molecule or natural product Click here for species-specific activity table Rn Full agonist 7.5 pKi 18
pKi 7.5 [18]
L-161,982 (EP4A) Small molecule or natural product Immunopharmacology Ligand Rn Agonist 7.5 pKi 76
pKi 7.5 [76]
cicaprost Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Full agonist 7.4 pKi 1
pKi 7.4 [1]
enprostil Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.4 pKi 26
pKi 7.4 [26]
16,16-dimethyl-PGE2 Small molecule or natural product Click here for species-specific activity table Mm Full agonist 7.4 pKi 62
pKi 7.4 [62]
1-OH-PGE1 Small molecule or natural product Mm Full agonist 6.7 pKi 62
pKi 6.7 [62]
carbacyclin Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.5 pKi 1
pKi 6.5 [1]
MB-28767 Small molecule or natural product Click here for species-specific activity table Mm Full agonist 6.3 pKi 62
pKi 6.3 (Ki 5x10-7 M) [62]
PGF Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Rn Full agonist 6.2 pKi 18
pKi 6.2 [18]
treprostinil Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 6.1 pKi 134
pKi 6.1 (Ki 8x10-7 M) [134]
PGD2 Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Full agonist 5.9 pKi 18
pKi 5.9 [18]
U46619 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 5.7 pKi 1
pKi 5.7 [1]
iloprost Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Full agonist 4.6 – 6.7 pKi 1,26,134
pKi 4.6 – 6.7 (Ki 2.3x10-5 – 2.1x10-7 M) [1,26,134]
U46619 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Rn Full agonist 5.6 pKi 18
pKi 5.6 [18]
carbacyclin Small molecule or natural product Click here for species-specific activity table Mm Full agonist 5.6 pKi 62
pKi 5.6 [62]
iloprost Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Mm Full agonist 5.6 pKi 62
pKi 5.6 [62]
MRE-269 Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.3 pKi 67
pKi 5.3 (Ki 4.9x10-6 M) [67]
misoprostol (methyl ester) Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 5.3 pKi 1
pKi 5.3 [1]
beraprost Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.1 pKi 67
pKi 5.1 (Ki 7.2x10-6 M) [67]
PGI2 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 5.1 pKi 26
pKi 5.1 [26]
butaprost (free acid form) Small molecule or natural product Click here for species-specific activity table Rn Full agonist 4.8 pKi 18
pKi 4.8 [18]
butaprost (free acid form) Small molecule or natural product Click here for species-specific activity table Hs Full agonist 4.7 pKi 1
pKi 4.7 [1]
PGE1 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 9.5 pEC50 68
pEC50 9.5 (EC50 3.1x10-10 M) [68]
11-deoxy-PGE1 Small molecule or natural product Hs Agonist 9.3 pEC50 68
pEC50 9.3 (EC50 4.7x10-10 M) [68]
L902688 Small molecule or natural product Hs Agonist 8.1 – 10.3 pEC50 37,68
pEC50 8.1 – 10.3 (EC50 9x10-9 – 5x10-11 M) [37,68]
CP734432 Small molecule or natural product Hs Agonist 9.0 pEC50 106
pEC50 9.0 (EC50 1x10-9 M) [106]
PGD2 Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 8.8 pEC50 68
pEC50 8.8 (EC50 1.7x10-9 M) [68]
MB-28767 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.8 pEC50 68
pEC50 7.8 (EC50 1.77x10-8 M) [68]
ONO-AE1-329 Small molecule or natural product Hs Full agonist 7.7 – 7.8 pEC50 36-37
pEC50 7.7 – 7.8 (EC50 2.2x10-8 – 1.6x10-8 M) [36-37]
treprostinil Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 6.7 pEC50 134
pEC50 6.7 (EC50 2x10-7 M) [134]
iloprost Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Full agonist 6.4 pEC50 134
pEC50 6.4 (EC50 4x10-7 M) [134]
PGE2 Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 6.1 pEC50 68
pEC50 6.1 (EC50 9x10-7 M) [68]
PGF Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 6.1 pEC50 68
pEC50 6.1 (EC50 9x10-7 M) [68]
CP734432 Small molecule or natural product Hs Full agonist 8.7 pIC50 106
pIC50 8.7 (IC50 2x10-9 M) [106]
17-phenyl-ω-trinor-PGE2 Small molecule or natural product Click here for species-specific activity table Hs Agonist - - 130
[130]
View species-specific agonist tables
Agonist Comments
ONO-AE1-329, TCS-2510 and L-902688 are useful selective EP4 agonists.
Analogues with optimized EP2 / EP4 agonism have been recently developed [59].
ONO-4232, a selective EP4 agonist is in Phase I clinical trials in acute heart failure [133].
A conjugate of an EP4a agonist that reverses osteopenia in a rat model [74] should not be confused with the L-161,982 (EP4A) antagonist in the table below. Chemistry of EP4 agonist conjugates in disclosed in Arns et al. (2012) [7].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
TG6-129 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 5.4 pKB 41
pKB 5.4 (KB 3.9x10-6 M) [41]
TG11-77 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Antagonist 5.3 pKB 5
pKB 5.3 (KB 5.3x10-6 M) [5]
CR6086 Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 9.3 pKd 22
pKd 9.3 (Kd 5.4x10-10 M) [22]
CR6086 Small molecule or natural product Immunopharmacology Ligand Rn Antagonist 8.7 pKd 22
pKd 8.7 (Kd 1.96x10-9 M) [22]
CR6086 Small molecule or natural product Immunopharmacology Ligand Mm Antagonist 8.7 pKd 22
pKd 8.7 (Kd 2.14x10-9 M) [22]
ER819762 Small molecule or natural product Hs Antagonist 9.3 pKi 17
pKi 9.3 (Ki 5.6x10-10 M) [17]
MK-2894 Small molecule or natural product Hs Antagonist 9.3 pKi 1,17,25
pKi 9.3 (Ki 5.6x10-10 M) [1,17,25]
MF 498 Small molecule or natural product Hs Antagonist 9.1 pKi 25
pKi 9.1 (Ki 7x10-10 M) [25]
ONO-AE3-208 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Mm Antagonist 8.9 pKi 57
pKi 8.9 [57]
evatanepag Small molecule or natural product Ligand has a PDB structure Hs Antagonist 8.6 pKi 87
pKi 8.6 (Ki 2.51x10-9 M) [87]
ONO-AE2-227 Small molecule or natural product Click here for species-specific activity table Mm Antagonist 8.6 pKi 89
pKi 8.6 (Ki 2.7x10-9 M) [89]
CJ-042794 Small molecule or natural product Hs Antagonist 8.5 pKi 86
pKi 8.5 (Ki 3.1x10-9 M) [86]
BGC201531 Small molecule or natural product Hs Antagonist 7.9 pKi 80
pKi 7.9 (Ki 1.26x10-8 M) [80]
grapiprant Small molecule or natural product Primary target of this compound Hs Antagonist 7.9 pKi 92
pKi 7.9 (Ki 1.3x10-8 M) [92]
CR6086 Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 7.8 pKi 22
pKi 7.8 (Ki 1.66x10-8 M) [22]
ONO-AE3-240 Small molecule or natural product Click here for species-specific activity table Mm Antagonist 7.2 pKi 4
pKi 7.2 (Ki 5.8x10-8 M) [4]
GW 627368 Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 7.0 – 7.1 pKi 135-136
pKi 7.0 – 7.1 (Ki 1x10-7 – 7.94x10-8 M) [135-136]
AH23848 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 4.9 – 5.6 pKi 1,26
pKi 4.9 – 5.6 [1,26]
pKi 5.0 [1]
AH23848 Small molecule or natural product Rn Antagonist 5.1 pKi 18
pKi 5.1 [18]
AH23848 (racemic) Small molecule or natural product Rn Antagonist 5.0 pKi 18
pKi 5.0 [18]
compound 47 [PMID: 35640059] Small molecule or natural product Hs Antagonist 8.3 pIC50 132
pIC50 8.3 (IC50 5x10-9 M) [132]
Description: Measuring antagonism of PGE2-mediated calcium flux in HEK293 cells transiently expressing hEP4, using Promega's proprietary GloSensor cAMP assay system
BAY1316957 Small molecule or natural product Hs Antagonist 7.8 pIC50 10
pIC50 7.8 (IC50 1.53x10-8 M) [10]
ER819762 Small molecule or natural product Hs Antagonist 7.2 pIC50 23
pIC50 7.2 (IC50 7x10-8 M) [23]
View species-specific antagonist tables
Antagonist Comments
The archetypal EP4 antagonist AH-23848 has been superseded by more potent and selective agents: CJ-023423, GW-627368, L-161982, ONO-AE3-208.
The NH group in antagonists containing an acyl-sulphonamido moiety (e.g. GW-627368) is acidic.
The EP4 antagonist grapiprant is approved for the treatment of pain and inflammation in osteoarthritis in dogs [110].
Allosteric Modulators
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
THG213.29 Peptide Rn Negative 5.5 pIC50 69
pIC50 5.5 (IC50 3x10-6 M) [69]
Immunopharmacology Comments
The EP4 prostanoid receptor is one of four receptor subtypes for prostaglandin PGE2. The anti- and pro-inflammatory (and non-inflammatory) activities of this receptor are reviewed in [144]. Foudi et al. (2012) [35] review the presence and role of EP1-4 receptors in human inflammation and immune cells. The PGE2/EP4 receptor axis appears to act as an amplifier of cytokine (like IL-6) activity and induces the differentiation and expansion of inflammatory T-helper (Th) lymphocytes. Results from several mouse models indicate that the PGE2/EP4 receptor axis is important in regulating the inflammatory response across a range of tissues [29,31,112,122,142]. PGE2, acting via EP2 and EP4 receptors in synovial tissue appears to contribute to the progression of rheumatoid arthritis (RA) in a rat model [139]. Blocking EP4 and EP2 using their antagonists or genetically modified animals prevents inflammation in CNS, gut and skin in animal models for multiple sclerosis, colitis, psoriasis, atopic dermatitis and contact hypersensitivity [31,70,77,112,140]. EP4 antagonists with anti-inflammatory action are discussed in [56]. CR6086 is an example of a EP4 antagonist that is in clinical development for RA.

The EP4 receptor is discussed in this review of immuno-oncology [2].The roles of PGE2 in chronic immune-mediated inflammation is reviewed here [141].
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  T cell (activation)
Immuno Process:  Immune regulation
Immuno Process:  Immune system development
Immuno Process:  Cytokine production & signalling
Immuno Process:  Chemotaxis & migration
Immuno Process:  Cellular signalling
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family Adenylyl cyclase stimulation
References:  94
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Other - See Comments
Comments:  A second EP4 signaling pathway is PI3K dependent via G protein Gi activation.
References:  38,40,111,114
Tissue Distribution Click here for help
Abdominal aorta aneurysm.
Species:  Human
Technique:  Immunohistochemistry, RT-PCR, Western blotting.
References:  143
Mouth: gingival fibroblasts.
Species:  Human
Technique:  RT-PCR.
References:  98
Eye: corneal endothelium and keratocytes, trabecular cells, ciliary epithelium, conjunctival and iridal stroma cells.
Species:  Human
Technique:  Immunohistochemistry.
References:  117
Kidney: glomeruli, media of arteries.
Species:  Human
Technique:  Immunohistochemistry, Western blotting.
References:  85
Pulmonary veins.
Species:  Human
Technique:  Immunohistochemistry, RT-PCR.
References:  37
Cultured mastocyte.
Species:  Human
Technique:  RT-PCR.
References:  33
Penis: corpus cavernosum.
Species:  Human
Technique:  RT-PCR and Immunohistochemistry.
References:  63
Carotid atherosclerotic plaques.
Species:  Human
Technique:  Immunohistochemistry, RT-PCR, Western blotting.
References:  24,125
Small intestine > lung, kidney, thymus, uterus, brain.
Species:  Human
Technique:  Northern blotting.
References:  12
Kidney: glomerulus.
Species:  Human
Technique:  in situ hybridization.
References:  19
Gastrointestinal tract: small intestine and colon (intestinal mucosal layer), stomach (gastric mucosal layer containing epithelial cells).
Species:  Rat
Technique:  Northern blotting.
References:  28
Kidney: outer medulla, papilla > cortex.
Species:  Rat
Technique:  RNase protection assay.
References:  54
Forebrain: meninges, hippocampus (dentate gyrus), septohippocampal nucleus, medial septal nucleus, nucleus of the diagonal band, principal nucleus, interfascicular nucleus, transverse nucleus , amygdala, hypothalamus (periventricular zone, paraventricular nucleus, posterior magnocellular part), premammillary nucleus.
Brainstem: parabrachial nucleus, nucleus of the solitary tract, ventrolateral medulla.
Cerebellum: Purkinje cell layers.
Species:  Rat
Technique:  in situ hybridisation.
References:  150
Kidney: preglomerular arterioles.
Species:  Rat
Technique:  RT-PCR.
References:  107
Human eosinophils.
Species:  None
Technique:  Immunohistochemistry, Western blotting, flow cytometry.
References:  75
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of cAMP levels in HEK 293 cells transfected with the human EP4 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Stimulation of cAMP accumulation.
References:  137
Measurement of cAMP levels in Xenopus oocytes transfected with the human EP4 receptor and the cystic fibrosis transmembrane conductance regulator (a cAMP-activated Cl- channel).
Species:  Human
Tissue:  Xenopus oocytes.
Response measured:  Stimulation of cAMP accumulation.
References:  12,43
Measurement of T-cell factor (Tcf)/lymphoid enhancer factor (Lef) signalling in HEK 293 cells transfected with the human EP4 receptor using a Tcf/Lef-responsive luciferase reporter gene. In addition, measurement of the phosphorylation of glycogen synthase kinase-3 (GSK-3) and Akt kinase.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Activation of Tcf/Lef signalling via a PI3K-dependent pathway, phosphorylation of GSK-3 and Akt kinase.
References:  39
Measurement of ERK phosphorylation and expression of early growth response factor-1 (EGR-1) in HEK 293 cells transfected with the human EP4 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Activation of ERK signalling via a PI3K-dependent pathway and stimulation of EGR-1 expression.
References:  40
Measurement of cAMP and apoptosis in RP-1 periosteal cells endogenously expressing the EP4 receptor.
Species:  Rat
Tissue:  RP-1 periosteal cell line.
Response measured:  Stimulation of cAMP accumulation and suppression of apoptosis.
References:  76
Measurement of cAMP levels and mucin secretion in human LS174T cells endogenously expressing the EP4 receptor.
Species:  Human
Tissue:  Colonic epithelial cell line LS174T.
Response measured:  Stimulation of cAMP accumulation and mucin exocytosis.
References:  14
Measurement of cAMP levels in rat neutrophils endogenously expressing the EP4 receptor. In addition, measurement of FMLP-stimulated neutrophil aggregation following EP4 activation.
Species:  Rat
Tissue:  Neutrophils.
Response measured:  Stimulation of cAMP accumulation and inhibition of FMLP-stimulated neutrophil aggregation.
References:  138
Measurement of cAMP levels in COS-7 cells transfected with the human EP4 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Stimulation of cAMP accumulation.
References:  6
Physiological Functions Click here for help
Renal vasodilation.
Species:  Rat
Tissue:  In vivo (renal artery).
References:  107
Promotion of sleep.
Species:  Rat
Tissue:  In vivo.
References:  147
Stimulation of cell differentiation (simultaneously with EP2).
Species:  Rat
Tissue:  Primary chondrocytes.
References:  83
Reduction in osteoclast motility.
Species:  Rat
Tissue:  Osteoclasts.
References:  101
Follicle growth, IL-8 expression and neutrophil infiltration.
Species:  Rat
Tissue:  In vivo (ovary).
References:  30
Stimulation of gastric acid secretion.
Species:  Rat
Tissue:  In vivo (stomach).
References:  61
Intestinal protection.
Species:  Rat
Tissue:  In vivo (intestine).
References:  65-66
Role in the neonatal adaptation of the circulatory system.
Species:  Mouse
Tissue:  In vivo.
References:  120
Inhibition of TNFα formation.
Species:  Mouse
Tissue:  Kupffer cells.
References:  34
Role in intestinal homeostasis by keeping mucosal integrity and downregulating immune response.
Species:  Mouse
Tissue:  In vivo.
References:  57
Initiation of immune responses.
Species:  Mouse
Tissue:  In vivo.
References:  58
Maintenance of bone mass and fracture healing.
Species:  Mouse
Tissue:  In vivo.
References:  71
Stimulation of renin secretion and enhanced salt and water excretion.
Species:  Mouse
Tissue:  In vivo.
References:  100
Duodenal HCO3- secretion.
Species:  Mouse
Tissue:  In vivo (duodenum).
References:  126
Bone production.
Species:  Rat
Tissue:  In vivo (trabecular bone).
References:  76
Blood pressure regulation (female only).
Species:  Mouse
Tissue:  In vivo.
References:  9
Stimulation of renin release and renal vasodilation.
Species:  Mouse
Tissue:  In vivo.
References:  119
Selective suppression of EP4 receptor signalling may have therapeutic value in rheumatoid arthritis both by modifying inflammatory arthritis and by relieving pain.
Species:  Mouse
Tissue:  Knee and ankle joints.
References:  23
EP4 agonist inhibited LPS-induced mucus secretion from airway epithelial cells.
Species:  Human
Tissue:  Nasal epithelial cells.
References:  45
EP4 receptors mediate vasorelaxation.
Species:  Human
Tissue:  Pulmonary vein, saphenous veins, cerebral artery, uterine artery.
References:  13,26,36-37
PGE2 and EP4 agonists induced potent relaxations of human airways via EP4 receptor.
Species:  Human
Tissue:  Bronchial preparation.
References:  15,20
Endothelial cell migration and angiogenesis in vivo are produced by EP4 receptor activation.
Species:  Human
Tissue:  Human prostate cancer cell lines.
References:  53
Inhibition of platelet aggregation.
Species:  Human
Tissue:  Whole blood.
References:  52,105
Protective effect of EP4 receptor against allergic responses by inhibiting the interaction of eosinophils with the endothelium.
Species:  Human
Tissue:  Human peripheral blood eosinophils.
References:  64,75
Inhibition of B lymphocyte cell proliferation.
Species:  Human
Tissue:  B lymphocyte cells.
References:  88
The prostaglandin E2 type 4 receptor participates in the response to acute oxidant stress in airway epithelial cells.
Species:  Human
Tissue:  Calu-3 cell line.
References:  55
EP4 receptor inhibition attenuated aneurysm formation by lowering MMP activity and cytokine release.
Species:  Human
Tissue:  Aortic aneurysmal tissue and cells.
References:  143
Prostaglandin E2 regulates the expression of connective tissue growth factor and MMPs in human osteoarthritic chondrocytes via the EP4 receptor.
Species:  Human
Tissue:  Articular cartilage.
References:  8,78,97
Endogenous PGE2 produced in rheumatoid synovium negatively regulates aberrant synovial overgrowth and the development of osteoclast activity via EP4 receptror.
Species:  Human
Tissue:  Synovial tissue.
References:  82,121
Ductus arteriosus closure, involvement of EP4 receptor.
Species:  Human
Tissue:  Ductus arteriosus.
References:  96,120,145
PGE2-receptor subtype EP4-dependent adherence of mastocytoma P-815 cells to matrix components.
Species:  Mouse
Tissue:  P-815 mastocytoma cells.
References:  60
Blocking the EP4 receptor pharmacologically reduces both the incidence and severity of abdominal aorta aneurysm in the angiotensin II mouse model.
Species:  Mouse
Tissue:  Aorta.
References:  21
EP4 receptor-mediated vasorelaxation is endothelium-dependent and involved endothelial nitric-oxide synthase and cGMP.
Species:  Rat
Tissue:  Aorta.
References:  49
EP4 receptor mediates the dilatory effect of PGE2 in the craniovascular system.
Species:  Rat
Tissue:  Cranial arteries.
References:  90
Selective EP4 agonist inactivates T-cells, which in turn moderates the progression of experimental rat autoimmune myocarditis.
Species:  Rat
Tissue:  T-cells.
References:  95
EP4 receptor agonist inhibited mucus secretion from airway epithelial cells.
Species:  Rat
Tissue:  Nasal epithelial cells.
References:  45-46
The activation of EP4 receptor suppresses the release of cytokines and chemokines from macrophages and T-cells
Species:  Human
Tissue:  Macrophage cells.
References:  127
Cardiac myocyte EP4 receptor plays a role in hypertrophy via activation of Stat-3.
Species:  Mouse
Tissue:  Cardiomyocytes.
References:  109
Human lung carcinoma cell growth is dependent of EP4 signaling.
Species:  Human
Tissue:  Lung carcinoma cells.
References:  151
EP4 receptor agonist reduces MMP-2 and -9 activities and improves cardiac function in a rat model of ischemia-reperfusion injury.
Species:  Rat
Tissue:  Heart.
References:  47
Physiological Consequences of Altering Gene Expression Click here for help
EP4 receptor knockout mice exhibit impaired intestinal homeostasis.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  57
Kupffer cells from EP4 receptor knockout mice do not exhibit the inhibition of TNFα formation, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  34
EP4 receptor knockout mice exhibit reduced PGE2-induced vasodepression compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  9
EP4 receptor knockout mice do not exhibit LPS-induced bone resorption, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  115
Bone marrow macrophages from EP4 knockout mice do not exhibit PGE2-induced inhibition of cytokine release, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  93
Approximately 95% of neonatal EP4 receptor knockout mice become pale and lethargic around 24 hours after birth and die within 72 hours following birth. The dead neonates exhibit an open ductus arteriosus, whilst the surviving knockout mice exhibit a partially closed ductus arteriosus. These phenotypes are associated with Ptger4tm1Matb/Ptger4tm1Matb (involves: 129S6/SvEvTac * C57BL/6) and Ptger4tm1Aic/Ptger4tm1Aic (involves: 129P2/OlaHsd * C57BL/6) knockouts.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  58,84,118,120,145
EP4 receptor knockout mice exhibit impaired migration of Langerhans cells to draining lymph nodes.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  58
Cocultures of mouse mammary cancer cell lines and bone marrow cells from EP4 receptor knockout mice exhibit abolished osteoclast formation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  102
EP4 receptor knockout mice exhibit a decrease in bone mass and impaired fracture healing.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  71
EP4 receptor knockout mice exhibit reductions in furosemide-stimulated enhancement of diuresis and electrolyte excretion and plasma renin concentration.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  100
EP4 receptor knockout mice exhibit inhibition of the disruption of the blood-aqueous barrier and leukocyte infiltration in the eye, as seen in the wild-type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  16
EP4 receptor knockout mice exhibit weak bones.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  3
T cell-specific EP4 deficiency restricts T cell mediated colitis.
Species:  Mouse
Tissue:  Colon
Technique:  Gene targeting in embrionic stem cells
References:  77,140
Prostanglandin E2-induced bone formation is impaired in EP4 knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  146
In kidney from EP4(-/-) mice, tubulointerstitial fibrosis was significantly augmented compared with that in wild-type kidneys after unilateral ureteral obstruction.
Species:  Mouse
Tissue: 
Technique:  Targeting in embryonic stem cells..
References:  91
PGE2 mediated salt and water excretion via EP4 receptor.
Species:  Mouse
Tissue: 
Technique:  Targeting in embryonic stem cells..
References:  100,108
Renin stimulation in EP4(-/-) mice was significantly reduced by ∼70% compared with wild-type controls.
Species:  Mouse
Tissue: 
Technique:  Targeting in embryonic stem cells..
References:  32
EP4 is involved in the maintenance of auditory function.
Species:  Mouse
Tissue: 
Technique:  Targeting in embryonic stem cells..
References:  44
Protective role of neuronal EP4 signaling in cerebral ischemia.
Species:  Mouse
Tissue: 
Technique:  Targeting in embryonic stem cells..
References:  72
In advanced atherosclerosis, EP4 deficiency did not alter atherosclerotic lesion size, but yielded plaques with exacerbated inflammation and altered lesion composition.
Species:  Mouse
Tissue: 
Technique:  Targeting in embryonic stem cells..
References:  128
Deficiency of EP4 receptor regulates (boosted or attenuated) inflammation and abdominal aortic aneurysm formation induced by angiotensin II in hypercholesterolemic mice.
Species:  Mouse
Tissue: 
Technique:  Targeting in embryonic stem cells..
References:  129,143
Ptger4tm1Bhk/Ptger4tm1Bhk (involves: 129P2/OlaHsd * 129S/SvEv) knockout mice display abnormal capillary morphology, abnormal lung morphology, abnormal pulmonary circulation, decreased pulmonary vascular resistance, hepatic steatosis, increased lung weight, liver vascular congestion, lung hemorrhage, lung vascular congestion, lymphangiectasis, patent ductus arteriosus and pulmonary edema.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  96
Ptger4tm1Aic/Ptger4tm1Aic (involves: 129P2/OlaHsd * C57BL/6Cr) knockout mice display preneoplasia and decreased incidence of chemically-induced tumors.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  89
Ptger4tm1Bhk/Ptger4tm1Bhk (involves: 129P2/OlaHsd * C57BL/6 * DBA/2) knockout mice display decreased susceptibility to induced arthritis, rheumatoid arthritis, abnormal prostaglandin level, abnormal cytokine level (for example interleukin-6), abnormal macrophage physiology, abnormal circulating serum amyloid protein level and abnormal vascular regression.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  81,113
Calvarial cultures and long bone cultures from EP4 receptor knockout mice exhibit abnormal calcium ion homeostasis in the form of abolished calcium release in response to PGE2, compared to wild-type mice. This phenotpe is observed in Ptger4tm1.2Matb/Ptger4tm1.2Matb (B6.129S6-Ptger4tm1.2Matb) and Ptger4tm1.2Matb/Ptger4+ (B6.129S6-Ptger4tm1.2Matb) knockouts.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  149
Global and adipocyte-specific EP4 receptor knockout mice exhibit obesity but low fat accumulation in liver.
Species:  Mouse
Tissue:  Adipocytes
Technique:  Gene targeting in embrionic stem cells
References:  50
T cell-specific EP4 deficiency restricts T cell mediated skin inflammation.
Species:  Mouse
Tissue:  Skin
Technique:  Gene targeting in embrionic stem cells
References:  70,112
Physiological Consequences of Altering Gene Expression Comments
Deletion of this single gene has been reported to create a mouse model of patent ductus arteriosus, a congenital heart disorder where the ductus arteriosus fails to close spontaneously in neonates (see OMIM:607411) [96].
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Ptger4tm1.2Matb Ptger4tm1.2Matb/Ptger4tm1.2Matb
B6.129S6-Ptger4
MGI:104311  MP:0004231 abnormal calcium ion homeostasis PMID: 16303601 
Ptger4+|Ptger4tm1.2Matb Ptger4tm1.2Matb/Ptger4+
B6.129S6-Ptger4
MGI:104311  MP:0004231 abnormal calcium ion homeostasis PMID: 16303601 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0003658 abnormal capillary morphology PMID: 9363893 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:104311  MP:0008595 abnormal circulating interleukin-6 level PMID: 12208866 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:104311  MP:0010214 abnormal circulating serum amyloid protein level PMID: 12208866 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:104311  MP:0008713 abnormal cytokine level PMID: 12208866 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0005362 abnormal Langerhans cell physiology PMID: 12740571 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0001175 abnormal lung morphology PMID: 9363893 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:104311  MP:0002451 abnormal macrophage physiology PMID: 12208866 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0008396 abnormal osteoclast differentiation PMID: 10749873 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0001541 abnormal osteoclast physiology PMID: 10749873 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:104311  MP:0009811 abnormal prostaglandin level PMID: 12208866 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0002295 abnormal pulmonary circulation PMID: 9363893 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0002270 abnormal respiratory alveoli morphology PMID: 9600059 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0001828 abnormal T cell activation PMID: 12740571 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:104311  MP:0000364 abnormal vascular regression PMID: 9363893 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0006138 congestive heart failure PMID: 9600059 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6Cr
MGI:104311  MP:0004502 decreased incidence of chemically-induced tumors PMID: 11782353 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0008567 decreased interferon-gamma secretion PMID: 12740571 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0003035 decreased pulmonary vascular resistance PMID: 9363893 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0008770 decreased survivor rate PMID: 9600059 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:104311  MP:0003436 decreased susceptibility to induced arthritis PMID: 12208866 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0005616 decreased susceptibility to type IV hypersensitivity reaction PMID: 12740571 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0005095 decreased T cell proliferation PMID: 12740571 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0002753 dilated heart left ventricle PMID: 9600059 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0010557 dilated pulmonary artery PMID: 9600059 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0002628 hepatic steatosis PMID: 9363893 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0005630 increased lung weight PMID: 9363893 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0005202 lethargy PMID: 9600059 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0010019 liver vascular congestion PMID: 9363893 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0001182 lung hemorrhage PMID: 9363893 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0010018 lung vascular congestion PMID: 9600059 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0010018 lung vascular congestion PMID: 9363893 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0004038 lymphangiectasis PMID: 9363893 
Ptger4tm1Matb Ptger4tm1Matb/Ptger4tm1Matb
involves: 129S6/SvEvTac * C57BL/6
MGI:104311  MP:0002058 neonatal lethality PMID: 15354288 
Ptger4tm1.1Matb Ptger4tm1.1Matb/Ptger4tm1.1Matb
involves: 129S6/SvEvTac * C57BL/6
MGI:104311  MP:0002169 no abnormal phenotype detected PMID: 15354288 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0003717 pallor PMID: 9600059 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0003139 patent ductus arteriosus PMID: 9600059 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0003139 patent ductus arteriosus PMID: 9363893 
Ptger4tm1Matb Ptger4tm1Matb/Ptger4tm1Matb
involves: 129S6/SvEvTac * C57BL/6
MGI:104311  MP:0003139 patent ductus arteriosus PMID: 15354288 
Ptger4tm1.2Matb Ptger4tm1.2Matb/Ptger4tm1.2Matb
involves: 129S6/SvEvTac * C57BL/6
MGI:104311  MP:0003139 patent ductus arteriosus PMID: 15354288 
Ptger4tm1.2Matb Ptger4tm1.2Matb/Ptger4tm1.2Matb
involves: 129S6/SvEvTac * C57BL/6
MGI:104311  MP:0002081 perinatal lethality PMID: 15354288 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6
MGI:104311  MP:0002082 postnatal lethality PMID: 9600059 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0002082 postnatal lethality PMID: 9363893 
Ptger4tm1Aic Ptger4tm1Aic/Ptger4tm1Aic
involves: 129P2/OlaHsd * C57BL/6Cr
MGI:104311  MP:0002009 preneoplasia PMID: 11782353 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:104311  MP:0003828 pulmonary edema PMID: 9363893 
Ptger4tm1Bhk Ptger4tm1Bhk/Ptger4tm1Bhk
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:104311  MP:0003561 rheumatoid arthritis PMID: 12208866 
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  In patients with aspirin-intolerant chronic urticaria (AICU), the PTGER4-1254 G allele demonstrated a higher frequency and lower promoter activity with decreased expression of PTGER4 and contributes to the development of AICU.
SNP accession: 
References:  104
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  Variations in the prostaglandin EP4 receptor gene (PTGER4) are associated with primary graft dysfunction.
References:  27
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  Various alterations in PTGER4 alleles are associated with the susceptibility of inflammatory bowel disease, especially Crohn's disease.
SNP accession: 
References:  42,73
Type:  Single nucleotide polymorphisms
Species:  Human
Description:  Various alterations in PTGER4 alleles are associated with the susceptibility of multiple sclerosis.
SNP accession: 
References:  51,79
General Comments
The recombinant EP4 receptor was originally identified as EP2 [12,48].

The EP2 and EP4 receptors are thought to mediate most of the hemodynamic responses to PGE2 in the female but not the male mouse [9].

References

Show »

1. Abramovitz M, Adam M, Boie Y, Carrière M, Denis D, Godbout C, Lamontagne S, Rochette C, Sawyer N, Tremblay NM et al.. (2000) The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim Biophys Acta, 1483 (2): 285-93. [PMID:10634944]

2. Adams JL, Smothers J, Srinivasan R, Hoos A. (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov, 14 (9): 603-22. [PMID:26228631]

3. Akhter MP, Cullen DM, Pan LC. (2006) Bone biomechanical properties in EP4 knockout mice. Calcif Tissue Int, 78 (6): 357-62. [PMID:16830205]

4. Amano H, Hayashi I, Endo H, Kitasato H, Yamashina S, Maruyama T, Kobayashi M, Satoh K, Narita M, Sugimoto Y et al.. (2003) Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. J Exp Med, 197 (2): 221-32. [PMID:12538661]

5. Amaradhi R, Banik A, Mohammed S, Patro V, Rojas A, Wang W, Motati DR, Dingledine R, Ganesh T. (2020) Potent, Selective, Water Soluble, Brain-Permeable EP2 Receptor Antagonist for Use in Central Nervous System Disease Models. J Med Chem, 63 (3): 1032-1050. [PMID:31904232]

6. An S, Yang J, Xia M, Goetzl EJ. (1993) Cloning and expression of the EP2 subtype of human receptors for prostaglandin E2. Biochem Biophys Res Commun, 197 (1): 263-70. [PMID:8250933]

7. Arns S, Gibe R, Moreau A, Monzur Morshed M, Young RN. (2012) Design and synthesis of novel bone-targeting dual-action pro-drugs for the treatment and reversal of osteoporosis. Bioorg Med Chem, 20 (6): 2131-40. [PMID:22341574]

8. Attur M, Al-Mussawir HE, Patel J, Kitay A, Dave M, Palmer G, Pillinger MH, Abramson SB. (2008) Prostaglandin E2 exerts catabolic effects in osteoarthritis cartilage: evidence for signaling via the EP4 receptor. J Immunol, 181 (7): 5082-8. [PMID:18802112]

9. Audoly LP, Tilley SL, Goulet J, Key M, Nguyen M, Stock JL, McNeish JD, Koller BH, Coffman TM. (1999) Identification of specific EP receptors responsible for the hemodynamic effects of PGE2. Am J Physiol, 277 (3): H924-30. [PMID:10484412]

10. Bäurle S, Nagel J, Peters O, Bräuer N, Ter Laak A, Preusse C, Rottmann A, Heldmann D, Bothe U, Blume T et al.. (2019) Identification of a Benzimidazolecarboxylic Acid Derivative (BAY 1316957) as a Potent and Selective Human Prostaglandin E2 Receptor Subtype 4 (hEP4-R) Antagonist for the Treatment of Endometriosis. J Med Chem, 62 (5): 2541-2563. [PMID:30707023]

11. Barrett SD, Holt MC, Kramer JB, Germain B, Ho CS, Ciske FL, Kornilov A, Colombo JM, Uzieblo A, O'Malley JP et al.. (2019) Difluoromethylene at the γ-Lactam α-Position Improves 11-Deoxy-8-aza-PGE1 Series EP4 Receptor Binding and Activity: 11-Deoxy-10,10-difluoro-8-aza-PGE1 Analog (KMN-159) as a Potent EP4 Agonist. J Med Chem, 62 (9): 4731-4741. [PMID:30964292]

12. Bastien L, Sawyer N, Grygorczyk R, Metters KM, Adam M. (1994) Cloning, functional expression, and characterization of the human prostaglandin E2 receptor EP2 subtype. J Biol Chem, 269 (16): 11873-7. [PMID:8163486]

13. Baxter GS, Clayton JK, Coleman RA, Marshall K, Sangha R, Senior J. (1995) Characterization of the prostanoid receptors mediating constriction and relaxation of human isolated uterine artery. Br J Pharmacol, 116 (1): 1692-6. [PMID:8564239]

14. Belley A, Chadee K. (1999) Prostaglandin E(2) stimulates rat and human colonic mucin exocytosis via the EP(4) receptor. Gastroenterology, 117 (6): 1352-62. [PMID:10579976]

15. Benyahia C, Gomez I, Kanyinda L, Boukais K, Danel C, Leséche G, Longrois D, Norel X. (2012) PGE(2) receptor (EP(4)) agonists: potent dilators of human bronchi and future asthma therapy?. Pulm Pharmacol Ther, 25 (1): 115-8. [PMID:22244823]

16. Biswas S, Bhattacherjee P, Paterson CA, Tilley SL, Koller BH. (2006) Ocular inflammatory responses in the EP2 and EP4 receptor knockout mice. Ocul Immunol Inflamm, 14 (3): 157-63. [PMID:16766399]

17. Blouin M, Han Y, Burch J, Farand J, Mellon C, Gaudreault M, Wrona M, Lévesque JF, Denis D, Mathieu MC et al.. (2010) The discovery of 4-{1-[({2,5-dimethyl-4-[4-(trifluoromethyl)benzyl]-3-thienyl}carbonyl)amino]cyclopropyl}benzoic acid (MK-2894), a potent and selective prostaglandin E2 subtype 4 receptor antagonist. J Med Chem, 53 (5): 2227-38. [PMID:20163116]

18. Boie Y, Stocco R, Sawyer N, Slipetz DM, Ungrin MD, Neuschäfer-Rube F, Püschel GP, Metters KM, Abramovitz M. (1997) Molecular cloning and characterization of the four rat prostaglandin E2 prostanoid receptor subtypes. Eur J Pharmacol, 340 (2-3): 227-41. [PMID:9537820]

19. Breyer MD, Davis L, Jacobson HR, Breyer RM. (1996) Differential localization of prostaglandin E receptor subtypes in human kidney. Am J Physiol, 270 (5 Pt 2): F912-8. [PMID:8928854]

20. Buckley J, Birrell MA, Maher SA, Nials AT, Clarke DL, Belvisi MG. (2011) EP4 receptor as a new target for bronchodilator therapy. Thorax, 66 (12): 1029-35. [PMID:21606476]

21. Cao RY, St Amand T, Li X, Yoon SH, Wang CP, Song H, Maruyama T, Brown PM, Zelt DT, Funk CD. (2012) Prostaglandin receptor EP4 in abdominal aortic aneurysms. Am J Pathol, 181 (1): 313-21. [PMID:22595380]

22. Caselli G, Bonazzi A, Lanza M, Ferrari F, Maggioni D, Ferioli C, Giambelli R, Comi E, Zerbi S, Perrella M et al.. (2018) Pharmacological characterisation of CR6086, a potent prostaglandin E2receptor 4 antagonist, as a new potential disease-modifying anti-rheumatic drug. Arthritis Res Ther, 20 (1): 39. [PMID:29490676]

23. Chen Q, Muramoto K, Masaaki N, Ding Y, Yang H, Mackey M, Li W, Inoue Y, Ackermann K, Shirota H et al.. (2010) A novel antagonist of the prostaglandin E(2) EP(4) receptor inhibits Th1 differentiation and Th17 expansion and is orally active in arthritis models. Br J Pharmacol, 160 (2): 292-310. [PMID:20423341]

24. Cipollone F, Fazia ML, Iezzi A, Cuccurullo C, De Cesare D, Ucchino S, Spigonardo F, Marchetti A, Buttitta F, Paloscia L et al.. (2005) Association between prostaglandin E receptor subtype EP4 overexpression and unstable phenotype in atherosclerotic plaques in human. Arterioscler Thromb Vasc Biol, 25 (9): 1925-31. [PMID:16020747]

25. Clark P, Rowland SE, Denis D, Mathieu MC, Stocco R, Poirier H, Burch J, Han Y, Audoly L, Therien AG et al.. (2008) MF498 [N-{[4-(5,9-Diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbenzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide], a selective E prostanoid receptor 4 antagonist, relieves joint inflammation and pain in rodent models of rheumatoid and osteoarthritis. J Pharmacol Exp Ther, 325 (2): 425-34. [PMID:18287210]

26. Davis TL, Sharif NA. (2000) Pharmacological characterization of [(3)H]-prostaglandin E(2) binding to the cloned human EP(4) prostanoid receptor. Br J Pharmacol, 130: 1919-1926. [PMID:10952683]

27. Diamond JM, Akimova T, Kazi A, Shah RJ, Cantu E, Feng R, Levine MH, Kawut SM, Meyer NJ, Lee JC et al.. (2014) Genetic variation in the prostaglandin E2 pathway is associated with primary graft dysfunction. Am J Respir Crit Care Med, 189 (5): 567-75. [PMID:24467603]

28. Ding M, Kinoshita Y, Kishi K, Nakata H, Hassan S, Kawanami C, Sugimoto Y, Katsuyama M, Negishi M, Narumiya S et al.. (1997) Distribution of prostaglandin E receptors in the rat gastrointestinal tract. Prostaglandins, 53 (3): 199-216. [PMID:9206801]

29. Duffin R, O'Connor RA, Crittenden S, Forster T, Yu C, Zheng X, Smyth D, Robb CT, Rossi F, Skouras C et al.. (2016) Prostaglandin E₂ constrains systemic inflammation through an innate lymphoid cell-IL-22 axis. Science, 351 (6279): 1333-8. [PMID:26989254]

30. El-Nefiawy N, Abdel-Hakim K, Kanayama N, Terao T. (2005) Role of prostaglandin E2 receptor subtypes in ovarian follicle growth in the rat in vivo. Correlation with interleukin-8 and neutrophils. Histol Histopathol, 20 (3): 825-31. [PMID:15944932]

31. Esaki Y, Li Y, Sakata D, Yao C, Segi-Nishida E, Matsuoka T, Fukuda K, Narumiya S. (2010) Dual roles of PGE2-EP4 signaling in mouse experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA, 107 (27): 12233-8. [PMID:20566843]

32. Facemire CS, Nguyen M, Jania L, Beierwaltes WH, Kim HS, Koller BH, Coffman TM. (2011) A major role for the EP4 receptor in regulation of renin. Am J Physiol Renal Physiol, 301 (5): F1035-41. [PMID:21835766]

33. Feng C, Beller EM, Bagga S, Boyce JA. (2006) Human mast cells express multiple EP receptors for prostaglandin E2 that differentially modulate activation responses. Blood, 107 (8): 3243-50. [PMID:16357326]

34. Fennekohl A, Sugimoto Y, Segi E, Maruyama T, Ichikawa A, Püschel GP. (2002) Contribution of the two Gs-coupled PGE2-receptors EP2-receptor and EP4-receptor to the inhibition by PGE2 of the LPS-induced TNFalpha-formation in Kupffer cells from EP2-or EP4-receptor-deficient mice. Pivotal role for the EP4-receptor in wild type Kupffer cells. J Hepatol, 36 (3): 328-34. [PMID:11867175]

35. Foudi N, Gomez I, Benyahia C, Longrois D, Norel X. (2012) Prostaglandin E2 receptor subtypes in human blood and vascular cells. Eur J Pharmacol, 695 (1-3): 1-6. [PMID:22964467]

36. Foudi N, Kotelevets L, Gomez I, Louedec L, Longrois D, Chastre E, Norel X. (2011) Differential reactivity of human mammary artery and saphenous vein to prostaglandin E(2) : implication for cardiovascular grafts. Br J Pharmacol, 163 (4): 826-34. [PMID:21323896]

37. Foudi N, Kotelevets L, Louedec L, Leséche G, Henin D, Chastre E, Norel X. (2008) Vasorelaxation induced by prostaglandin E2 in human pulmonary vein: role of the EP4 receptor subtype. Br J Pharmacol, 154 (8): 1631-9. [PMID:18516068]

38. Fujino H, Salvi S, Regan JW. (2005) Differential regulation of phosphorylation of the cAMP response element-binding protein after activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. Mol Pharmacol, 68 (1): 251-9. [PMID:15855407]

39. Fujino H, West KA, Regan JW. (2002) Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. J Biol Chem, 277 (4): 2614-9. [PMID:11706038]

40. Fujino H, Xu W, Regan JW. (2003) Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. J Biol Chem, 278 (14): 12151-6. [PMID:12566441]

41. Ganesh T, Jiang J, Shashidharamurthy R, Dingledine R. (2013) Discovery and characterization of carbamothioylacrylamides as EP2 selective antagonists. ACS Med Chem Lett, 4 (7): 616-621. [PMID:23914286]

42. Glas J, Seiderer J, Czamara D, Pasciuto G, Diegelmann J, Wetzke M, Olszak T, Wolf C, Müller-Myhsok B, Balschun T et al.. (2012) PTGER4 expression-modulating polymorphisms in the 5p13.1 region predispose to Crohn's disease and affect NF-κB and XBP1 binding sites. PLoS One, 7 (12): e52873. [PMID:23300802]

43. Grygorczyk R, Abramovitz M, Boie Y, Bastien L, Adam M. (1995) Detection of adenylate cyclase-coupled receptors in Xenopus oocytes by coexpression with cystic fibrosis transmembrane conductance regulator. Anal Biochem, 227: 27-31. [PMID:7545356]

44. Hamaguchi K, Yamamoto N, Nakagawa T, Furuyashiki T, Narumiya S, Ito J. (2012) Role of PGE-type receptor 4 in auditory function and noise-induced hearing loss in mice. Neuropharmacology, 62 (4): 1841-7. [PMID:22198478]

45. Hattori R, Shimizu S, Majima Y, Shimizu T. (2008) EP4 agonist inhibits lipopolysaccharide-induced mucus secretion in airway epithelial cells. Ann Otol Rhinol Laryngol, 117 (1): 51-8. [PMID:18254372]

46. Hattori R, Shimizu S, Majima Y, Shimizu T. (2009) Prostaglandin E2 receptor EP2, EP3, and EP4 agonists inhibit antigen-induced mucus hypersecretion in the nasal epithelium of sensitized rats. Ann Otol Rhinol Laryngol, 118 (7): 536-41. [PMID:19708495]

47. Hishikari K, Suzuki J, Ogawa M, Isobe K, Takahashi T, Onishi M, Takayama K, Isobe M. (2009) Pharmacological activation of the prostaglandin E2 receptor EP4 improves cardiac function after myocardial ischaemia/reperfusion injury. Cardiovasc Res, 81 (1): 123-32. [PMID:18805784]

48. Honda A, Sugimoto Y, Namba T, Watabe A, Irie A, Negishi M, Narumiya S, Ichikawa A. (1993) Cloning and expression of a cDNA for mouse prostaglandin E receptor EP2 subtype. J Biol Chem, 268 (11): 7759-62. [PMID:8385118]

49. Hristovska AM, Rasmussen LE, Hansen PB, Nielsen SS, Nüsing RM, Narumiya S, Vanhoutte P, Skøtt O, Jensen BL. (2007) Prostaglandin E2 induces vascular relaxation by E-prostanoid 4 receptor-mediated activation of endothelial nitric oxide synthase. Hypertension, 50 (3): 525-30. [PMID:17635857]

50. Inazumi T, Yamada K, Shirata N, Sato H, Taketomi Y, Morita K, Hohjoh H, Tsuchiya S, Oniki K, Watanabe T et al.. (2020) Prostaglandin E2-EP4 Axis Promotes Lipolysis and Fibrosis in Adipose Tissue Leading to Ectopic Fat Deposition and Insulin Resistance. Cell Rep, 33 (2): 108265. [PMID:33053354]

51. International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2, Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z et al.. (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 476 (7359): 214-9. [PMID:21833088]

52. Iyú D, Glenn JR, White AE, Johnson AJ, Fox SC, Heptinstall S. (2010) The role of prostanoid receptors in mediating the effects of PGE(2) on human platelet function. Platelets, 21 (5): 329-42. [PMID:20433310]

53. Jain S, Chakraborty G, Raja R, Kale S, Kundu GC. (2008) Prostaglandin E2 regulates tumor angiogenesis in prostate cancer. Cancer Res, 68 (19): 7750-9. [PMID:18829529]

54. Jensen BL, Mann B, Skøtt O, Kurtz A. (1999) Differential regulation of renal prostaglandin receptor mRNAs by dietary salt intake in the rat. Kidney Int, 56 (2): 528-37. [PMID:10432392]

55. Jones CL, Li T, Cowley EA. (2012) The prostaglandin E₂ type 4 receptor participates in the response to acute oxidant stress in airway epithelial cells. J Pharmacol Exp Ther, 341 (2): 552-63. [PMID:22362924]

56. Jones RL, Giembycz MA, Woodward DF. (2009) Prostanoid receptor antagonists: development strategies and therapeutic applications. Br J Pharmacol, 158 (1): 104-45. [PMID:19624532]

57. Kabashima K, Saji T, Murata T, Nagamachi M, Matsuoka T, Segi E, Tsuboi K, Sugimoto Y, Kobayashi T, Miyachi Y et al.. (2002) The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest, 109 (7): 883-93. [PMID:11927615]

58. Kabashima K, Sakata D, Nagamachi M, Miyachi Y, Inaba K, Narumiya S. (2003) Prostaglandin E2-EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Nat Med, 9 (6): 744-9. [PMID:12740571]

59. Kambe T, Maruyama T, Nakano M, Nakai Y, Yoshida T, Matsunaga N, Oida H, Konaka A, Maruyama T, Nakai H et al.. (2012) Discovery of a novel EP2/EP4 dual agonist with high subtype-selectivity. Bioorg Med Chem Lett, 22 (1): 396-401. [PMID:22119471]

60. Kataoka H, Sakanaka M, Semma M, Yamamoto T, Hirota S, Tanaka S, Ichikawa A. (2008) PGE2-receptor subtype EP4-dependent adherence of mastocytoma P-815 cells to matrix components in subcutaneous tissues overlaying inside surface of air pouch cavity in CDF1 mouse. Inflamm Res, 57 (8): 362-6. [PMID:18787774]

61. Kato S, Aihara E, Yoshii K, Takeuchi K. (2005) Dual action of prostaglandin E2 on gastric acid secretion through different EP-receptor subtypes in the rat. Am J Physiol Gastrointest Liver Physiol, 289 (1): G64-9. [PMID:15961884]

62. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S. (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol, 122 (2): 217-24. [PMID:9313928]

63. Komuro M, Kamiyama M, Furuya Y, Takihana Y, Araki I, Takeda M. (2006) Gene and protein expression profiles of prostaglandin E2 receptor subtypes in the human corpus cavernosum. Int J Impot Res, 18 (3): 275-81. [PMID:16239896]

64. Konya V, Philipose S, Bálint Z, Olschewski A, Marsche G, Sturm EM, Schicho R, Peskar BA, Schuligoi R, Heinemann A. (2011) Interaction of eosinophils with endothelial cells is modulated by prostaglandin EP4 receptors. Eur J Immunol, 41 (8): 2379-89. [PMID:21681739]

65. Kunikata T, Araki H, Takeeda M, Kato S, Takeuchi K. (2001) Prostaglandin E prevents indomethacin-induced gastric and intestinal damage through different EP receptor subtypes. J Physiol Paris, 95 (1-6): 157-63. [PMID:11595431]

66. Kunikata T, Tanaka A, Miyazawa T, Kato S, Takeuchi K. (2002) 16,16-Dimethyl prostaglandin E2 inhibits indomethacin-induced small intestinal lesions through EP3 and EP4 receptors. Dig Dis Sci, 47 (4): 894-904. [PMID:11991626]

67. Kuwano K, Hashino A, Asaki T, Hamamoto T, Yamada T, Okubo K, Kuwabara K. (2007) 2-[4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]-N-(methylsulfonyl)acetamide (NS-304), an orally available and long-acting prostacyclin receptor agonist prodrug. J Pharmacol Exp Ther, 322 (3): 1181-8. [PMID:17545310]

68. Leduc M, Breton B, Galés C, Le Gouill C, Bouvier M, Chemtob S, Heveker N. (2009) Functional selectivity of natural and synthetic prostaglandin EP4 receptor ligands. J Pharmacol Exp Ther, 331 (1): 297-307. [PMID:19584306]

69. Leduc M, Hou X, Hamel D, Sanchez M, Quiniou C, Honoré JC, Roy O, Madaan A, Lubell W, Varma DR et al.. (2013) Restoration of renal function by a novel prostaglandin EP4 receptor-derived peptide in models of acute renal failure. Am J Physiol Regul Integr Comp Physiol, 304 (1): R10-22. [PMID:23152113]

70. Lee J, Aoki T, Thumkeo D, Siriwach R, Yao C, Narumiya S. (2019) T cell-intrinsic prostaglandin E2-EP2/EP4 signaling is critical in pathogenic TH17 cell-driven inflammation. J Allergy Clin Immunol, 143 (2): 631-643. [PMID:29935220]

71. Li M, Healy DR, Li Y, Simmons HA, Crawford DT, Ke HZ, Pan LC, Brown TA, Thompson DD. (2005) Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice. Bone, 37 (1): 46-54. [PMID:15869929]

72. Liang X, Lin L, Woodling NS, Wang Q, Anacker C, Pan T, Merchant M, Andreasson K. (2011) Signaling via the prostaglandin E₂ receptor EP4 exerts neuronal and vascular protection in a mouse model of cerebral ischemia. J Clin Invest, 121 (11): 4362-71. [PMID:21965326]

73. Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D, Vermeire S, Dewit O, de Vos M, Dixon A et al.. (2007) Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet, 3 (4): e58. [PMID:17447842]

74. Liu CC, Hu S, Chen G, Georgiou J, Arns S, Kumar NS, Young RN, Grynpas MD. (2015) Novel EP4 receptor agonist-bisphosphonate conjugate drug (C1) promotes bone formation and improves vertebral mechanical properties in the ovariectomized rat model of postmenopausal bone loss. J Bone Miner Res, 30 (4): 670-80. [PMID:25284325]

75. Luschnig-Schratl P, Sturm EM, Konya V, Philipose S, Marsche G, Fröhlich E, Samberger C, Lang-Loidolt D, Gattenlöhner S, Lippe IT et al.. (2011) EP4 receptor stimulation down-regulates human eosinophil function. Cell Mol Life Sci, 68 (21): 3573-87. [PMID:21365278]

76. Machwate M, Harada S, Leu CT, Seedor G, Labelle M, Gallant M, Hutchins S, Lachance N, Sawyer N, Slipetz D et al.. (2001) Prostaglandin receptor EP(4) mediates the bone anabolic effects of PGE(2). Mol Pharmacol, 60 (1): 36-41. [PMID:11408598]

77. Maseda D, Banerjee A, Johnson EM, Washington MK, Kim H, Lau KS, Crofford LJ. (2018) mPGES-1-Mediated Production of PGE2 and EP4 Receptor Sensing Regulate T Cell Colonic Inflammation. Front Immunol, 9: 2954. [PMID:30619314]

78. Masuko K, Murata M, Yudoh K, Shimizu H, Beppu M, Nakamura H, Kato T. (2010) Prostaglandin E2 regulates the expression of connective tissue growth factor (CTGF/CCN2) in human osteoarthritic chondrocytes via the EP4 receptor. BMC Res Notes, 3: 5. [PMID:20205862]

79. Matesanz F, González-Pérez A, Lucas M, Sanna S, Gayán J, Urcelay E, Zara I, Pitzalis M, Cavanillas ML, Arroyo R et al.. (2012) Genome-wide association study of multiple sclerosis confirms a novel locus at 5p13.1. PLoS One, 7 (5): e36140. [PMID:22570697]

80. Maubach KA, Davis RJ, Clark DE, Fenton G, Lockey PM, Clark KL, Oxford AW, Hagan RM, Routledge C, Coleman RA. (2009) BGC20-1531, a novel, potent and selective prostanoid EP receptor antagonist: a putative new treatment for migraine headache. Br J Pharmacol, 156 (2): 316-27. [PMID:19154437]

81. McCoy JM, Wicks JR, Audoly LP. (2002) The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J Clin Invest, 110 (5): 651-8. [PMID:12208866]

82. Mitomi H, Yamada H, Ito H, Nozaki Shibata T, Yamasaki Y, Nomoto S, Kusaba A, Yamashita H, Ozaki S. (2013) Hypoxia-induced endogenous prostaglandin E2 negatively regulates hypoxia-enhanced aberrant overgrowth of rheumatoid synovial tissue. Mod Rheumatol, 23 (6): 1069-75. [PMID:23183906]

83. Miyamoto M, Ito H, Mukai S, Kobayashi T, Yamamoto H, Kobayashi M, Maruyama T, Akiyama H, Nakamura T. (2003) Simultaneous stimulation of EP2 and EP4 is essential to the effect of prostaglandin E2 in chondrocyte differentiation. Osteoarthr Cartil, 11 (9): 644-52. [PMID:12954235]

84. Miyaura C, Inada M, Suzawa T, Sugimoto Y, Ushikubi F, Ichikawa A, Narumiya S, Suda T. (2000) Impaired bone resorption to prostaglandin E2 in prostaglandin E receptor EP4-knockout mice. J Biol Chem, 275 (26): 19819-23. [PMID:10749873]

85. Morath R, Klein T, Seyberth HW, Nüsing RM. (1999) Immunolocalization of the four prostaglandin E2 receptor proteins EP1, EP2, EP3, and EP4 in human kidney. J Am Soc Nephrol, 10 (9): 1851-60. [PMID:10477136]

86. Murase A, Okumura T, Sakakibara A, Tonai-Kachi H, Nakao K, Takada J. (2008) Effect of prostanoid EP4 receptor antagonist, CJ-042,794, in rat models of pain and inflammation. Eur J Pharmacol, 580 (1-2): 116-21. [PMID:18031725]

87. Murase A, Taniguchi Y, Tonai-Kachi H, Nakao K, Takada J. (2008) In vitro pharmacological characterization of CJ-042794, a novel, potent, and selective prostaglandin EP(4) receptor antagonist. Life Sci, 82 (3-4): 226-32. [PMID:18155068]

88. Murn J, Alibert O, Wu N, Tendil S, Gidrol X. (2008) Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4. J Exp Med, 205 (13): 3091-103. [PMID:19075289]

89. Mutoh M, Watanabe K, Kitamura T, Shoji Y, Takahashi M, Kawamori T, Tani K, Kobayashi M, Maruyama T, Kobayashi K et al.. (2002) Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Res, 62 (1): 28-32. [PMID:11782353]

90. Myren M, Baun M, Ploug KB, Jansen-Olesen I, Olesen J, Gupta S. (2010) Functional and molecular characterization of prostaglandin E2 dilatory receptors in the rat craniovascular system in relevance to migraine. Cephalalgia, 30 (9): 1110-22. [PMID:20713561]

91. Nakagawa N, Yuhki K, Kawabe J, Fujino T, Takahata O, Kabara M, Abe K, Kojima F, Kashiwagi H, Hasebe N et al.. (2012) The intrinsic prostaglandin E2-EP4 system of the renal tubular epithelium limits the development of tubulointerstitial fibrosis in mice. Kidney Int, 82 (2): 158-71. [PMID:22513820]

92. Nakao K, Murase A, Ohshiro H, Okumura T, Taniguchi K, Murata Y, Masuda M, Kato T, Okumura Y, Takada J. (2007) CJ-023,423, a novel, potent and selective prostaglandin EP4 receptor antagonist with antihyperalgesic properties. J Pharmacol Exp Ther, 322 (2): 686-94. [PMID:17495127]

93. Nataraj C, Thomas DW, Tilley SL, Nguyen MT, Mannon R, Koller BH, Coffman TM. (2001) Receptors for prostaglandin E(2) that regulate cellular immune responses in the mouse. J Clin Invest, 108 (8): 1229-35. [PMID:11602631]

94. Neuschäfer-Rube F, Hänecke K, Blaschke V, Jungermann K, Püschel GP. (1997) The C-terminal domain of the Gs-coupled EP4 receptor confers agonist-dependent coupling control to Gi but no coupling to Gs in a receptor hybrid with the Gi-coupled EP3 receptor. FEBS Lett, 401 (2-3): 185-90. [PMID:9013884]

95. Ngoc PB, Suzuki J, Ogawa M, Hishikari K, Takayama K, Hirata Y, Nagai R, Isobe M. (2011) The anti-inflammatory mechanism of prostaglandin e2 receptor 4 activation in rat experimental autoimmune myocarditis. J Cardiovasc Pharmacol, 57 (3): 365-72. [PMID:21383594]

96. Nguyen M, Camenisch T, Snouwaert JN, Hicks E, Coffman TM, Anderson PA, Malouf NN, Koller BH. (1997) The prostaglandin receptor EP4 triggers remodelling of the cardiovascular system at birth. Nature, 390 (6655): 78-81. [PMID:9363893]

97. Nishitani K, Ito H, Hiramitsu T, Tsutsumi R, Tanida S, Kitaori T, Yoshitomi H, Kobayashi M, Nakamura T. (2010) PGE2 inhibits MMP expression by suppressing MKK4-JNK MAP kinase-c-JUN pathway via EP4 in human articular chondrocytes. J Cell Biochem, 109 (2): 425-33. [PMID:19998410]

98. Noguchi K, Shitashige M, Endo H, Kondo H, Ishikawa I. (2002) Binary regulation of interleukin (IL)-6 production by EP1 and EP2/EP4 subtypes of PGE2 receptors in IL-1beta-stimulated human gingival fibroblasts. J Periodont Res, 37 (1): 29-36. [PMID:11842936]

99. Nojima S, Fujita Y, Kimura KT, Nomura N, Suno R, Morimoto K, Yamamoto M, Noda T, Iwata S, Shigematsu H et al.. (2021) Cryo-EM Structure of the Prostaglandin E Receptor EP4 Coupled to G Protein. Structure, 29 (3): 252-260.e6. [PMID:33264604]

100. Nüsing RM, Treude A, Weissenberger C, Jensen B, Bek M, Wagner C, Narumiya S, Seyberth HW. (2005) Dominant role of prostaglandin E2 EP4 receptor in furosemide-induced salt-losing tubulopathy: a model for hyperprostaglandin E syndrome/antenatal Bartter syndrome. J Am Soc Nephrol, 16 (8): 2354-62. [PMID:15976003]

101. Okamoto F, Kajiya H, Fukushima H, Jimi E, Okabe K. (2004) Prostaglandin E2 activates outwardly rectifying Cl(-) channels via a cAMP-dependent pathway and reduces cell motility in rat osteoclasts. Am J Physiol, Cell Physiol, 287 (1): C114-24. [PMID:15044156]

102. Ono K, Akatsu T, Kugai N, Pilbeam CC, Raisz LG. (2003) The effect of deletion of cyclooxygenase-2, prostaglandin receptor EP2, or EP4 in bone marrow cells on osteoclasts induced by mouse mammary cancer cell lines. Bone, 33 (5): 798-804. [PMID:14623055]

103. Owen TA, Patel C, Wei S, Ho CS, Birmingham K, Sanchez S, Chung N, Cahill A, O'Malley JP, Barrett SD et al.. (2020) KMN-159, a novel EP4 receptor selective agonist, stimulates osteoblastic differentiation in cultured whole rat bone marrow. Gene, 748: 144668. [PMID:32334025]

104. Palikhe NS, Sin HJ, Kim SH, Sin HJ, Hwang EK, Ye YM, Park HS. (2012) Genetic variability of prostaglandin E2 receptor subtype EP4 gene in aspirin-intolerant chronic urticaria. J Hum Genet, 57 (8): 494-9. [PMID:22695889]

105. Philipose S, Konya V, Sreckovic I, Marsche G, Lippe IT, Peskar BA, Heinemann A, Schuligoi R. (2010) The prostaglandin E2 receptor EP4 is expressed by human platelets and potently inhibits platelet aggregation and thrombus formation. Arterioscler Thromb Vasc Biol, 30 (12): 2416-23. [PMID:21071691]

106. Prasanna G, Fortner J, Xiang C, Zhang E, Carreiro S, Anderson S, Sartnurak S, Wu G, Gukasyan H, Niesman M et al.. (2009) Ocular pharmacokinetics and hypotensive activity of PF-04475270, an EP4 prostaglandin agonist in preclinical models. Exp Eye Res, 89 (5): 608-17. [PMID:19445930]

107. Purdy KE, Arendshorst WJ. (2000) EP(1) and EP(4) receptors mediate prostaglandin E(2) actions in the microcirculation of rat kidney. Am J Physiol Renal Physiol, 279 (4): F755-64. [PMID:10997926]

108. Pöschke A, Kern N, Maruyama T, Pavenstädt H, Narumiya S, Jensen BL, Nüsing RM. (2012) The PGE(2)-EP4 receptor is necessary for stimulation of the renin-angiotensin-aldosterone system in response to low dietary salt intake in vivo. Am J Physiol Renal Physiol, 303 (10): F1435-42. [PMID:22993066]

109. Qian JY, Harding P, Liu Y, Shesely E, Yang XP, LaPointe MC. (2008) Reduced cardiac remodeling and function in cardiac-specific EP4 receptor knockout mice with myocardial infarction. Hypertension, 51 (2): 560-6. [PMID:18180401]

110. Rausch-Derra L, Huebner M, Wofford J, Rhodes L. (2016) A Prospective, Randomized, Masked, Placebo-Controlled Multisite Clinical Study of Grapiprant, an EP4 Prostaglandin Receptor Antagonist (PRA), in Dogs with Osteoarthritis. J Vet Intern Med, 30 (3): 756-63. [PMID:27075237]

111. Reader J, Holt D, Fulton A. (2011) Prostaglandin E2 EP receptors as therapeutic targets in breast cancer. Cancer Metastasis Rev, 30 (3-4): 449-63. [PMID:22002714]

112. Robb CT, McSorley HJ, Lee J, Aoki T, Yu C, Crittenden S, Astier A, Felton JM, Parkinson N, Ayele A et al.. (2018) Prostaglandin E2 stimulates adaptive IL-22 production and promotes allergic contact dermatitis. J Allergy Clin Immunol, 141 (1): 152-162. [PMID:28583370]

113. Rosenfield AR, Lowman RM, Taylor KJ. (1976) Urography in preoperative evaluation of abdominal aortic aneurysms. Urology, 7 (6): 652-4. [PMID:936389]

114. Rundhaug JE, Simper MS, Surh I, Fischer SM. (2011) The role of the EP receptors for prostaglandin E2 in skin and skin cancer. Cancer Metastasis Rev, 30 (3-4): 465-80. [PMID:22012553]

115. Sakuma Y, Tanaka K, Suda M, Komatsu Y, Yasoda A, Miura M, Ozasa A, Narumiya S, Sugimoto Y, Ichikawa A et al.. (2000) Impaired bone resorption by lipopolysaccharide in vivo in mice deficient in the prostaglandin E receptor EP4 subtype. Infect Immun, 68 (12): 6819-25. [PMID:11083800]

116. Sando T, Usui T, Tanaka I, Mori K, Sasaki Y, Fukuda Y, Namba T, Sugimoto Y, Ichikawa A, Narumiya S et al.. (1994) Molecular cloning and expression of rat prostaglandin E receptor EP2 subtype. Biochem Biophys Res Commun, 200 (3): 1329-33. [PMID:8185583]

117. Schlötzer-Schrehardt U, Zenkel M, Nüsing RM. (2002) Expression and localization of FP and EP prostanoid receptor subtypes in human ocular tissues. Invest Ophthalmol Vis Sci, 43 (5): 1475-87. [PMID:11980863]

118. Schneider A, Guan Y, Zhang Y, Magnuson MA, Pettepher C, Loftin CD, Langenbach R, Breyer RM, Breyer MD. (2004) Generation of a conditional allele of the mouse prostaglandin EP4 receptor. Genesis, 40 (1): 7-14. [PMID:15354288]

119. Schweda F, Klar J, Narumiya S, Nüsing RM, Kurtz A. (2004) Stimulation of renin release by prostaglandin E2 is mediated by EP2 and EP4 receptors in mouse kidneys. Am J Physiol Renal Physiol, 287 (3): F427-33. [PMID:15113745]

120. Segi E, Sugimoto Y, Yamasaki A, Aze Y, Oida H, Nishimura T, Murata T, Matsuoka T, Ushikubi F, Hirose M et al.. (1998) Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochem Biophys Res Commun, 246 (1): 7-12. [PMID:9600059]

121. Shibata-Nozaki T, Ito H, Mitomi H, Akaogi J, Komagata T, Kanaji T, Maruyama T, Mori T, Nomoto S, Ozaki S et al.. (2011) Endogenous prostaglandin E2 inhibits aberrant overgrowth of rheumatoid synovial tissue and the development of osteoclast activity through EP4 receptor. Arthritis Rheum, 63 (9): 2595-605. [PMID:21898865]

122. Soontrapa K, Honda T, Sakata D, Yao C, Hirata T, Hori S, Matsuoka T, Kita Y, Shimizu T, Kabashima K et al.. (2011) Prostaglandin E2-prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proc Natl Acad Sci USA, 108 (16): 6668-73. [PMID:21460251]

123. Stillman BA, Breyer MD, Breyer RM. (1999) Importance of the extracellular domain for prostaglandin EP(2) receptor function. Mol Pharmacol, 56 (3): 545-51. [PMID:10462542]

124. Suzawa T, Miyaura C, Inada M, Maruyama T, Sugimoto Y, Ushikubi F, Ichikawa A, Narumiya S, Suda T. (2000) The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology, 141 (4): 1554-9. [PMID:10746663]

125. Takayama K, García-Cardena G, Sukhova GK, Comander J, Gimbrone MA, Libby P. (2002) Prostaglandin E2 suppresses chemokine production in human macrophages through the EP4 receptor. J Biol Chem, 277 (46): 44147-54. [PMID:12215436]

126. Takeuchi K, Aihara E, Hayashi M, Sasaki Y. (2005) Role of prostaglandin E receptor subtypes in gastroduodenal HCO3- secretion. Med Chem, 1 (4): 395-403. [PMID:16789896]

127. Tang EH, Libby P, Vanhoutte PM, Xu A. (2012) Anti-inflammation therapy by activation of prostaglandin EP4 receptor in cardiovascular and other inflammatory diseases. J Cardiovasc Pharmacol, 59 (2): 116-23. [PMID:21697732]

128. Tang EH, Shimizu K, Christen T, Rocha VZ, Shvartz E, Tesmenitsky Y, Sukhova G, Shi GP, Libby P. (2011) Lack of EP4 receptors on bone marrow-derived cells enhances inflammation in atherosclerotic lesions. Cardiovasc Res, 89 (1): 234-43. [PMID:20736236]

129. Tang EH, Shvartz E, Shimizu K, Rocha VZ, Zheng C, Fukuda D, Shi GP, Sukhova G, Libby P. (2011) Deletion of EP4 on bone marrow-derived cells enhances inflammation and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol, 31 (2): 261-9. [PMID:21088251]

130. Theiler A, Konya V, Pasterk L, Maric J, Bärnthaler T, Lanz I, Platzer W, Schuligoi R, Heinemann A. (2016) The EP1/EP3 receptor agonist 17-pt-PGE2 acts as an EP4 receptor agonist on endothelial barrier function and in a model of LPS-induced pulmonary inflammation. Vascul Pharmacol, 87: 180-189. [PMID:27664754]

131. Toyoda Y, Morimoto K, Suno R, Horita S, Yamashita K, Hirata K, Sekiguchi Y, Yasuda S, Shiroishi M, Shimizu T et al.. (2019) Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface. Nat Chem Biol, 15 (1): 18-26. [PMID:30510193]

132. Wang W, He J, Yang J, Zhang C, Cheng Z, Zhang Y, Zhang Q, Wang P, Tang S, Wang X et al.. (2022) Scaffold Hopping Strategy to Identify Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy. J Med Chem, 65 (11): 7896-7917. [PMID:35640059]

133. Ward CL, Jamieson V, Nabata T, Sharpe J, Dozono K, Suto F, Hashimoto Y, Gussak I. (2016) First Clinical Experience with ONO-4232: A Randomized, Double-blind, Placebo-controlled Healthy Volunteer Study of a Novel Lusitropic Agent for Acutely Decompensated Heart Failure. Clin Ther, 38 (5): 1109-21. [PMID:27001444]

134. Whittle BJ, Silverstein AM, Mottola DM, Clapp LH. (2012) Binding and activity of the prostacyclin receptor (IP) agonists, treprostinil and iloprost, at human prostanoid receptors: treprostinil is a potent DP1 and EP2 agonist. Biochem Pharmacol, 84 (1): 68-75. [PMID:22480736]

135. Wilson RJ, Giblin GM, Roomans S, Rhodes SA, Cartwright KA, Shield VJ, Brown J, Wise A, Chowdhury J, Pritchard S et al.. (2006) GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist. Br J Pharmacol, 148 (3): 326-39. [PMID:16604093]

136. Wilson RJ, Giles H. (2005) Piglet saphenous vein contains multiple relaxatory prostanoid receptors: evidence for EP4, EP2, DP and IP receptor subtypes. Br J Pharmacol, 144 (3): 405-15. [PMID:15655509]

137. Wilson RJ, Rhodes SA, Wood RL, Shield VJ, Noel LS, Gray DW, Giles H. (2004) Functional pharmacology of human prostanoid EP2 and EP4 receptors. Eur J Pharmacol, 501 (1-3): 49-58. [PMID:15464062]

138. Wise H. (1998) Activation of the prostaglandin EP4-receptor subtype is highly coupled to inhibition of N-formyl-methionyl-leucyl-phenylalanine-stimulated rat neutrophil aggregation. Prostaglandins Leukot Essent Fatty Acids, 58 (1): 77-84. [PMID:9482170]

139. Xu HM, Wei W, Jia XY, Chang Y, Zhang L. (2007) Effects and mechanisms of total glucosides of paeony on adjuvant arthritis in rats. J Ethnopharmacol, 109 (3): 442-8. [PMID:17000070]

140. Yao C, Hirata T, Soontrapa K, Ma X, Takemori H, Narumiya S. (2013) Prostaglandin E₂ promotes Th1 differentiation via synergistic amplification of IL-12 signalling by cAMP and PI3-kinase. Nat Commun, 4: 1685. [PMID:23575689]

141. Yao C, Narumiya S. (2019) Prostaglandin-cytokine crosstalk in chronic inflammation. Br J Pharmacol, 176 (3): 337-354. [PMID:30381825]

142. Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T, Kuroiwa K, Sugimoto Y, Narumiya S. (2009) Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat Med, 15 (6): 633-40. [PMID:19465928]

143. Yokoyama U, Ishiwata R, Jin MH, Kato Y, Suzuki O, Jin H, Ichikawa Y, Kumagaya S, Katayama Y, Fujita T et al.. (2012) Inhibition of EP4 signaling attenuates aortic aneurysm formation. PLoS ONE, 7 (5): e36724. [PMID:22570740]

144. Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y. (2013) The prostanoid EP4 receptor and its signaling pathway. Pharmacol Rev, 65 (3): 1010-52. [PMID:23776144]

145. Yokoyama U, Minamisawa S, Quan H, Ghatak S, Akaike T, Segi-Nishida E, Iwasaki S, Iwamoto M, Misra S, Tamura K et al.. (2006) Chronic activation of the prostaglandin receptor EP4 promotes hyaluronan-mediated neointimal formation in the ductus arteriosus. J Clin Invest, 116 (11): 3026-34. [PMID:17080198]

146. Yoshida K, Oida H, Kobayashi T, Maruyama T, Tanaka M, Katayama T, Yamaguchi K, Segi E, Tsuboyama T, Matsushita M et al.. (2002) Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci USA, 99 (7): 4580-5. [PMID:11917107]

147. Yoshida Y, Matsumura H, Nakajima T, Mandai M, Urakami T, Kuroda K, Yoneda H. (2000) Prostaglandin E (EP) receptor subtypes and sleep: promotion by EP4 and inhibition by EP1/EP2. Neuroreport, 11 (10): 2127-31. [PMID:10923657]

148. Young RN, Billot X, Han Y, Slipetz DA, Chauret N, Belley M, Metters K, Mathieu MC, Greig GM, Denis D, Girard M. (2004) Discovery and Synthesis of a Potent, Selective and Orally Bioavailable EP4 Receptor Agonist. Heterocycles, 64 (1): 437-446.

149. Zhan P, Alander C, Kaneko H, Pilbeam CC, Guan Y, Zhang Y, Breyer MD, Raisz LG. (2005) Effect of deletion of the prostaglandin EP4 receptor on stimulation of calcium release from cultured mouse calvariae: impaired responsiveness in heterozygotes. Prostaglandins Other Lipid Mediat, 78 (1-4): 19-26. [PMID:16303601]

150. Zhang J, Rivest S. (1999) Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur J Neurosci, 11 (8): 2651-68. [PMID:10457163]

151. Zheng Y, Ritzenthaler JD, Sun X, Roman J, Han S. (2009) Prostaglandin E2 stimulates human lung carcinoma cell growth through induction of integrin-linked kinase: the involvement of EP4 and Sp1. Cancer Res, 69 (3): 896-904. [PMID:19176380]

Contributors

Show »

How to cite this page