SST<sub>2</sub> receptor | Somatostatin receptors | IUPHAR/BPS Guide to PHARMACOLOGY

SST2 receptor

Target id: 356

Nomenclature: SST2 receptor

Family: Somatostatin receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Currently no data for SST2 receptor in GtoImmuPdb

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 369 17q24 SSTR2 somatostatin receptor 2 155-156
Mouse 7 369 11 E2 Sstr2 somatostatin receptor 2 145,155
Rat 7 369 10q32.1 Sstr2 somatostatin receptor 2 70
Previous and Unofficial Names
somatotropin release-inhibiting factor receptor | SRIF-1
Database Links
Specialist databases
GPCRDB ssr2_human (Hs), ssr2_mouse (Mm), ssr2_rat (Rn)
Other databases
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands
cortistatin-14 {Sp: Mouse, Rat}
CST-17 {Sp: Human}
SRIF-14 {Sp: Human, Mouse, Rat}
SRIF-28 {Sp: Human, Mouse, Rat}
Comments: SRIF-14 and SRIF-28 are the active fragments of precursor somatostatin

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]LTT-SRIF-28 Hs Full agonist 9.9 – 10.0 pKd 125,130-131
pKd 9.9 – 10.0 [125,130-131]
[125I]Tyr3 SMS 201-995 Hs Full agonist 9.9 pKd 131-132
pKd 9.9 (Kd 1.3x10-10 M) [131-132]
[125I]Tyr10-CST14 Hs Full agonist 9.4 pKd 130,132
pKd 9.4 [130,132]
L-054,522 Hs Full agonist 11.0 pKi 157
pKi 11.0 [157]
L-779,976 Hs Full agonist 10.3 pKi 125
pKi 10.3 [125]
SRIF-14 {Sp: Human, Mouse, Rat} Hs Full agonist 8.9 – 10.5 pKi 23,45,102,105,125,130-132,157
pKi 8.9 – 10.5 [23,45,102,105,125,130-132,157]
BIM 23023 Hs Full agonist 9.4 pKi 102
pKi 9.4 [102]
BIM 23059 Hs Full agonist 9.4 pKi 102
pKi 9.4 [102]
L-363,377 Hs Full agonist 9.3 pKi 125,157
pKi 9.3 [125,157]
SRIF-28 {Sp: Human, Mouse, Rat} Hs Full agonist 8.4 – 10.2 pKi 23,45,102,130-132
pKi 8.4 – 10.2 [23,45,102,130-132]
octreotide Hs Full agonist 8.7 – 9.9 pKi 23,102,130-132,157
pKi 8.7 – 9.9 [23,102,130-132,157]
lanreotide Hs Full agonist 8.7 – 9.6 pKi 23,102,130-132
pKi 8.7 – 9.6 [23,102,130-132]
CST-17 {Sp: Human} Hs Full agonist 8.8 – 9.3 pKi 45,130,132
pKi 8.8 – 9.3 [45,130,132]
BIM 23068 Hs Full agonist 8.8 pKi 102
pKi 8.8 [102]
cortistatin-14 {Sp: Mouse, Rat} Hs Full agonist 8.4 – 9.0 pKi 130-132
pKi 8.4 – 9.0 [130-132]
BIM 23056 Hs Full agonist 6.2 – 6.7 pKi 23,130-132
pKi 6.2 – 6.7 [23,130-132]
pasireotide Rn Agonist 7.8 – 9.1 pEC50 33,67
pEC50 7.8 – 9.1 (EC50 1.75x10-8 – 8.6x10-10 M) [33,67]
[Ga-DOTA,Tyr3,Thr8]octreotide Hs Full agonist 9.7 pIC50 7,120
pIC50 9.7 (IC50 2x10-10 M) [7,120]
[125I][Tyr3,Thr8]octreotide Hs Full agonist 9.3 pIC50 151
pIC50 9.3 (IC50 4.7x10-10 M) [151]
[125I]Tyr3 SMS 201-995 Hs Full agonist 8.9 pIC50 151
pIC50 8.9 (IC50 1.3x10-9 M) [151]
[111In]DOTA-BOC-ATE Hs Full agonist 8.8 pIC50 54
pIC50 8.8 [54]
[111In]DOTA-NOC-ATE Hs Full agonist 8.7 pIC50 54
pIC50 8.7 [54]
[111In]DOTA-NOC Hs Full agonist 8.5 pIC50 152
pIC50 8.5 [152]
[111In,90Y]DOTA-NOC Hs Full agonist 8.4 pIC50 152
pIC50 8.4 [152]
[111In,90Y]DOTA-TOC Hs Full agonist 7.9 pIC50 152
pIC50 7.9 [152]
View species-specific agonist tables
Agonist Comments
Liu et al (2005) [98] describe L-779,976 as a full agonist in its ability to inhibit cAMP accumulation, whereas at high concentration it acts as a partial agonist of receptor internalisation (endocytosis). Similarly, SOM-230 and KE 108 have been reported to act as full or partial agonists depending on which outcome of receptor occupation is measured [33,67]. Both ligands exhibit biased agonism: they activate and antagonise distinct signalling pathways [33]. Although SOM-230 and KE 108 potently inhibited cAMP accumulation in sst2A expressing HEK cells, as would be expected of a somatostatin analog, these compounds were also able to antagonise somatostatin induced increase in intracellular calcium and behaved as partial agonists/antagonists for ERK phosphorylation [33].
Antagonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[D-Tyr8]CYN 154806 Hs Antagonist 8.1 – 8.9 pKd 100
pKd 8.1 – 8.9 [100]
BASS antagonist Hs Antagonist 9.5 pKi 14
pKi 9.5 (Ki 3x10-10 M) [14]
BIM 23627 Hs Antagonist 8.2 pIC50 144
pIC50 8.2 [144]
BIM 23454 Hs Antagonist 7.5 pIC50 144
pIC50 7.5 [144]
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family
G protein independent mechanism
G protein (identity unknown)
Adenylate cyclase inhibition
Potassium channel
Calcium channel
Other - See Comments
Comments:  G protein independent: Inhibition of phosphoinositide 3-kinase activity through direct molecular interactions (and competition) between sst2 first intracellular loop and the regulatory PI3K p85 subunit or filamin-A [19,97].
G-protein-dependent: activation of ERK and PI3K activity in sst2-transfected CHO cells [75] and [59].
Other: Inhibition of L and N voltage gated Ca2++ channels activity [158].
References:  65,68,79,129
Secondary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family
Gq/G11 family
G protein independent mechanism
G protein (identity unknown)
Adenylate cyclase stimulation
Phospholipase C stimulation
Potassium channel
Calcium channel
Phospholipase D stimulation
Other - See Comments
Comments:  PLC activation is via the Gq G-protein.
K+ channel activation and Ca2+ channel inhibition is via Gi/Go.
There is also protein tyrosine phosphatase (PTP) activation via a PTX-insensitive G-protein.
sst2 activates PLC via a mechanism involving Galpha14 and has also been shown to activate PLD in clonal beta cells HIT-T15 [35,62,84].
Adenylate cyclase stimulation has been reported at very high agonist doses in overexpression systems.
Other downstream events reported to be consequential to somatostatin binding include inhibition of the PI3K-mTOR pathway and cap-dependent translation [11,30,141], activation of the protein-tyrosine phosphatases SHP-1, SHP-2 or PTPeta [13,49] and inhibition of eNOS activity [8].
References:  4,8,11,13,24,30,35,40,49,62,72,79,84,107,140-141
Tissue Distribution
Peritumoral veins of human tumours.
Species:  Human
Technique:  Radioligand binding.
References:  41
Thymocytes.
Species:  Human
Technique:  RT-PCR.
References:  51
Spleen.
Species:  Human
Technique:  Immunohistochemistry.
References:  50
GI tract (gastrointestinal lymphatic and nervous components, but not in gastrointestinal circular and longitudinal smooth muscle).
Species:  Human
Technique:  Immunohistochemistry.
References:  57,116
Lymphoid tissue, plexus.
Species:  Human
Technique:  Immunohistochemistry, autoradiography.
References:  116
Brain.
Species:  Human
Technique:  Autoradiography.
References:  110
Vessels.
Species:  Human
Technique:  Autoradiography.
References:  41,112,117
Kidney.
Species:  Human
Technique:  Autoradiography.
References:  113
Pancreatic islets: co-localised with glucagon in alpha-cells.
Species:  Human
Technique:  immunocytochemistry.
References:  73
Lymphoid tissue.
Species:  Human
Technique:  Autoradiography, in vivo scintigraphy
References:  114,122
A and B pancreatic islet cells, but not in adjacent acinar cells.
Species:  Human
Technique:  Immunohistochemistry, autoradiography
References:  115
Lymphoid cells.
Species:  Human
Technique:  RT-PCR.
References:  143
Pancreatic exocrine tissue and pancreatic ductal adenocarcinoma.
Species:  Human
Technique:  Immunohistochemistry, RT-PCR
References:  25,76,142
Proliferating endothelium.
Species:  Human
Technique:  Immunocytochemistry.
References:  3
Macrophages.
Species:  Human
Technique:  RT-PCR.
References:  9
Pituitary.
Species:  Human
Technique:  RT-PCR.
References:  94
High levels in the cerebrum and kidney. Low levels in the jejunum, colon and liver.
Species:  Mouse
Technique:  RNA blotting.
References:  155
Parietal cells and ECL cells in stomach, and myenteric neurons.
Species:  Mouse
Technique:  Immunohistochemistry and LacZ knock-in.
References:  5
Cortex, amygdala, claustrum, endopiriform nucleus, arcuate and periventricular nuclei of the hypothalamus, medial habenular nucleus.
Species:  Mouse
Technique:  in situ hybridisation.
References:  20
Pancreas.
Species:  Rat
Technique:  Immunohistochemistry.
References:  66,137
High levels in the amygdala, cortex, hypothalamus and hippocampus. Medium levels in the striatum, midbrain, thalamus, cerebellum and spinal cord.
Species:  Rat
Technique:  Nuclease protection analysis.
References:  22
Pituitary, spleen and pancreas.
Species:  Rat
Technique:  Nuclease protection analysis.
References:  22
Pituitary.
Species:  Rat
Technique:  RT-PCR.
References:  38,46
Pituitary: somatotrophs (GH release), thyrotrophs (TSH release), lactotrophs (PRL release), as well as gonadotrophs and corticotrophs.
Species:  Rat
Technique:  double label in situ hybridisation.
References:  38
Fundic gastric mucosa of the stomach.
Species:  Rat
Technique:  RT-PCR.
References:  80
Aorta.
Species:  Rat
Technique:  RT-PCR and immunocytochemistry.
References:  69
Anterior pituitary.
Species:  Rat
Technique:  Immunohistochemistry.
References:  93
Hippocampus and many other brain areas.
Species:  Rat
Technique:  Immunohistochemistry.
References:  42
Hypothalamus: Medial preoptic area, suprachiasmatic nucleus, arcuate nucleus, anterior hypothalamic nucleus, ventromedial and dorsomedial nuclei, medial tuberal nucleus.
Species:  Rat
Technique:  in situ hybridisation.
References:  16
Adrenal gland.
Species:  Rat
Technique:  Autoradiography.
References:  91
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of AMPA/Kainate receptor activation in mouse hypothalamic neurons expressing sst2 receptors.
Species:  Mouse
Tissue:  Hypothalamic neurons grown in primary cell culture.
Response measured:  Decrease in AMPA/Kainate receptor-mediated response to glutamate.
References:  77
Measurement of GH release from rat anterior pituitary.
Species:  Rat
Tissue:  Rat anterior pituitary.
Response measured:  Inhibition of GH release.
References:  106
Measurement of CAMP accumulation in CHO cells stably transfected with human sst2 receptors.
Species:  Human
Tissue:  CHO cells expressing the luciferase reporter gene under the control of the serum response element, expressing recombinant human sst2 receptors.
Response measured:  Inhibition of cAMP accumulation.
References:  99
Measurement of agonist-driven luciferase expression in CHO cells stably transfected with human sst2 receptors.
Species:  Human
Tissue:  CHO cells expressing the luciferase reporter gene under the control of the serum response element, expressing recombinant sst2 receptors.
Response measured:  Inhibition of agonist-driven expression of the luciferase reporter gene.
References:  99
Measurement of the cAMP and Ca2+ levels in GC cells (growth cells) from a rat somatotroph tumour treated with the sst2 selective agonist L-779,976.
Species:  Rat
Tissue:  GC cells (growth cells) from a rat somatotroph tumour endogenously expressing all 5 SRIF receptors.
Response measured:  Inhibition of basal cAMP and Ca2+ levels.
References:  31
Measurement of GH release from GC cells (growth cells) from a rat somatotroph tumour treated with the sst2 selective agonist L-779,976.
Species:  Rat
Tissue:  GC cells (growth cells) from a rat somatotroph tumour endogenously expressing all 5 sst receptors.
Response measured:  Reduction in GH secretion.
References:  31
Measurement of GH release from primary cultures of rat anterior pituitary cells.
Species:  Rat
Tissue:  primary cultures of rat anterior pituitary cells.
Response measured:  Inhibition of GH release.
References:  157
Measurement of GH release in in vivo rat studies.
Species:  Rat
Tissue:  In vivo.
Response measured:  Reduction in circulating GH.
References:  157
Measurement of protein tyrosine phosphatase, MAPK and AP-1 activity in human U343 glioma cells expressing only sst2.
Species:  Human
Tissue:  human U343 glioma cells.
Response measured:  Activation of the protein tyrosine phosphatase SHP2, dephosphorylation of MAPK and inhibition of AP-1 activation.
References:  60
Measurement of GH, TSH and PRL secretion in primary human fetal pituitary cells, when treated with a sst2 selective agonist.
Species:  Human
Tissue:  Primary human fetal pituitary cells.
Response measured:  Reduction of GH, TSH and PRL secretion.
References:  128
Measurement of protein tyrosine phosphatase activity in the S49 cell line derived from a murine T cell lymphoma.
Species:  Mouse
Tissue:  S49 cells
Response measured:  Stimulation of protein tyrosine phosphatase activity.
References:  40
Measurement of cAMP accumulation in HEK 293 cells stably transfected with human sst2 receptors.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  68
Measurement of Ca2+ current in AtT-20 cells expressing sst2 receptors.
Species:  Mouse
Tissue:  AtT-20 cell line (mouse anterior pituitary).
Response measured:  Coupling to L-type Ca2+ current.
References:  140
Measurement of AC activity (cAMP levels) in CCL39 cells stably transfected with human sst2 receptors.
Species:  Human
Tissue:  CCL39 cells.
Response measured:  Inhibition of AC activity.
References:  129
Measurement of ECAR (extracellular acidification rate) in F4C1 cells stably transfected with mouse sst2 receptors.
Species:  Mouse
Tissue:  F4C1 cells (rat pituitary).
Response measured:  Acute increase in ECAR, followed by decrease.
References:  34
Measurement of GIRK currents (inward potassium currents) in Xenopus oocyte cells stably transfected with rat sst2 receptors and GIRK1 channels.
Species:  Rat
Tissue:  Xenopus oocytes.
Response measured:  Activation of GIRK current.
References:  72
Measurement of PLC activity and cytosolic Ca2+ levels in COS-7 cells stably transfected with human sst2 receptors.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Activation of PLC and Ca2+ mobilisation.
References:  4
Measurement of NOS activity (NO production) in CHO-K1 cells stably transfected with rat sst2 receptors.
Species:  Rat
Tissue:  CHO-K1 cells.
Response measured:  Inhibition of NO production.
References:  8
Receptor internalisation.
Species:  Rat
Tissue:  Pituitary
Response measured:  Receptor endocytosis.
References:  61
Receptor internalisation.
Species:  Rat
Tissue:  Pancreatic acinar cells
Response measured:  Receptor endocytosis.
References:  44
Receptor phosphorylation.
Species:  Rat
Tissue:  CHO (Chinese Hamster Ovary) cells
Response measured:  Site specific sst2A phosphorylation.
References:  53,85
Receptor phosphorylation.
Species:  Rat
Tissue:  Pituitary
Response measured:  Receptor phosphorylation.
References:  61
Receptor phosphorylation.
Species:  Human
Tissue:  Neuroendocrine tumours
Response measured:  Receptor phosphorylation.
References:  87
In vivo agonist-induced internalisation of sst2 receptors in somatostatin target tissues.
Species:  Rat
Tissue:  AR42J tumour model in rat.
Response measured:  The sst2 receptors in treated animals are detected intracellularly after agonist treatment.
References:  150
Internalisation of sst2 in neuroendocrine tumour cells of patients treated with octreotide determined by IHC.
Species:  Human
Tissue:  Neuroendocrine tumours (pancreatic, bronchial, bile duct).
Response measured:  Sst2 receptors can be internalised in sst2-expressing neuroendocrine tumors in patients under octreotide therapy.
References:  121
Physiological Functions
Inhibition of GH release (synergistic with sst5).
Species:  Human
Tissue:  Primary fetal pituitary cell culture.
References:  108
Inhibition of gastric acid secretion.
Species:  Mouse
Tissue:  Stomach.
References:  90,103
Inhibition of histamine release leading to inhibition of gastric acid release.
Species:  Mouse
Tissue:  Stomach.
References:  71
Inhibition of glucagon release.
Species:  Mouse
Tissue:  Pancreas.
References:  138
Control of dopamine and glutamate release in the striatum.
Species:  Mouse
Tissue:  Striatum.
References:  6
Stimulation of ductile bile absorption and inhibition of ductile bile secretion.
Species:  Mouse
Tissue:  Cholangiocytes.
References:  56
Inhibition of peristalsis in the jejunum.
Species:  Mouse
Tissue:  Jejunum.
References:  1
Inhibition of peristalsis in the jejunum.
Species:  Rat
Tissue:  Jejunum.
References:  1
Lymphocyte activation, development and tumorgenesis.
Species:  Human
Tissue:  Lymphatic cells.
References:  143
Decrease in AMPA/Kainate receptor-mediated responses to glutamate.
Species:  Mouse
Tissue:  Hypothalamic neurones grown in primary cell culture.
References:  77
Inhibition of GH release (with sst3).
Species:  Rat
Tissue:  Hepatocytes (liver cells).
References:  96
Modulation of in vivo gamma oscillation and odor discrimination.
Species:  Mouse
Tissue:  Olfactory bulb.
References:  82
Inhibition of glucagon release.
Species:  Rat
Tissue:  Batch incubations of isolated rat islets, perifused isolated rat islets, and isolated perfused rat pancreas.
References:  29
Positive regulation of neuronal migration during brain development, inhibition of keratinocyte migration and delay in epidermal wound healing
Species:  Human
Tissue:  Brain, epidermis.
References:  81,149
Inhibition of insulin and glucagon secretion.
Species:  Human
Tissue:  Isolated human pancreatic islet cells.
References:  133
Positive regulation of food intake, grooming behaviour and rectal temperature.
Species:  Rat
Tissue:  Brain.
References:  136
Anxiolytic effects in both the amygdala and the septum.
Species:  Rat
Tissue:  Brain.
References:  159
Inhibition of cell proliferation in vivo.
Species:  Rat
Tissue:  Glioma.
References:  12
Inhibition of cell proliferation and/or induction of cell apoptosis in vitro and in vivo.
Species:  Human
Tissue:  Endothelial cells, fibroblasts, lymphocytes, normal and tumor epithelial, neuroendocrine and pituitary cells.
References:  2,52,58,74,78,124,139,153
Physiological Consequences of Altering Gene Expression
Mice lacking in the sst2 receptor in the retina show a reduction in size of rod bipolar cell (RBC) axonal endings, up-regulation of the sst1 receptor at/near the eye opening, and a decrease in SRIF levels.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  27
Mice with the sst2 gene removed show a normal level of locomotion and coordination but severe impairment in beam-walking, a test for fine motor control.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  6
Mice lacking the sst2 receptor show a reduction in the inhibition of glucagon release by somatostatin, but no change in the inhibition of insulin secretion, from mouse pancreatic islets. This suggests the involvement of the sst2 receptor in the inhibition of glucagon secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  138
Mice lacking the sst2 receptor show no change in either basal acid secretion or secretion in response to meal, despite the inhibition of gastric acid being shown to be mediated through sst2 receptors. This lack of inhibition via SRIF is not compensated for by other somatostatin receptor subtypes, and so must be via a somatostatin-independent mechanism.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  103
The migrating motor complexes in the jejunum of rats, mice and sst2 receptor knock-out mice were studied, and the result was that there is a non-sst2 receptor mediated inhibition of peristalsis in the knock-out mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  1
Studies involving sst2 knock-out mice show that the GH-mediated negative feedback loop on GHRH neurons involves the sst2 receptor.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  160
Studies involving sst2 receptor and glycoprotein hormone α-subunit knock-out mice (Sstr2-/-,αGsu-/-) develop hyperplasia of thyrotropes. Sst2 receptors are shown not to be required in the feedback loop regulating TSH secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  21
Studies using sst2 receptor knock-out mice show an involvement of the sst2 receptor in modulating locomotor, exploratory and emotional reactivity in mice. They showed an increased release of ACTH (a regulator of the stress response) from the pituitary.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  148
Mice lacking the sst2 receptor show decreased susceptibility to kainate-induced seizures suggesting that sst2 receptors in mice do not mediate direct inhibitory actions of somatostatin on neuronal excitability.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  95
Mice lacking the sst2 receptor subtype showed lower gastric pH values and no change in gastrin levels, suggesting that sst2 in wild-type mice is inhibiting gastric acid secretion by inhibiting the actions of gastrin.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  90
Mice with sst2 knockout are more sensitive than wild-type to hypoxia-induced neovascularization in the retina.
Species:  Mouse
Tissue:  Retina
Technique:  Knockout (homologous recombination).
References:  37
sst2 decreases cell viability and hormonal hypersecretion and reverses octreotide resistance of human pituitary adenomas and exhibits a tumour suppressive function and sensitisation to octreotide.
Species:  Human
Tissue:  Primary cultures of human pituitary adenomas.
Technique:  Gene over-expression.
References:  2
Overexpression of sst2 in human pancreatic cancer cells inhibits tumour growth, angiogenesis and metastasis, and induces apoptosis resulting in a tumour suppressive function.
Species:  Human
Tissue:  Exocrine pancreatic cancer cells.
Technique:  Gene over-expression.
References:  17,26,39,58,76,124,146
Mice with sst2 knockout under diet-induced obesity have hyperglycemia, nonfasting hyperglucagonemia and decreased hepatic glycogen deposition (hyperglucagonemia).
Species:  Mouse
Tissue:  Pancreas, liver.
Technique:  Gene knock-outs.
References:  134
Increased anxiety-related behaviour in a number of behavioural paradigms, while locomotor and exploratory activity was decreased in stress-inducing situations.
Species:  Mouse
Tissue:  Neurons.
Technique:  Gene knock-outs.
References:  148
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Sstr2tm1Pce Sstr2tm1Pce/Sstr2tm1Pce
B6.129P2-Sstr2
MGI:98328  MP:0004924 abnormal behavior PMID: 12752788 
Sstr2tm1Pce Sstr2tm1Pce/Sstr2tm1Pce
involves: 129P2/OlaHsd * C57BL/6
MGI:98328  MP:0004994 abnormal brain wave pattern PMID: 15548214 
Sstr2tm1Pce Sstr2tm1Pce/Sstr2tm1Pce
involves: 129S4/SvJae
MGI:98328  MP:0006074 abnormal retinal rod bipolar cell morphology PMID: 17425570 
Sstr2tm1Pce Sstr2tm1Pce/Sstr2tm1Pce
B6.129P2-Sstr2
MGI:98328  MP:0006074 abnormal retinal rod bipolar cell morphology PMID: 14750962 
Sstr2tm1Pce Sstr2tm1Pce/Sstr2tm1Pce
B6.129P2-Sstr2
MGI:98328  MP:0004494 abnormal synaptic glutamate release PMID: 12752788 
Sstr2tm1Pce Sstr2tm1Pce/Sstr2tm1Pce
B6.129P2-Sstr2
MGI:98328  MP:0005643 decreased dopamine level PMID: 12752788 
Sstr2tm1Rgs Sstr2tm1Rgs/Sstr2tm1Rgs
involves: 129S7/SvEvBrd * C57BL/6
MGI:98328  MP:0001417 decreased exploration in new environment PMID: 11029646 
Sstr2tm1Pce Sstr2tm1Pce/Sstr2tm1Pce
B6.129P2-Sstr2
MGI:98328  MP:0003038 decreased infarction size PMID: 15601946 
Sstr2tm1Rgs Sstr2tm1Rgs/Sstr2tm1Rgs
involves: 129S7/SvEvBrd * C57BL/6
MGI:98328  MP:0002757 decreased vertical activity PMID: 11029646 
Sstr2tm1Rgs Sstr2tm1Rgs/Sstr2tm1Rgs
involves: 129S7/SvEvBrd * C57BL/6
MGI:98328  MP:0001402 hypoactivity PMID: 11029646 
Sstr2tm1Pce Sstr2tm1Pce/Sstr2tm1Pce
B6.129P2-Sstr2
MGI:98328  MP:0001405 impaired coordination PMID: 12752788 
Sstr2tm1Rgs Sstr2tm1Rgs/Sstr2tm1Rgs
involves: 129S7/SvEvBrd * C57BL/6
MGI:98328  MP:0001363 increased anxiety-related response PMID: 11029646 
Sstr2tm1Rgs Sstr2tm1Rgs/Sstr2tm1Rgs
involves: 129S7/SvEvBrd * C57BL/6
MGI:98328  MP:0001748 increased circulating adrenocorticotropin level PMID: 11029646 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Endocrine tumors
Role: 
References:  10
Disease:  Gastrointestinal neuroendocrine tumor
Disease Ontology: DOID:4148
Role: 
References:  123
Disease:  Insulinoma
Disease Ontology: DOID:3892
Orphanet: ORPHA97279
Role: 
References:  147
Gene Expression and Pathophysiology
SST2 mRNA levels are lower in subjects with schizophrenia.
Tissue or cell type:  Dorsolateral prefrontal cortex (DLPFC).
Pathophysiology:  Schizophrenia.
Species:  Human
Technique:  In-situ hybridisation.
References:  18
Loss of somatostatin receptor 2 confers resistance to octreotide in GH secreting adenomas
Tissue or cell type:  Surgically removed somatotroph tumour tissue.
Pathophysiology:  Octeotride resistant acromegaly.
Species:  None
Technique:  Immunocytochemistry.
References:  104
Biologically Significant Variants
Type:  Splice variant
Species:  Mouse
Description:  Existence of a splice variant, sst2(b), lacking around 23 amino acid residues and differing in 15 amino acids at the C-terminus. The mRNA of this splice variant is more abundant in mouse tissues than the unspliced form, sst2(a).
References:  145
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A genome-wide association study identified the rs1466113 polymorphism (G>C) in the SSTR2 and associates this with obesity and food intake in a Mediterranean population and describes this as one of the polymorphisms most significantly associated with body mass index (BMI).
SNP accession: 
References:  135
Type:  Splice variant
Species:  Human
Description:  Sequence analysis of the human SSTR2 gene shows conserved intron/exon boundaries and amino acid sequence between it and the murine Sstr2 genes, suggesting that the human SSTR2 gene is also capable of generating splice variants.
References:  101
Type:  Splice variant
Species:  Rat
Description:  Existence of the splice variant sst2(b) in the rat stomach. Expression of the spliced and unspliced (sst2(a)) receptors in CHO-K1 cells shows minimal differences in the operational characteristics of the receptor.
References:  126
General Comments
The sst2 receptor can be targeted by somatostatin analogues to inhibit hormone secretion for pituitary tumors and GEP-NET [36]. The receptor can also be targeted for nuclear imaging and radionuclide treatment [88].

References

Show »

1. Abdu F, Hicks GA, Hennig G, Allen JP, Grundy D. (2002) Somatostatin sst(2) receptors inhibit peristalsis in the rat and mouse jejunum. Am J Physiol Gastrointest Liver Physiol, 282: G624-G633. [PMID:11897621]

2. Acunzo J, Thirion S, Roche C, Saveanu A, Gunz G, Germanetti AL, Couderc B, Cohen R, Figarella-Branger D, Dufour H et al.. (2008) Somatostatin receptor sst2 decreases cell viability and hormonal hypersecretion and reverses octreotide resistance of human pituitary adenomas. Cancer Res., 68 (24): 10163-70. [PMID:19074883]

3. Adams RL, Adams IP, Lindow SW, Zhong W, Atkin SL. (2005) Somatostatin receptors 2 and 5 are preferentially expressed in proliferating endothelium. Br. J. Cancer, 92 (8): 1493-8. [PMID:15812556]

4. Akbar M, Okajima F, Tomura H, Majid MA, Yamada Y, Seino S, Kondo Y. (1994) Phospholipase C activation and Ca2+ mobilization by cloned human somatostatin receptor subtypes 1-5, in transfected COS-7 cells. FEBS Lett, 348: 192-196. [PMID:8034040]

5. Allen JP, Canty AJ, Schulz S, Humphrey PP, Emson PC, Young HM. (2002) Identification of cells expressing somatostatin receptor 2 in the gastrointestinal tract of Sstr2 knockout/lacZ knockin mice. J. Comp. Neurol., 454 (3): 329-40. [PMID:12442323]

6. Allen JP, Hathway GJ, Clarke NJ, Jowett MI, Topps S, Kendrick KM, Humphrey PP, Wilkinson LS, Emson PC. (2003) Somatostatin receptor 2 knockout/lacZ knockin mice show impaired motor coordination and reveal sites of somatostatin action within the striatum. Eur J Neurosci, 17: 1881-1895. [PMID:12752788]

7. Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, Maecke H. (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals?. Eur. J. Nucl. Med. Mol. Imaging, 34 (7): 982-93. [PMID:17225119]

8. Arena S, Pattarozzi A, Corsaro A, Schettini G, Florio T. (2005) Somatostatin receptor subtype-dependent regulation of nitric oxide release: involvement of different intracellular pathways. Mol Endocrinol, 19: 255-267. [PMID:15388796]

9. Armani C, Catalani E, Balbarini A, Bagnoli P, Cervia D. (2007) Expression, pharmacology, and functional role of somatostatin receptor subtypes 1 and 2 in human macrophages. J. Leukoc. Biol., 81 (3): 845-55. [PMID:17148691]

10. Asnacios A, Courbon F, Rochaix P, Bauvin E, Cances-Lauwers V, Susini C, Schulz S, Boneu A, Guimbaud R, Buscail L. (2008) Indium-111-pentetreotide scintigraphy and somatostatin receptor subtype 2 expression: new prognostic factors for malignant well-differentiated endocrine tumors. J. Clin. Oncol., 26 (6): 963-70. [PMID:18281671]

11. Azar R, Najib S, Lahlou H, Susini C, Pyronnet S. (2008) Phosphatidylinositol 3-kinase-dependent transcriptional silencing of the translational repressor 4E-BP1. Cell. Mol. Life Sci., 65 (19): 3110-7. [PMID:18810319]

12. Barbieri F, Pattarozzi A, Gatti M, Aiello C, Quintero A, Lunardi G, Bajetto A, Ferrari A, Culler MD, Florio T. (2009) Differential efficacy of SSTR1, -2, and -5 agonists in the inhibition of C6 glioma growth in nude mice. Am. J. Physiol. Endocrinol. Metab., 297 (5): E1078-88. [PMID:19706788]

13. Barbieri F, Pattarozzi A, Gatti M, Porcile C, Bajetto A, Ferrari A, Culler MD, Florio T. (2008) Somatostatin receptors 1, 2, and 5 cooperate in the somatostatin inhibition of C6 glioma cell proliferation in vitro via a phosphotyrosine phosphatase-eta-dependent inhibition of extracellularly regulated kinase-1/2. Endocrinology, 149 (9): 4736-46. [PMID:18566118]

14. Bass RT, Buckwalter BL, Patel BP, Pausch MH, Price LA, Strnad J, Hadcock JR. (1996) Identification and characterization of novel somatostatin antagonists. Mol. Pharmacol., 50 (4): 709-15. [PMID:8863814]

15. Baumbach WR, Carrick TA, Pausch MH, Bingham B, Carmignac D, Robinson IC, Houghten R, Eppler CM, Price LA, Zysk JR. (1998) A linear hexapeptide somatostatin antagonist blocks somatostatin activity in vitro and influences growth hormone release in rats. Mol Pharmacol, 54: 864-873. [PMID:9804621]

16. Beaudet A, Greenspun D, Raelson J, Tannenbaum GS. (1995) Patterns of expression of SSTR1 and SSTR2 somatostatin receptor subtypes in the hypothalamus of the adult rat: relationship to neuroendocrine function. Neuroscience, 65: 551-561. [PMID:7777168]

17. Benali N, Cordelier P, Calise D, Pages P, Rochaix P, Nagy A, Esteve JP, Pour PM, Schally AV, Vaysse N et al.. (2000) Inhibition of growth and metastatic progression of pancreatic carcinoma in hamster after somatostatin receptor subtype 2 (sst2) gene expression and administration of cytotoxic somatostatin analog AN-238. Proc. Natl. Acad. Sci. U.S.A., 97 (16): 9180-5. [PMID:10900262]

18. Beneyto M, Morris HM, Rovensky KC, Lewis DA. (2012) Lamina- and cell-specific alterations in cortical somatostatin receptor 2 mRNA expression in schizophrenia. Neuropharmacology, 62 (3): 1598-605. [PMID:21215273]

19. Bousquet C, Guillermet-Guibert J, Saint-Laurent N, Archer-Lahlou E, Lopez F, Fanjul M, Ferrand A, Fourmy D, Pichereaux C, Monsarrat B et al.. (2006) Direct binding of p85 to sst2 somatostatin receptor reveals a novel mechanism for inhibiting PI3K pathway. EMBO J., 25 (17): 3943-54. [PMID:16917505]

20. Breder CD, Yamada Y, Yasuda K, Seino S, Saper CB, Bell GI. (1992) Differential expression of somatostatin receptor subtypes in brain. J Neurosci, 12: 3920-3934. [PMID:1403090]

21. Brinkmeier ML, Stahl JH, Gordon DF, Ross BD, Sarapura VD, Dowding JM, Kendall SK, Lloyd RV, Ridgway EC, Camper SA. (2001) Thyroid hormone-responsive pituitary hyperplasia independent of somatostatin receptor 2. Mol Endocrinol, 15: 2129-2136. [PMID:11731614]

22. Bruno JF, Xu Y, Song J, Berelowitz M. (1993) Tissue distribution of somatostatin receptor subtype messenger ribonucleic acid in the rat. Endocrinology, 133: 2561-2567. [PMID:8243278]

23. Bruns C, Raulf F, Hoyer D, Schloos J, Lubbert H, Weckbecker G. (1996) Binding properties of somatostatin receptor subtypes. Metabolism, 45: 17-20. [PMID:8769372]

24. Buscail L, Delesque N, Estève JP, Saint-Laurent N, Prats H, Clerc P, Robberecht P, Bell GI, Liebow C, Schally AV et al.. (1994) Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by human somatostatin receptor subtypes SSTR1 and SSTR2. Proc. Natl. Acad. Sci. U.S.A., 91 (6): 2315-9. [PMID:7907795]

25. Buscail L, Saint-Laurent N, Chastre E, Vaillant JC, Gespach C, Capella G, Kalthoff H, Lluis F, Vaysse N, Susini C. (1996) Loss of sst2 somatostatin receptor gene expression in human pancreatic and colorectal cancer. Cancer Res., 56 (8): 1823-7. [PMID:8620499]

26. Carrere N, Vernejoul F, Souque A, Asnacios A, Vaysse N, Pradayrol L, Susini C, Buscail L, Cordelier P. (2005) Characterization of the bystander effect of somatostatin receptor sst2 after in vivo gene transfer into human pancreatic cancer cells. Hum. Gene Ther., 16 (10): 1175-93. [PMID:16218779]

27. Casini G, Dal Monte M, Petrucci C, Gambellini G, Grouselle D, Allen JP, Kreienkamp HJ, Richter D, Epelbaum J, Bagnoli P. (2004) Altered morphology of rod bipolar cell axonal terminals in the retinas of mice carrying genetic deletion of somatostatin subtype receptor 1 or 2. Eur J Neurosci, 19: 43-54. [PMID:14750962]

28. Castro SW, Buell G, Feniuk W, Humphrey PP. (1996) Differences in the operational characteristics of the human recombinant somatostatin receptor types, sst1 and sst2, in mouse fibroblast (Ltk-) cells. Br. J. Pharmacol., 117 (4): 639-46. [PMID:8646408]

29. Cejvan K, Coy DH, Efendic S. (2003) Intra-islet somatostatin regulates glucagon release via type 2 somatostatin receptors in rats. Diabetes, 52 (5): 1176-81. [PMID:12716749]

30. Cerovac V, Monteserin-Garcia J, Rubinfeld H, Buchfelder M, Losa M, Florio T, Paez-Pereda M, Stalla GK, Theodoropoulou M. (2010) The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells. Cancer Res., 70 (2): 666-74. [PMID:20068168]

31. Cervia D, Zizzari P, Pavan B, Schuepbach E, Langenegger D, Hoyer D, Biondi C, Epelbaum J, Bagnoli P. (2003) Biological activity of somatostatin receptors in GC rat tumour somatotrophs: evidence with sst1-sst5 receptor-selective nonpeptidyl agonists. Neuropharmacology, 44: 672-685. [PMID:12668053]

32. Cescato R, Erchegyi J, Waser B, Piccand V, Maecke HR, Rivier JE, Reubi JC. (2008) Design and in vitro characterization of highly sst2-selective somatostatin antagonists suitable for radiotargeting. J. Med. Chem., 51 (13): 4030-7. [PMID:18543899]

33. Cescato R, Loesch KA, Waser B, Mäcke HR, Rivier JE, Reubi JC, Schonbrunn A. (2010) Agonist-biased signaling at the sst2A receptor: the multi-somatostatin analogs KE108 and SOM230 activate and antagonize distinct signaling pathways. Mol. Endocrinol., 24 (1): 240-9. [PMID:19910453]

34. Chen L, Tashjian AH. (1999) Identification of distinct signalling pathways for somatostatin receptors SSTR1 and SSTR2 as revealed by microphysiometry. Cell Signal, 11: 499-505. [PMID:10405760]

35. Cheng H, Grodnitzky JA, Yibchok-anun S, Ding J, Hsu WH. (2005) Somatostatin increases phospholipase D activity and phosphatidylinositol 4,5-bisphosphate synthesis in clonal beta cells HIT-T15. Mol. Pharmacol., 67 (6): 2162-72. [PMID:15784846]

36. Colao A, Faggiano A, Pivonello R. (2010) Somatostatin analogues: treatment of pituitary and neuroendocrine tumors. Prog. Brain Res., 182: 281-94. [PMID:20541670]

37. Dal Monte M, Cammalleri M, Martini D, Casini G, Bagnoli P. (2007) Antiangiogenic role of somatostatin receptor 2 in a model of hypoxia-induced neovascularization in the retina: results from transgenic mice. Invest. Ophthalmol. Vis. Sci., 48 (8): 3480-9. [PMID:17652715]

38. Day R, Dong W, Panetta R, Kraicer J, Greenwood MT, Patel YC. (1995) Expression of mRNA for somatostatin receptor (sstr) types 2 and 5 in individual rat pituitary cells. A double labeling in situ hybridization analysis. Endocrinology, 136: 5232-5235. [PMID:7588263]

39. Delesque N, Buscail L, Estève JP, Saint-Laurent N, Müller C, Weckbecker G, Bruns C, Vaysse N, Susini C. (1997) sst2 somatostatin receptor expression reverses tumorigenicity of human pancreatic cancer cells. Cancer Res., 57 (5): 956-62. [PMID:9041201]

40. Dent P, Wang Y, Gu YZ, Wood SL, Reardon DB, Mangues R, Pellicer A, Schonbrunn A, Sturgill TW. (1997) S49 cells endogenously express subtype 2 somatostatin receptors which couple to increase protein tyrosine phosphatase activity in membranes and down-regulate Raf-1 activity in situ. Cell Signal, 9: 539-549. [PMID:9419818]

41. Denzler B, Reubi JC. (1999) Expression of somatostatin receptors in peritumoral veins of human tumors. Cancer, 85: 188-198. [PMID:9921992]

42. Dournaud P, Gu YZ, Schonbrunn A, Mazella J, Tannenbaum GS, Beaudet A. (1996) Localization of the somatostatin receptor SST2A in rat brain using a specific anti-peptide antibody. J. Neurosci., 16 (14): 4468-78. [PMID:8699257]

43. Eisenwiener KP, Prata MI, Buschmann I, Zhang HW, Santos AC, Wenger S, Reubi JC, Mäcke HR. (2002) NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug. Chem., 13 (3): 530-41. [PMID:12009943]

44. Elberg G, Hipkin RW, Schonbrunn A. (2002) Homologous and heterologous regulation of somatostatin receptor 2. Mol. Endocrinol., 16 (11): 2502-14. [PMID:12403839]

45. Engstrom M, Tomperi J, El-Darwish K, Ahman M, Savola JM, Wurster S. (2005) Superagonism at the human somatostatin receptor subtype 4. J Pharmacol Exp Ther, 312: 332-338. [PMID:15333679]

46. Epelbaum J, Briard N, Djordjijevic D, Dutour A, Meyerhoff W, Oliver C, Slama A, Viollet C, Zhang J. (1998) Characterization of somatostatin receptor subtypes in mammalian pituitary. Ann N Y Acad Sci, 839: 249-253. [PMID:9629161]

47. Fani M, Del Pozzo L, Abiraj K, Mansi R, Tamma ML, Cescato R, Waser B, Weber WA, Reubi JC, Maecke HR. (2011) PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference. J. Nucl. Med., 52 (7): 1110-8. [PMID:21680701]

48. Fani M, Mueller A, Tamma ML, Nicolas G, Rink HR, Cescato R, Reubi JC, Maecke HR. (2010) Radiolabeled bicyclic somatostatin-based analogs: a novel class of potential radiotracers for SPECT/PET of neuroendocrine tumors. J. Nucl. Med., 51 (11): 1771-9. [PMID:20956465]

49. Ferjoux G, Lopez F, Esteve JP, Ferrand A, Vivier E, Vely F, Saint-Laurent N, Pradayrol L, Buscail L, Susini C. (2003) Critical role of Src and SHP-2 in sst2 somatostatin receptor-mediated activation of SHP-1 and inhibition of cell proliferation. Mol. Biol. Cell, 14 (9): 3911-28. [PMID:12972574]

50. Ferone D, Pivonello R, Kwekkeboom DJ, Gatto F, Ameri P, Colao A, de Krijger RR, Minuto F, Lamberts SW, van Hagen PM et al.. (2012) Immunohistochemical localization and quantitative expression of somatostatin receptors in normal human spleen and thymus: Implications for the in vivo visualization during somatostatin receptor scintigraphy. J. Endocrinol. Invest., 35 (5): 528-34. [PMID:21765239]

51. Ferone D, Pivonello R, Van Hagen PM, Dalm VA, Lichtenauer-Kaligis EG, Waaijers M, Van Koetsveld PM, Mooy DM, Colao A, Minuto F et al.. (2002) Quantitative and functional expression of somatostatin receptor subtypes in human thymocytes. Am. J. Physiol. Endocrinol. Metab., 283 (5): E1056-66. [PMID:12376335]

52. Florio T, Barbieri F, Spaziante R, Zona G, Hofland LJ, van Koetsveld PM, Feelders RA, Stalla GK, Theodoropoulou M, Culler MD et al.. (2008) Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas: a multi-center study. Endocr. Relat. Cancer, 15 (2): 583-96. [PMID:18509006]

53. Ghosh M, Schonbrunn A. (2011) Differential temporal and spatial regulation of somatostatin receptor phosphorylation and dephosphorylation. J. Biol. Chem., 286 (15): 13561-73. [PMID:21343287]

54. Ginj M, Chen J, Walter MA, Eltschinger V, Reubi JC, Maecke HR. (2005) Preclinical evaluation of new and highly potent analogues of octreotide for predictive imaging and targeted radiotherapy. Clin Cancer Res, 11: 1136-1145. [PMID:15709181]

55. Ginj M, Zhang H, Eisenwiener KP, Wild D, Schulz S, Rink H, Cescato R, Reubi JC, Maecke HR. (2008) New pansomatostatin ligands and their chelated versions: affinity profile, agonist activity, internalization, and tumor targeting. Clin. Cancer Res., 14 (7): 2019-27. [PMID:18381940]

56. Gong AY, Tietz PS, Muff MA, Splinter PL, Huebert RC, Strowski MZ, Chen XM, LaRusso NF. (2003) Somatostatin stimulates ductal bile absorption and inhibits ductal bile secretion in mice via SSTR2 on cholangiocytes. Am J Physiol Cell Physiol, 284: C1205-C1214. [PMID:12676656]

57. Gugger M, Waser B, Kappeler A, Schonbrunn A, Reubi JC. (2004) Cellular detection of sst2A receptors in human gastrointestinal tissue. Gut, 53: 1431-1436. [PMID:15361490]

58. Guillermet J, Saint-Laurent N, Rochaix P, Cuvillier O, Levade T, Schally AV, Pradayrol L, Buscail L, Susini C, Bousquet C. (2003) Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis. Proc. Natl. Acad. Sci. U.S.A., 100 (1): 155-60. [PMID:12490654]

59. Hagemeister AL, Kittilson JD, Bergan HE, Sheridan MA. (2010) Rainbow trout somatostatin receptor subtypes SSTR1A, SSTR1B, and SSTR2 differentially activate the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling pathways in transfected cells. J. Mol. Endocrinol., 45 (5): 317-27. [PMID:20732992]

60. Held-Feindt J, Forstreuter F, Pufe T, Mentlein R. (2001) Influence of the somatostatin receptor sst2 on growth factor signal cascades in human glioma cells. Brain Res Mol Brain Res, 87: 12-21. [PMID:11223155]

61. Hipkin RW, Friedman J, Clark RB, Eppler CM, Schonbrunn A. (1997) Agonist-induced desensitization, internalization, and phosphorylation of the sst2A somatostatin receptor. J. Biol. Chem., 272 (21): 13869-76. [PMID:9153246]

62. Ho MK, Yung LY, Chan JS, Chan JH, Wong CS, Wong YH. (2001) Galpha(14) links a variety of G(i)- and G(s)-coupled receptors to the stimulation of phospholipase C. Br. J. Pharmacol., 132 (7): 1431-40. [PMID:11264236]

63. Hocart SJ, Jain R, Murphy WA, Taylor JE, Morgan B, Coy DH. (1998) Potent antagonists of somatostatin: synthesis and biology. J Med Chem, 41: 1146-1154. [PMID:9544214]

64. Holloway S, Feniuk W, Kidd EJ, Humphrey PP. (1996) A quantitative autoradiographical study on the distribution of somatostatin sst2 receptors in the rat central nervous system using [125I]-BIM-23027. Neuropharmacology, 35 (8): 1109-20. [PMID:9121614]

65. Hou C, Gilbert RL, Barber DL. (1994) Subtype-specific signaling mechanisms of somatostatin receptors SSTR1 and SSTR2. J Biol Chem, 269: 10357-10362. [PMID:8144617]

66. Hunyady B, Hipkin RW, Schonbrunn A, Mezey E. (1997) Immunohistochemical localization of somatostatin receptor SST2A in the rat pancreas. Endocrinology, 138 (6): 2632-5. [PMID:9165058]

67. Kao YJ, Ghosh M, Schonbrunn A. (2011) Ligand-dependent mechanisms of sst2A receptor trafficking: role of site-specific phosphorylation and receptor activation in the actions of biased somatostatin agonists. Mol. Endocrinol., 25 (6): 1040-54. [PMID:21493671]

68. Kaupmann K, Bruns C, Hoyer D, Seuwen K, Lubbert H. (1993) Distribution and second messenger coupling of four somatostatin receptor subtypes expressed in brain. FEBS Lett, 331: 53-59. [PMID:8405411]

69. Khare S, Kumar U, Sasi R, Puebla L, Calderon L, Lemstrom K, Hayry P, Patel AY. (1999) Differential regulation of somatostatin receptor types 1-5 in rat aorta after angioplasty. Faseb J, 13: 387-394. [PMID:9973327]

70. Kluxen FW, Bruns C, Lubbert H. (1992) Expression cloning of a rat brain somatostatin receptor cDNA. Proc Natl Acad Sci U S A, 89: 4618-4622. [PMID:1374909]

71. Komasaka M, Horie S, Watanabe K, Murayama T. (2002) Antisecretory effect of somatostatin on gastric acid via inhibition of histamine release in isolated mouse stomach. Eur J Pharmacol, 452: 235-243. [PMID:12354575]

72. Kreienkamp HJ, Honck HH, Richter D. (1997) Coupling of rat somatostatin receptor subtypes to a G-protein gated inwardly rectifying potassium channel (GIRK1). FEBS Lett, 419: 92-94. [PMID:9426226]

73. Kumar U, Sasi R, Suresh S, Patel A, Thangaraju M, Metrakos P, Patel SC, Patel YC. (1999) Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells: a quantitative double-label immunohistochemical analysis. Diabetes, 48: 77-85. [PMID:9892225]

74. Lahlou H, Guillermet J, Hortala M, Vernejoul F, Pyronnet S, Bousquet C, Susini C. (2004) Molecular signaling of somatostatin receptors. Ann. N. Y. Acad. Sci., 1014: 121-31. [PMID:15153426]

75. Lahlou H, Saint-Laurent N, Estève JP, Eychène A, Pradayrol L, Pyronnet S, Susini C. (2003) sst2 Somatostatin receptor inhibits cell proliferation through Ras-, Rap1-, and B-Raf-dependent ERK2 activation. J. Biol. Chem., 278 (41): 39356-71. [PMID:12878607]

76. Laklai H, Laval S, Dumartin L, Rochaix P, Hagedorn M, Bikfalvi A, Le Guellec S, Delisle MB, Schally AV, Susini C et al.. (2009) Thrombospondin-1 is a critical effector of oncosuppressive activity of sst2 somatostatin receptor on pancreatic cancer. Proc. Natl. Acad. Sci. U.S.A., 106 (42): 17769-74. [PMID:19805200]

77. Lanneau C, Viollet C, Faivre-Bauman A, Loudes C, Kordon C, Epelbaum J, Gardette R. (1998) Somatostatin receptor subtypes sst1 and sst2 elicit opposite effects on the response to glutamate of mouse hypothalamic neurones: an electrophysiological and single cell RT-PCR study. Eur J Neurosci, 10: 204-212. [PMID:9753128]

78. Lattuada D, Casnici C, Crotta K, Mastrotto C, Franco P, Schmid HA, Marelli O. (2007) Inhibitory effect of pasireotide and octreotide on lymphocyte activation. J. Neuroimmunol., 182 (1-2): 153-9. [PMID:17113654]

79. Law SF, Woulfe D, Reisine T. (1995) Somatostatin receptor activation of cellular effector systems. Cell Signal, 7: 1-8. [PMID:7538774]

80. Le Romancer M, Cherifi Y, Levasseur S, Laigneau JP, Peranzi G, Jais P, Lewin MJ, Reyl-Desmars F. (1996) Messenger RNA expression of somatostatin receptor subtypes in human and rat gastric mucosae. Life Sci, 58: 1091-1098. [PMID:8622562]

81. Le Verche V, Kaindl AM, Verney C, Csaba Z, Peineau S, Olivier P, Adle-Biassette H, Leterrier C, Vitalis T, Renaud J et al.. (2009) The somatostatin 2A receptor is enriched in migrating neurons during rat and human brain development and stimulates migration and axonal outgrowth. PLoS ONE, 4 (5): e5509. [PMID:19434240]

82. Lepousez G, Mouret A, Loudes C, Epelbaum J, Viollet C. (2010) Somatostatin contributes to in vivo gamma oscillation modulation and odor discrimination in the olfactory bulb. J. Neurosci., 30 (3): 870-5. [PMID:20089895]

83. Liapakis G, Tallent M, Reisine T. (1996) Molecular and functional properties of somatostain receptor subtypes. Metabolism, 45: 12-13. [PMID:8769370]

84. Liu AM, Wong YH. (2005) Activation of nuclear factor {kappa}B by somatostatin type 2 receptor in pancreatic acinar AR42J cells involves G{alpha}14 and multiple signaling components: a mechanism requiring protein kinase C, calmodulin-dependent kinase II, ERK, and c-Src. J. Biol. Chem., 280 (41): 34617-25. [PMID:16115892]

85. Liu Q, Bee MS, Schonbrunn A. (2009) Site specificity of agonist and second messenger-activated kinases for somatostatin receptor subtype 2A (Sst2A) phosphorylation. Mol. Pharmacol., 76 (1): 68-80. [PMID:19389921]

86. Liu Q, Cescato R, Dewi DA, Rivier J, Reubi JC, Schonbrunn A. (2005) Receptor signaling and endocytosis are differentially regulated by somatostatin analogs. Mol. Pharmacol., 68 (1): 90-101. [PMID:15855408]

87. Liu Q, Reubi JC, Wang Y, Knoll BJ, Schonbrunn A. (2003) In vivo phosphorylation of the somatostatin 2A receptor in human tumors. J. Clin. Endocrinol. Metab., 88 (12): 6073-9. [PMID:14671213]

88. Maecke HR, Reubi JC. (2011) Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J. Nucl. Med., 52 (6): 841-4. [PMID:21571797]

89. Maina T, Nock BA, Cordopatis P, Bernard BF, Breeman WA, van Gameren A, van den Berg R, Reubi JC, Krenning EP, de Jong M. (2006) [(99m)Tc]Demotate 2 in the detection of sst(2)-positive tumours: a preclinical comparison with [(111)In]DOTA-tate. Eur. J. Nucl. Med. Mol. Imaging, 33 (7): 831-40. [PMID:16568203]

90. Martinez V, Curi AP, Torkian B, Schaeffer JM, Wilkinson HA, Walsh JH, Tache Y. (1998) High basal gastric acid secretion in somatostatin receptor subtype 2 knockout mice. Gastroenterology, 114: 1125-1132. [PMID:9609748]

91. Maurer R, Reubi JC. (1986) Somatostatin receptors in the adrenal. Mol. Cell. Endocrinol., 45 (1): 81-90. [PMID:3009249]

92. Meyerhof W. (1998) The elucidation of somatostatin receptor functions: a current view. Rev Physiol Biochem Pharmacol, 133: 55-108. [PMID:9600011]

93. Mezey E, Hunyady B, Mitra S, Hayes E, Liu Q, Schaeffer J, Schonbrunn A. (1998) Cell specific expression of the sst2A and sst5 somatostatin receptors in the rat anterior pituitary. Endocrinology, 139 (1): 414-9. [PMID:9421441]

94. Miller GM, Alexander JM, Bikkal HA, Katznelson L, Zervas NT, Klibanski A. (1995) Somatostatin receptor subtype gene expression in pituitary adenomas. J Clin Endocrinol Metab, 80: 1386-1392. [PMID:7714115]

95. Moneta D, Richichi C, Aliprandi M, Dournaud P, Dutar P, Billard JM, Carlo AS, Viollet C, Hannon JP, Fehlmann D, Nunn C, Hoyer D, Epelbaum J, Vezzani A. (2002) Somatostatin receptor subtypes 2 and 4 affect seizure susceptibility and hippocampal excitatory neurotransmission in mice. Eur J Neurosci, 16: 843-849. [PMID:12372020]

96. Murray RD, Kim K, Ren SG, Chelly M, Umehara Y, Melmed S. (2004) Central and peripheral actions of somatostatin on the growth hormone-IGF-I axis. J Clin Invest, 114: 349-356. [PMID:15286801]

97. Najib S, Saint-Laurent N, Estève JP, Schulz S, Boutet-Robinet E, Fourmy D, Lättig J, Mollereau C, Pyronnet S, Susini C et al.. (2012) A switch of G protein-coupled receptor binding preference from phosphoinositide 3-kinase (PI3K)-p85 to filamin A negatively controls the PI3K pathway. Mol. Cell. Biol., 32 (5): 1004-16. [PMID:22203038]

98. No authors listed. (1988) Bombesin-like peptides in health and disease. Proceedings of an international symposium. October 13-16, 1987, Rome, Italy. A tribute to Vittorio Erspamer, M.D. Ann N Y Acad Sci, 547: 1-541. [PMID:3071214]

99. Nunn C, Langenegger D, Hurth K, Schmidt K, Fehlmann D, Hoyer D. (2003) Agonist properties of putative small-molecule somatostatin sst2 receptor-selective antagonists. Eur J Pharmacol, 465: 211-218. [PMID:12681432]

100. Nunn C, Schoeffter P, Langenegger D, Hoyer D. (2003) Functional characterisation of the putative somatostatin sst2 receptor antagonist CYN 154806. Naunyn Schmiedebergs Arch Pharmacol, 367: 1-9. [PMID:12616335]

101. Patel YC, Greenwood M, Kent G, Panetta R, Srikant CB. (1993) Multiple gene transcripts of the somatostatin receptor SSTR2: tissue selective distribution and cAMP regulation. Biochem Biophys Res Commun, 192: 288-294. [PMID:8386508]

102. Patel YC, Srikant CB. (1994) Subtype selectivity of peptide analogs for all five cloned human somatostatin receptors (hsstr 1-5). Endocrinology, 135: 2814-2817. [PMID:7988476]

103. Piqueras L, Martinez V. (2004) Role of somatostatin receptors on gastric acid secretion in wild-type and somatostatin receptor type 2 knockout mice. Naunyn Schmiedebergs Arch Pharmacol, 370: 510-520. [PMID:15599710]

104. Plöckinger U, Albrecht S, Mawrin C, Saeger W, Buchfelder M, Petersenn S, Schulz S. (2008) Selective loss of somatostatin receptor 2 in octreotide-resistant growth hormone-secreting adenomas. J. Clin. Endocrinol. Metab., 93 (4): 1203-10. [PMID:18198230]

105. Poitout L, Roubert P, Contour-Galcera MO, Moinet C, Lannoy J, Pommier J, Plas P, Bigg D, Thurieau C. (2001) Identification of potent non-peptide somatostatin antagonists with sst(3) selectivity. J Med Chem, 44: 2990-3000. [PMID:11520208]

106. Raynor K, Murphy WA, Coy DH, Taylor JE, Moreau JP, Yasuda K, Bell GI, Reisine T. (1993) Cloned somatostatin receptors: identification of subtype-selective peptides and demonstration of high affinity binding of linear peptides. Mol Pharmacol, 43: 838-844. [PMID:8100350]

107. Reardon DB, Dent P, Wood SL, Kong T, Sturgill TW. (1997) Activation in vitro of somatostatin receptor subtypes 2, 3, or 4 stimulates protein tyrosine phosphatase activity in membranes from transfected Ras-transformed NIH 3T3 cells: coexpression with catalytically inactive SHP-2 blocks responsiveness. Mol Endocrinol, 11: 1062-1069. [PMID:9212054]

108. Ren SG, Taylor J, Dong J, Yu R, Culler MD, Melmed S. (2003) Functional association of somatostatin receptor subtypes 2 and 5 in inhibiting human growth hormone secretion. J Clin Endocrinol Metab, 88: 4239-4245. [PMID:12970293]

109. Reubi JC. (1985) New specific radioligand for one subpopulation of brain somatostatin receptors. Life Sci., 36 (19): 1829-36. [PMID:2859510]

110. Reubi JC, Cortès R, Maurer R, Probst A, Palacios JM. (1986) Distribution of somatostatin receptors in the human brain: an autoradiographic study. Neuroscience, 18 (2): 329-46. [PMID:2874525]

111. Reubi JC, Eisenwiener KP, Rink H, Waser B, Macke HR. (2002) A new peptidic somatostatin agonist with high affinity to all five somatostatin receptors. Eur J Pharmacol, 456: 45-49. [PMID:12450568]

112. Reubi JC, Horisberger U, Laissue J. (1994) High density of somatostatin receptors in veins surrounding human cancer tissue: role in tumor-host interaction?. Int. J. Cancer, 56 (5): 681-8. [PMID:8314345]

113. Reubi JC, Horisberger U, Studer UE, Waser B, Laissue JA. (1993) Human kidney as target for somatostatin: high affinity receptors in tubules and vasa recta. J Clin Endocrinol Metab, 77: 1323-1328. [PMID:7915721]

114. Reubi JC, Horisberger U, Waser B, Gebbers JO, Laissue J. (1992) Preferential location of somatostatin receptors in germinal centers of human gut lymphoid tissue. Gastroenterology, 103 (4): 1207-14. [PMID:1356871]

115. Reubi JC, Kappeler A, Waser B, Schonbrunn A, Laissue J. (1998) Immunohistochemical localization of somatostatin receptor sst2A in human pancreatic islets. J Clin Endocrinol Metab, 83: 3746-3749. [PMID:9768695]

116. Reubi JC, Laissue JA, Waser B, Steffen DL, Hipkin RW, Schonbrunn A. (1999) Immunohistochemical detection of somatostatin sst2a receptors in the lymphatic, smooth muscular, and peripheral nervous systems of the human gastrointestinal tract: facts and artifacts. J Clin Endocrinol Metab, 84: 2942-2950. [PMID:10443702]

117. Reubi JC, Mazzucchelli L, Laissue JA. (1994) Intestinal vessels express a high density of somatostatin receptors in human inflammatory bowel disease. Gastroenterology., 106: 951-959. [PMID:8144000]

118. Reubi JC, Perrin M, Rivier J, Vale W. (1982) High affinity binding sites for somatostatin to rat pituitary. Biochem. Biophys. Res. Commun., 105 (4): 1538-45. [PMID:6125148]

119. Reubi JC, Perrin MH, Rivier JE, Vale W. (1981) High affinity binding sites for a somatostatin-28 analog in rat brain. Life Sci., 28 (19): 2191-8. [PMID:6114372]

120. Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, Mäcke HR. (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med, 27 (3): 273-82. [PMID:10774879]

121. Reubi JC, Waser B, Cescato R, Gloor B, Stettler C, Christ E. (2010) Internalized somatostatin receptor subtype 2 in neuroendocrine tumors of octreotide-treated patients. J. Clin. Endocrinol. Metab., 95 (5): 2343-50. [PMID:20228164]

122. Reubi JC, Waser B, Horisberger U, Krenning E, Lamberts SW, Gebbers JO, Gersbach P, Laissue JA. (1993) In vitro autoradiographic and in vivo scintigraphic localization of somatostatin receptors in human lymphatic tissue. Blood, 82 (7): 2143-51. [PMID:8400264]

123. Rinke A, Müller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, Mayer C, Aminossadati B, Pape UF, Bläker M et al.. (2009) Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J. Clin. Oncol., 27 (28): 4656-63. [PMID:19704057]

124. Rochaix P, Delesque N, Estève JP, Saint-Laurent N, Voight JJ, Vaysse N, Susini C, Buscail L. (1999) Gene therapy for pancreatic carcinoma: local and distant antitumor effects after somatostatin receptor sst2 gene transfer. Hum. Gene Ther., 10 (6): 995-1008. [PMID:10223733]

125. Rohrer SP, Birzin ET, Mosley RT, Berk SC, Hutchins SM, Shen DM, Xiong Y, Hayes EC, Parmar RM, Foor F, Mitra SW, Degrado SJ, Shu M, Klopp JM, Cai SJ, Blake A, Chan WW, Pasternak A, Yang L, Patchett AA, Smith RG, Chapman KT, Schaeffer JM. (1998) Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science, 282: 737-740. [PMID:9784130]

126. Schindler M, Kidd EJ, Carruthers AM, Wyatt MA, Jarvie EM, Sellers LA, Feniuk W, Humphrey PP. (1998) Molecular cloning and functional characterization of a rat somatostatin sst2(b) receptor splice variant. Br J Pharmacol, 125: 209-217. [PMID:9776362]

127. Schmid HA, Schoeffter P. (2004) Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinology, 80: 47-50. [PMID:15477717]

128. Shimon I, Taylor JE, Dong JZ, Bitonte RA, Kim S, Morgan B, Coy DH, Culler MD, Melmed S. (1997) Somatostatin receptor subtype specificity in human fetal pituitary cultures. Differential role of SSTR2 and SSTR5 for growth hormone, thyroid-stimulating hormone, and prolactin regulation. J Clin Invest, 99: 789-798. [PMID:9045884]

129. Siehler S, Hoyer D. (1999) Characterisation of human recombinant somatostatin receptors. 3. Modulation of adenylate cyclase activity. Naunyn Schmiedebergs Arch Pharmacol, 360: 510-521. [PMID:10598790]

130. Siehler S, Seuwen K, Hoyer D. (1998) [125I]Tyr10-cortistatin14 labels all five somatostatin receptors. Naunyn Schmiedebergs Arch Pharmacol, 357: 483-489. [PMID:9650799]

131. Siehler S, Seuwen K, Hoyer D. (1998) [125I][Tyr3]octreotide labels human somatostatin sst2 and sst5 receptors. Eur J Pharmacol, 348: 311-320. [PMID:9652348]

132. Siehler S, Seuwen K, Hoyer D. (1999) Characterisation of human recombinant somatostatin receptors. 1. Radioligand binding studies. Naunyn Schmiedebergs Arch Pharmacol, 360: 488-499. [PMID:10598788]

133. Singh V, Brendel MD, Zacharias S, Mergler S, Jahr H, Wiedenmann B, Bretzel RG, Plöckinger U, Strowski MZ. (2007) Characterization of somatostatin receptor subtype-specific regulation of insulin and glucagon secretion: an in vitro study on isolated human pancreatic islets. J. Clin. Endocrinol. Metab., 92 (2): 673-80. [PMID:17105845]

134. Singh V, Grötzinger C, Nowak KW, Zacharias S, Göncz E, Pless G, Sauer IM, Eichhorn I, Pfeiffer-Guglielmi B, Hamprecht B et al.. (2007) Somatostatin receptor subtype-2-deficient mice with diet-induced obesity have hyperglycemia, nonfasting hyperglucagonemia, and decreased hepatic glycogen deposition. Endocrinology, 148 (8): 3887-99. [PMID:17525126]

135. Sotos-Prieto M, Guillén M, Guillem-Sáiz P, Portolés O, Corella D. (2010) The rs1466113 polymorphism in the somatostatin receptor 2 gene is associated with obesity and food intake in a Mediterranean population. Ann. Nutr. Metab., 57 (2): 124-31. [PMID:20948194]

136. Stengel A, Goebel M, Wang L, Rivier J, Kobelt P, Monnikes H, Tache Y. (2010) Selective central activation of somatostatin receptor 2 increases food intake, grooming behavior and rectal temperature in rats. J. Physiol. Pharmacol., 61 (4): 399-407. [PMID:20814067]

137. Strowski MZ, Blake AD. (2008) Function and expression of somatostatin receptors of the endocrine pancreas. Mol. Cell. Endocrinol., 286 (1-2): 169-79. [PMID:18375050]

138. Strowski MZ, Parmar RM, Blake AD, Schaeffer JM. (2000) Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology, 141: 111-117. [PMID:10614629]

139. Tagliati F, Zatelli MC, Bottoni A, Piccin D, Luchin A, Culler MD, Degli Uberti EC. (2006) Role of complex cyclin d1/cdk4 in somatostatin subtype 2 receptor-mediated inhibition of cell proliferation of a medullary thyroid carcinoma cell line in vitro. Endocrinology, 147 (7): 3530-8. [PMID:16601140]

140. Tallent M, Liapakis G, O'Carroll AM, Lolait SJ, Dichter M, Reisine T. (1996) Somatostatin receptor subtypes SSTR2 and SSTR5 couple negatively to an L-type Ca2+ current in the pituitary cell line AtT-20. Neuroscience, 71: 1073-1081. [PMID:8684611]

141. Theodoropoulou M, Zhang J, Laupheimer S, Paez-Pereda M, Erneux C, Florio T, Pagotto U, Stalla GK. (2006) Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression. Cancer Res., 66 (3): 1576-82. [PMID:16452215]

142. Torrisani J, Hanoun N, Laurell H, Lopez F, Maoret JJ, Souque A, Susini C, Cordelier P, Buscail L. (2008) Identification of an upstream promoter of the human somatostatin receptor, hSSTR2, which is controlled by epigenetic modifications. Endocrinology, 149 (6): 3137-47. [PMID:18325993]

143. Tsutsumi A, Takano H, Ichikawa K, Kobayashi S, Koike T. (1997) Expression of somatostatin receptor subtype 2 mRNA in human lymphoid cells. Cell Immunol, 181: 44-49. [PMID:9344495]

144. Tulipano G, Soldi D, Bagnasco M, Culler MD, Taylor JE, Cocchi D, Giustina A. (2002) Characterization of new selective somatostatin receptor subtype-2 (sst2) antagonists, BIM-23627 and BIM-23454. Effects of BIM-23627 on GH release in anesthetized male rats after short-term high-dose dexamethasone treatment. Endocrinology, 143: 1218-1224. [PMID:11897676]

145. Vanetti M, Kouba M, Wang X, Vogt G, Hollt V. (1992) Cloning and expression of a novel mouse somatostatin receptor (SSTR2B). FEBS Lett, 311: 290-294. [PMID:1397330]

146. Vernejoul F, Faure P, Benali N, Calise D, Tiraby G, Pradayrol L, Susini C, Buscail L. (2002) Antitumor effect of in vivo somatostatin receptor subtype 2 gene transfer in primary and metastatic pancreatic cancer models. Cancer Res., 62 (21): 6124-31. [PMID:12414637]

147. Vezzosi D, Bennet A, Rochaix P, Courbon F, Selves J, Pradere B, Buscail L, Susini C, Caron P. (2005) Octreotide in insulinoma patients: efficacy on hypoglycemia, relationships with Octreoscan scintigraphy and immunostaining with anti-sst2A and anti-sst5 antibodies. Eur. J. Endocrinol., 152 (5): 757-67. [PMID:15879362]

148. Viollet C, Vaillend C, Videau C, Bluet-Pajot MT, Ungerer A, L'Heritier A, Kopp C, Potier B, Billard J, Schaeffer J, Smith RG, Rohrer SP, Wilkinson H, Zheng H, Epelbaum J. (2000) Involvement of sst2 somatostatin receptor in locomotor, exploratory activity and emotional reactivity in mice. Eur J Neurosci, 12: 3761-3770. [PMID:11029646]

149. Vockel M, Pollok S, Breitenbach U, Ridderbusch I, Kreienkamp HJ, Brandner JM. (2011) Somatostatin inhibits cell migration and reduces cell counts of human keratinocytes and delays epidermal wound healing in an ex vivo wound model. PLoS ONE, 6 (5): e19740. [PMID:21589940]

150. Waser B, Tamma ML, Cescato R, Maecke HR, Reubi JC. (2009) Highly efficient in vivo agonist-induced internalization of sst2 receptors in somatostatin target tissues. J. Nucl. Med., 50 (6): 936-41. [PMID:19443580]

151. Wester HJ, Schottelius M, Scheidhauer K, Reubi JC, Wolf I, Schwaiger M. (2002) Comparison of radioiodinated TOC, TOCA and Mtr-TOCA: the effect of carbohydration on the pharmacokinetics. Eur. J. Nucl. Med. Mol. Imaging, 29 (1): 28-38. [PMID:11807604]

152. Wild D, Schmitt JS, Ginj M, Macke HR, Bernard BF, Krenning E, De Jong M, Wenger S, Reubi JC. (2003) DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging, 30: 1338-1347. [PMID:12937948]

153. Woltering EA. (2003) Development of targeted somatostatin-based antiangiogenic therapy: a review and future perspectives. Cancer Biother. Radiopharm., 18 (4): 601-9. [PMID:14503956]

154. Wängler C, Waser B, Alke A, Iovkova L, Buchholz HG, Niedermoser S, Jurkschat K, Fottner C, Bartenstein P, Schirrmacher R et al.. (2010) One-step ¹⁸F-labeling of carbohydrate-conjugated octreotate-derivatives containing a silicon-fluoride-acceptor (SiFA): in vitro and in vivo evaluation as tumor imaging agents for positron emission tomography (PET). Bioconjug. Chem., 21 (12): 2289-96. [PMID:21082773]

155. Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Seino S. (1992) Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci U S A, 89: 251-255. [PMID:1346068]

156. Yamada Y, Stoffel M, Espinosa R3rd, Xiang KS, Seino M, Seino S, Le Beau MM, Bell GI. (1993) Human somatostatin receptor genes: localization to human chromosomes 14, 17, and 22 and identification of simple tandem repeat polymorphisms. Genomics, 15: 449-452. [PMID:8449518]

157. Yang L, Berk SC, Rohrer SP, Mosley RT, Guo L, Underwood DJ, Arison BH, Birzin ET, Hayes EC, Mitra SW, Parmar RM, Cheng K, Wu TJ, Butler BS, Foor F, Pasternak A, Pan Y, Silva M, Freidinger RM, Smith RG, Chapman K, Schaeffer JM, Patchett AA. (1998) Synthesis and biological activities of potent peptidomimetics selective for somatostatin receptor subtype 2. Proc Natl Acad Sci U S A, 95: 10836-10841. [PMID:9724791]

158. Yang SK, Parkington HC, Epelbaum J, Keating DJ, Chen C. (2007) Somatostatin decreases voltage-gated Ca2+ currents in GH3 cells through activation of somatostatin receptor 2. Am. J. Physiol. Endocrinol. Metab., 292 (6): E1863-70. [PMID:17327372]

159. Yeung M, Treit D. (2012) The anxiolytic effects of somatostatin following intra-septal and intra-amygdalar microinfusions are reversed by the selective sst2 antagonist PRL2903. Pharmacol. Biochem. Behav., 101 (1): 88-92. [PMID:22210489]

160. Zheng H, Bailey A, Jiang MH, Honda K, Chen HY, Trumbauer ME, Van der Ploeg LH, Schaeffer JM, Leng G, Smith RG. (1997) Somatostatin receptor subtype 2 knockout mice are refractory to growth hormone-negative feedback on arcuate neurons. Mol Endocrinol, 11: 1709-1717. [PMID:9328352]

Contributors

Show »

How to cite this page

Stefan Schulz, Corinne Bosquet, Justo Castano, Micheal Culler, Jacques Epelbaum, Leo Hofland, Daniel Hoyer, Jean-Claude Reubi, Herbert Schmid, Agnes Schonbrunn.
Somatostatin receptors: SST2 receptor. Last modified on 18/09/2018. Accessed on 15/11/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=356.