Ca<sub>v</sub>3.1 | Voltage-gated calcium channels | IUPHAR/BPS Guide to PHARMACOLOGY

Top ▲

Cav3.1

Target id: 535

Nomenclature: Cav3.1

Family: Voltage-gated calcium channels

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

   GtoImmuPdb view: OFF :     Cav3.1 has curated data in GtoImmuPdb

Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 24 1 2377 17q22 CACNA1G calcium voltage-gated channel subunit alpha1 G 25
Mouse 24 1 2295 11 D Cacna1g calcium channel, voltage-dependent, T type, alpha 1G subunit 18
Rat 24 1 2254 10q26-q31 Cacna1g calcium voltage-gated channel subunit alpha1 G 27
Previous and Unofficial Names
NBR13 | alpha-1G | calcium channel
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Functional Characteristics
T-type calcium current: Low voltage-activated, fast voltage-dependent inactivation
Ion Selectivity and Conductance
Species:  Human
Rank order:  Sr2+ > Ca2+ > Ba2+ [7.3 pS]
References:  25
Species:  Rat
Rank order:  Ba2+ = Sr2+ = Ca2+
References:  29-31
Voltage Dependence
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -63.0 2.0 – 8.0 5 Thalamocortical relay neuron. Rat
Inactivation  -83.5 20.0 – 50.0 5
Comments  Native currents were recorded in 3 mM CaCl2. The kinetics are voltage dependant with the higher values obtained at during test pulses to -60 mV, the lower to -10 mV.
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -56.0 – -46.0 (median: -50.0) 1.0 – 7.0 8 HEK 293 cells. Human
Inactivation  -78.0 – -62.0 (median: -68.0) 15.0 – 40.0 8
Comments  Recombinant, recorded in 2 mM CaCl2. The range of V0.5 values result from splice variation, while the range of kinetics reflects voltage dependence: the high values were recorded during test potentials to -50 mV, the low at -15 mV.
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -51.2 – -45.7 (median: -46.3) - 1 HEK 293 cells. Human
Inactivation  -80.6 – -65.0 (median: -71.1) 11.1 – 21.8 1
Comments  Recombinant, recorded in 2 mM CaCl2. The range of V0.5 values result from splice variation, while the kinetics reflect voltage dependence; the high values are recorded during test potentials to -40 mV; low to -10 mV.
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -45.2 1.1 – 8.2 13 HEK 293 cells. Human
Inactivation  -76.9 16.0 – 62.0 13
Comments  Recombinant, recorded in 5 mM CaCl2. The range of kinetics reflects voltage-dependence; the high values recorded during test potentials to -50 mV; the low at -10 mV.

Download all structure-activity data for this target as a CSV file

Gating inhibitors
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
kurtoxin Rn Antagonist 7.3 – 7.8 pIC50 - -90.0 4,32
pIC50 7.3 – 7.8 (IC50 5.01x10-8 – 1.58x10-8 M) [4,32]
Holding voltage: -90.0 mV
Gating Inhibitor Comments
Kurtoxin was selective for recombinant channels expressed in oocytes, but not for native T-currents in thalamocortical cells [4,32].
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
pimozide Rn Antagonist 7.5 pIC50 - -100.0 28
pIC50 7.5 [28]
Holding voltage: -100.0 mV
Z944 Hs Pore blocker 7.3 pIC50 - -110.0 35
pIC50 7.3 [35]
Holding voltage: -110.0 mV
TTA-P2 Rn Pore blocker 7.0 pIC50 - -90.0 3
pIC50 7.0 [3]
Holding voltage: -90.0 mV
ML218 Hs Pore blocker 6.5 pIC50 - -90.0 38
pIC50 6.5 [38]
Holding voltage: -90.0 mV
mibefradil Hs Antagonist 6.0 – 6.6 pIC50 - -110.0 – -100.0 22
pIC50 6.0 – 6.6 (IC50 1x10-6 – 2.7x10-7 M) [22]
Holding voltage: -110.0 – -100.0 mV
TTA-A2 Hs Pore blocker 5.1 – 7.0 pIC50 - -110.0 – -75.0 9
pIC50 5.1 – 7.0 [9]
Holding voltage: -110.0 – -75.0 mV
(-)-(R)-efonidipine Rn Antagonist 5.0 – 7.0 pIC50 - -100.0 – -60.0 10
pIC50 5.0 – 7.0 [10]
Holding voltage: -100.0 – -60.0 mV
anandamide Hs Antagonist 5.4 pIC50 - -80.0 2
pIC50 5.4 [2]
Holding voltage: -80.0 mV
ABT-639 Hs Pore blocker 5.0 pIC50 - -110.0 15
pIC50 5.0 [15]
Holding voltage: -110.0 mV
Ni2+ Rn Antagonist 3.6 – 3.8 pIC50 - -90.0 19
pIC50 3.6 – 3.8 (IC50 2.5x10-4 – 1.67x10-4 M) [19]
Holding voltage: -90.0 mV
View species-specific channel blocker tables
Channel Blocker Comments
Block by Ni2+ is voltage dependent [19]. ML218 was developed by NIH’s Molecular Libraries Production Center and is freely available without intellectual property restrictions [38]. Like many compounds listed, its potency on Cav3.1 has not been reported, but is expected to be similar to its block of Cav3.2 and Cav3.3. For reviews of all known blockers see references [11,14,23].
Immunopharmacology Comments
Low-voltage-activated Cav3.1 calcium channels are involved in shaping the autoimmune response elicited by T cells by modulating their cytokine production profile [37].
Cell Type Associations
Immuno Cell Type:  T cells
References:  37
Tissue Distribution
Brain > ovary > placenta.
Cerebellum > thalamus > neocortex > substantia nigra > medulla > striatum.
Species:  Human
Technique:  Northern Blot
References:  25
Thalamus > cerebellum, cortical subplate > isocortex, hypothalamus, midbrain, hippocampus, olfactory > pallidum > medulla, striatum, pons
Species:  Mouse
Technique:  In situ hybridisation
References:  20
Basal forebrain, thalamus, cerebellum, inferior olive nucleus > olfactory bulb, amygdale > hypothalamus, neocortex, hippocampus, medulla > spinal cord.
Species:  Rat
Technique:  In situ hybridisation
References:  33
Cerebellum > neocortex > thalamus, amygdala, hippocampus > medulla > striatum.
Soma and dendrites.
Species:  Rat
Technique:  Immunohistochemistry
References:  7,24
Functional Assays
Two-microelectrode voltage clamp.
Species:  Rat
Tissue:  Xenopus laevis oocytes transiently expressing recombinant Cav3.1.
Response measured:  Electrophysiological measurement of ICa.
References:  10
Patch-clamp (whole cell currents).
Species:  Human
Tissue:  HEK 293 cells stably expressing recombinant Cav3.1.
Response measured:  Electrophysiological measurement of ICa.
References:  12
Voltage-clamp techniques.
Species:  Rat
Tissue:  Brain (native thalamocortical neurons).
Response measured:  Electrophysiological measurement of ICa.
References:  6
Fluorometric imaging.
Species:  Human
Tissue:  HEK 293 cells stably expressing recombinant Cav3.1
Response measured:  Fluorescence after loading with dye such as Fluo-4.
References:  39
Physiological Functions
Low threshold Ca2+ spike that mediates burst firing of neurons.
Species:  Mouse
Tissue:  Thalamocortical neurons.
References:  16
Phase 4 depolarisation of sinoatrial nodal cells.
Species:  Mouse
Tissue:  Heart
References:  21
Physiological Functions Comments
The above references are examples for each function. For further references see [26].
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Cacna1gtm1Hssh Cacna1gtm1Hssh/Cacna1gtm1Hssh
involves: 129S4/SvJae * C57BL/6J
MGI:1201678  MP:0005402 abnormal action potential PMID: 11498049 
Cacna1gtm1.1Stl Cacna1gtm1.1Stl/Cacna1gtm1.1Stl
involves: C57BL/6
MGI:1201678  MP:0005402 abnormal action potential PMID: 15677322 
Cacna1gtm1Hssh Cacna1gtm1Hssh/Cacna1gtm1Hssh
involves: 129S4/SvJae
MGI:1201678  MP:0006141 abnormal atrioventricular node conduction PMID: 16690884 
Cacna1gtm1Hssh Cacna1gtm1Hssh/Cacna1gtm1Hssh
involves: 129S4/SvJae
MGI:1201678  MP:0001544 abnormal cardiovascular system physiology PMID: 16690884 
Cacna1gtm1Hssh Cacna1gtm1Hssh/Cacna1gtm1Hssh
involves: 129S4/SvJae * C57BL/6J
MGI:1201678  MP:0003633 abnormal nervous system physiology PMID: 11498049 
Cacna1gtm1.1Abp Cacna1gtm1.1Abp/Cacna1gtm1.1Abp
involves: C57BL/6
MGI:1201678  MP:0003463 abnormal single cell response PMID: 19657020 
Cacna1gtm1Hssh Cacna1gtm1Hssh/Cacna1gtm1Hssh
involves: 129S4/SvJae
MGI:1201678  MP:0006142 abnormal sinoatrial node conduction PMID: 16690884 
Cacna1gtm1.1Stl Cacna1gtm1.1Stl/Cacna1gtm1.1Stl
involves: C57BL/6
MGI:1201678  MP:0001501 abnormal sleep pattern PMID: 15677322 
Cacna1gtm1Stl|Tg(Kcnc2-cre)K128Stl Cacna1gtm1Stl/Cacna1gtm1Stl,Tg(Kcnc2-cre)K128Stl/0
involves: C57BL/6
MGI:1201678  MGI:3530534  MP:0001501 abnormal sleep pattern PMID: 15677322 
Cacna1gtm1Hssh Cacna1gtm1Hssh/Cacna1gtm1Hssh
involves: 129S4/SvJae * C57BL/6J
MGI:1201678  MP:0008840 abnormal spike wave discharge PMID: 11498049 
Cacna1gtm1Hssh Cacna1gtm1Hssh/Cacna1gtm1Hssh
involves: 129S4/SvJae
MGI:1201678  MP:0005333 decreased heart rate PMID: 16690884 
Cacna1gtm1Hssh Cacna1gtm1Hssh/Cacna1gtm1Hssh
involves: 129S4/SvJae * C57BL/6J
MGI:1201678  MP:0002887 decreased susceptibility to pharmacologically induced seizures PMID: 11498049 
Cacna1gtm1Dgen Cacna1gtm1Dgen/Cacna1gtm1Dgen
involves: 129/Sv * C57BL/6
MGI:1201678  MP:0001399 hyperactivity PMID: 19451696 
Cacna1gtm1.1Stl Cacna1gtm1.1Stl/Cacna1gtm1.1Stl
involves: C57BL/6
MGI:1201678  MP:0001402 hypoactivity PMID: 15677322 
Cacna1gtm1.1Stl Cacna1gtm1.1Stl/Cacna1gtm1.1Stl
involves: C57BL/6
MGI:1201678  MP:0002578 impaired ability to fire action potentials PMID: 15677322 
Cacna1gtm1.1Abp Cacna1gtm1.1Abp/Cacna1gtm1.1Abp
involves: C57BL/6 * CBA
MGI:1201678  MP:0009747 impaired behavioral response to xenobiotic PMID: 17525593 
Cacna1gtm1Dgen Cacna1gtm1Dgen/Cacna1gtm1Dgen
involves: 129/Sv * C57BL/6
MGI:1201678  MP:0005659 increased resistance to diet-induced obesity PMID: 19451696 
Cacna1gtm1Hssh Cacna1gtm1Hssh/Cacna1gtm1Hssh
involves: 129S4/SvJae
MGI:1201678  MP:0003896 prolonged PR interval PMID: 16690884 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Absence epilepsy
Synonyms: early onset absence epilepsy [Disease Ontology: DOID:0050708]
Disease Ontology: DOID:0050708
Role: 
Drugs: 
Side effects:  Rarely: GI distres, drowsiness, leukopenia.
Therapeutic use:  Absence epilepsy.
Comments: 
References:  6,17,36
Gene Expression and Pathophysiology
Increased expression in rat models of absence epilepsy.
Tissue or cell type:  Thalamic neurons.
Pathophysiology:  Absence epilepsy.
Species:  Rat
Technique: 
References:  34
Increased expression in mouse models of absence epilepsy.
Tissue or cell type:  Thalamic neurons.
Pathophysiology:  Absence epilepsy.
Species:  Mouse
Technique: 
References:  40
Biologically Significant Variants
Type:  Splice variant
Species:  Human
Description:  This variant affects the insertion/deletion on exon 14, altering the sequence of II-III loop. The kinetics of activation and deactivation are changed.
Amino acids:  2273
Nucleotide accession: 
Protein accession: 
References:  1,8
Type:  Splice variant
Species:  Human
Description:  This variant alters the sequence of the III-IV loop (exons 25A and 26) altering the voltage dependence of activation and inactivation and kinetics.
Amino acids:  2298
Nucleotide accession: 
Protein accession: 
References:  1,8
Type:  Splice variant
Species:  Human
Description:  -
Amino acids:  2171
Nucleotide accession: 
Protein accession: 
References:  25
Type:  Splice variant
Species:  Human
Description:  This variant alters the sequence of the III-IV loop (exons 25A and 26) altering the voltage dependence of activation and inactivation and kinetics.
Amino acids:  2250
Nucleotide accession: 
Protein accession: 
References:  1,8

References

Show »

1. Chemin J, Monteil A, Bourinet E, Nargeot J, Lory P. (2001) Alternatively spliced alpha(1G) (Ca(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys. J., 80 (3): 1238-50. [PMID:11222288]

2. Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P. (2001) Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J., 20 (24): 7033-40. [PMID:11742980]

3. Choe W, Messinger RB, Leach E, Eckle VS, Obradovic A, Salajegheh R, Jevtovic-Todorovic V, Todorovic SM. (2011) TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent. Mol. Pharmacol., 80 (5): 900-10. [PMID:21821734]

4. Chuang RS, Jaffe H, Cribbs L, Perez-Reyes E, Swartz KJ. (1998) Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nat. Neurosci., 1 (8): 668-74. [PMID:10196582]

5. Coulter DA, Huguenard JR, Prince DA. (1989) Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J. Physiol. (Lond.), 414: 587-604. [PMID:2607443]

6. Coulter DA, Huguenard JR, Prince DA. (1989) Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann. Neurol., 25 (6): 582-93. [PMID:2545161]

7. Craig PJ, Beattie RE, Folly EA, Banerjee MD, Reeves MB, Priestley JV, Carney SL, Sher E, Perez-Reyes E, Volsen SG. (1999) Distribution of the voltage-dependent calcium channel alpha1G subunit mRNA and protein throughout the mature rat brain. Eur. J. Neurosci., 11 (8): 2949-64. [PMID:10457190]

8. Emerick MC, Stein R, Kunze R, McNulty MM, Regan MR, Hanck DA, Agnew WS. (2006) Profiling the array of Ca(v)3.1 variants from the human T-type calcium channel gene CACNA1G: alternative structures, developmental expression, and biophysical variations. Proteins, 64 (2): 320-42. [PMID:16671074]

9. Francois A, Kerckhove N, Meleine M, Alloui A, Barrere C, Gelot A, Uebele VN, Renger JJ, Eschalier A, Ardid D et al.. (2013) State-dependent properties of a new T-type calcium channel blocker enhance Ca(V)3.2 selectivity and support analgesic effects. Pain, 154 (2): 283-93. [PMID:23257507]

10. Furukawa T, Miura R, Honda M, Kamiya N, Mori Y, Takeshita S, Isshiki T, Nukada T. (2004) Identification of R(-)-isomer of efonidipine as a selective blocker of T-type Ca2+ channels. Br. J. Pharmacol., 143 (8): 1050-7. [PMID:15545287]

11. Giordanetto F, Knerr L, Wållberg A. (2011) T-type calcium channels inhibitors: a patent review. Expert Opin Ther Pat, 21 (1): 85-101. [PMID:21087200]

12. Gomora JC, Daud AN, Weiergräber M, Perez-Reyes E. (2001) Block of cloned human T-type calcium channels by succinimide antiepileptic drugs. Mol. Pharmacol., 60 (5): 1121-32. [PMID:11641441]

13. Gomora JC, Murbartián J, Arias JM, Lee JH, Perez-Reyes E. (2002) Cloning and expression of the human T-type channel Ca(v)3.3: insights into prepulse facilitation. Biophys. J., 83 (1): 229-41. [PMID:12080115]

14. Heady TN, Gomora JC, Macdonald TL, Perez-Reyes E. (2001) Molecular pharmacology of T-type Ca2+ channels. Jpn. J. Pharmacol., 85 (4): 339-50. [PMID:11388636]

15. Jarvis MF, Scott VE, McGaraughty S, Chu KL, Xu J, Niforatos W, Milicic I, Joshi S, Zhang Q, Xia Z. (2014) A peripherally acting, selective T-type calcium channel blocker, ABT-639, effectively reduces nociceptive and neuropathic pain in rats. Biochem. Pharmacol., 89 (4): 536-44. [PMID:24726441]

16. Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS. (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron, 31 (1): 35-45. [PMID:11498049]

17. Klassen T, Davis C, Goldman A, Burgess D, Chen T, Wheeler D, McPherson J, Bourquin T, Lewis L, Villasana D et al.. (2011) Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell, 145 (7): 1036-48. [PMID:21703448]

18. Klugbauer N, Marais E, Lacinová L, Hofmann F. (1999) A T-type calcium channel from mouse brain. Pflugers Arch., 437 (5): 710-5. [PMID:10087148]

19. Lee JH, Gomora JC, Cribbs LL, Perez-Reyes E. (1999) Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H. Biophys. J., 77 (6): 3034-42. [PMID:10585925]

20. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ et al.. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445 (7124): 168-76. [PMID:17151600]

21. Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin HS, Escande D, Charpentier F, Nargeot J, Lory P. (2006) Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ. Res., 98 (11): 1422-30. [PMID:16690884]

22. Martin RL, Lee JH, Cribbs LL, Perez-Reyes E, Hanck DA. (2000) Mibefradil block of cloned T-type calcium channels. J. Pharmacol. Exp. Ther., 295 (1): 302-8. [PMID:10991994]

23. McGivern JG. (2006) Pharmacology and drug discovery for T-type calcium channels. CNS Neurol. Disord. Drug Targets, 5 (6): 587-603. [PMID:17168744]

24. McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, Turner RW. (2006) Ca(V)3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur. J. Neurosci., 24 (9): 2581-94. [PMID:17100846]

25. Monteil A, Chemin J, Bourinet E, Mennessier G, Lory P, Nargeot J. (2000) Molecular and functional properties of the human alpha(1G) subunit that forms T-type calcium channels. J. Biol. Chem., 275 (9): 6090-100. [PMID:10692398]

26. Perez-Reyes E. (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol. Rev., 83 (1): 117-61. [PMID:12506128]

27. Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH. (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature, 391 (6670): 896-900. [PMID:9495342]

28. Santi CM, Cayabyab FS, Sutton KG, McRory JE, Mezeyova J, Hamming KS, Parker D, Stea A, Snutch TP. (2002) Differential inhibition of T-type calcium channels by neuroleptics. J. Neurosci., 22 (2): 396-403. [PMID:11784784]

29. Shcheglovitov AK, Boldyrev AI, Lyubanova OP, Shuba YM,. (2005) Peculiarities of selectivity of three subtypes of low-threshold T-type calcium channels. Neurophysiology, 37 (4): 277-286.

30. Shcheglovitov AK, Boldyrev AI, Lyubanova OP, Shuba YM,. (2005) Peculiarities of selectivity of three subtypes of low-threshold T-type calcium channels. Neurophysiology, 37 (4): 277-286.

31. Shcheglovitov AK, Boldyrev AI, Lyubanova OP, Shuba YM,. (2005) Peculiarities of selectivity of three subtypes of low-threshold T-type calcium channels. Neurophysiology, 37 (4): 277-286.

32. Sidach SS, Mintz IM. (2002) Kurtoxin, a gating modifier of neuronal high- and low-threshold ca channels. J. Neurosci., 22 (6): 2023-34. [PMID:11896142]

33. Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA. (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J. Neurosci., 19 (6): 1895-911. [PMID:10066243]

34. Talley EM, Solórzano G, Depaulis A, Perez-Reyes E, Bayliss DA. (2000) Low-voltage-activated calcium channel subunit expression in a genetic model of absence epilepsy in the rat. Brain Res. Mol. Brain Res., 75 (1): 159-65. [PMID:10648900]

35. Tringham E, Powell KL, Cain SM, Kuplast K, Mezeyova J, Weerapura M, Eduljee C, Jiang X, Smith P, Morrison JL et al.. (2012) T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures. Sci Transl Med, 4 (121): 121ra19. [PMID:22344687]

36. Wallace SJ. (1986) Use of ethosuximide and valproate in the treatment of epilepsy. Neurologic clinics, 4 (3): 601-16. [PMID:3092003]

37. Wang H, Zhang X, Xue L, Xing J, Jouvin MH, Putney JW, Anderson MP, Trebak M, Kinet JP. (2016) Low-Voltage-Activated CaV3.1 Calcium Channels Shape T Helper Cell Cytokine Profiles. Immunity, 44 (4): 782-94. [PMID:27037192]

38. Xiang Z, Thompson AD, Brogan JT, Schulte ML, Melancon BJ, Mi D, Lewis LM, Zou B, Yang L, Morrison R et al.. (2011) The Discovery and Characterization of ML218: A Novel, Centrally Active T-Type Calcium Channel Inhibitor with Robust Effects in STN Neurons and in a Rodent Model of Parkinson's Disease. ACS Chem Neurosci, 2 (12): 730-742. [PMID:22368764]

39. Xie X, Van Deusen AL, Vitko I, Babu DA, Davies LA, Huynh N, Cheng H, Yang N, Barrett PQ, Perez-Reyes E. (2007) Validation of high throughput screening assays against three subtypes of Ca(v)3 T-type channels using molecular and pharmacologic approaches. Assay Drug Dev. Technol., 5 (2): 191-203. [PMID:17477828]

40. Zhang Y, Mori M, Burgess DL, Noebels JL. (2002) Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons. J. Neurosci., 22 (15): 6362-71. [PMID:12151514]

Contributors

Show »

How to cite this page

William A. Catterall, Edward Perez-Reyes, Terrance P. Snutch, Joerg Striessnig.
Voltage-gated calcium channels: Cav3.1. Last modified on 13/09/2018. Accessed on 21/11/2018. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=535.