μ receptor

Target id: 319

Nomenclature: μ receptor

Family: Opioid receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 400 6q24-q25 OPRM1 opioid receptor, mu 1 146
Mouse 7 398 10 A2 Oprm1 opioid receptor, mu 1 89
Rat 7 398 1p11 Oprm1 opioid receptor 23,38,128,145,155
Previous and Unofficial Names
MOR-1
MOR
Mu opioid receptor
OP3
opioid receptor B
MOPr
opioid receptor, mu 1
Database Links
Specialist databases
GPCRDB P35372 (Hs), P42866 (Mm), P33535 (Rn)
Other databases
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
NeXtProt
OMIM
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the mu-opioid receptor bound to a morphinan antagonist
PDB Id:  4DKL
Ligand:  β-FNA
Resolution:  2.8Å
Species:  Mouse
References:  78
Natural/Endogenous Ligands
dynorphin A-(1-13) {Sp: Human, Mouse, Rat}
dynorphin A {Sp: Human, Mouse, Rat}
dynorphin A-(1-8) {Sp: Human, Mouse, Rat}
dynorphin B {Sp: Human, Mouse, Rat}
endomorphin-1 {Sp: Human}
β-endorphin {Sp: Human} , β-endorphin {Sp: Mouse} , β-endorphin {Sp: Rat}
[Leu]enkephalin {Sp: Human, Mouse, Rat}
[Met]enkephalin {Sp: Human, Mouse, Rat}
Comments: β-Endorphin is the highest potency endogenous ligand
Principal endogenous agonists (Human)
β-endorphin (POMC, P01189), [Met]enkephalin (PENK, P01210), [Leu]enkephalin (PENK, P01210), endomorphin-1, endomorphin-2

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]DAMGO Rn Full agonist 9.2 pKd 112
pKd 9.2 (Kd 5.7x10-10 M) [112]
(-)-cyclazocine Hs Partial agonist 10.0 pKi 132
pKi 10.0 [132]
butorphanol Hs Partial agonist 9.9 pKi 40
pKi 9.9 (Ki 1.2x10-10 M) [40]
Description: Displacement of [3H]DAMGO from human μ opioid receptor expressed in CHO cells.
sufentanil Hs Full agonist 9.9 pKi 141
pKi 9.9 (Ki 1.38x10-10 M) [141]
etonitazene Hs Full agonist 9.7 pKi 132
pKi 9.7 [132]
hydromorphone Hs Agonist 9.6 pKi 147
pKi 9.6 (Ki 2.8x10-10 M) [147]
ethylketocyclazocine Hs Full agonist 9.5 pKi 132
pKi 9.5 [132]
etorphine Hs Full agonist 9.5 pKi 132
pKi 9.5 [132]
fentanyl Rn Full agonist 9.4 pKi 112
pKi 9.4 [112]
DAMGO Hs Full agonist 9.3 pKi 50,132
pKi 9.3 [50,132]
loperamide Hs Agonist 9.3 pKi 24
pKi 9.3 (Ki 5.3x10-10 M) [24]
(-)-methadone Hs Full agonist 9.2 pKi 132
pKi 9.2 [132]
[Met]enkephalin {Sp: Human, Mouse, Rat} Rn Full agonist 9.2 pKi 112
pKi 9.2 [112]
fentanyl Hs Full agonist 9.2 pKi 132
pKi 9.2 [132]
cebranopadol Hs Agonist 9.1 pKi 74
pKi 9.1 (Ki 7x10-10 M) [74]
Description: Radioligand binding assay
sufentanil Rn Full agonist 9.1 pKi 149
pKi 9.1 (Ki 7.7x10-10 M) [149]
eluxadoline Rn Agonist 9.1 pKi 17
pKi 9.1 (Ki 9x10-10 M) [17]
morphine Hs Full agonist 9.0 pKi 45,132
pKi 9.0 [45,132]
β-endorphin {Sp: Human} Rn Full agonist 9.0 pKi 112
pKi 9.0 [112]
dihydromorphine Hs Full agonist 8.8 pKi 132
pKi 8.8 [132]
dynorphin-(1-11) Hs Full agonist 8.8 pKi 132
pKi 8.8 [132]
normorphine Hs Full agonist 8.8 pKi 132
pKi 8.8 [132]
nalbuphine Hs Agonist 8.8 pKi 147
pKi 8.8 (Ki 1.6x10-9 M) [147]
buprenorphine Hs Partial agonist 8.8 pKi 132
pKi 8.8 [132]
eluxadoline Hs Agonist 8.8 pKi 17
pKi 8.8 (Ki 1.7x10-9 M) [17]
DADLE Hs Full agonist 8.7 pKi 132
pKi 8.7 [132]
DAMGO Rn Full agonist 8.7 pKi 112
pKi 8.7 [112]
hydrocodone Hs Agonist 8.7 pKi 102
pKi 8.7 (Ki 2x10-9 M) [102]
cebranopadol Rn Agonist 8.6 pKi 74
pKi 8.6 (Ki 2.4x10-9 M) [74]
Description: Radioligand binding assay
dynorphin B {Sp: Human, Mouse, Rat} Hs Full agonist 8.5 pKi 132
pKi 8.5 [132]
endomorphin-2 {Sp: Human} Rn Full agonist 8.5 pKi 154
pKi 8.5 (Ki 3.24x10-9 M) [154]
(-)-pentazocine Hs Partial agonist 8.4 pKi 132
pKi 8.4 [132]
dynorphin A-(1-8) {Sp: Human, Mouse, Rat} Hs Full agonist 8.4 pKi 132
pKi 8.4 [132]
dynorphin A-(1-13) {Sp: Human, Mouse, Rat} Hs Full agonist 8.3 pKi 132
pKi 8.3 [132]
endomorphin-1 {Sp: Human} Hs Full agonist 8.3 pKi 47,154
pKi 8.3 [47,154]
DSLET Hs Full agonist 8.2 pKi 132
pKi 8.2 [132]
PL017 Hs Full agonist 8.2 pKi 21,132
pKi 8.2 [21,132]
[Leu]enkephalin {Sp: Human, Mouse, Rat} Hs Partial agonist 8.1 pKi 132
pKi 8.1 [132]
dynorphin A {Sp: Human, Mouse, Rat} Hs Full agonist 8.1 pKi 132
pKi 8.1 [132]
UFP-512 Hs Agonist 8.0 pKi 140
pKi 8.0 [140]
Description: Measuring displacement of [3H]-diprenorphine in vitro
morphine Rn Partial agonist 7.9 pKi 112
pKi 7.9 [112]
BW373U86 Rn Agonist 7.8 pKi 20
pKi 7.8 (Ki 1.5x10-8 M) [20]
ADL5747 Hs Agonist 7.7 pKi 70
pKi 7.7 (Ki 1.8x10-8 M) [70]
ADL5859 Hs Agonist 7.5 pKi 69
pKi 7.5 (Ki 3.2x10-8 M) [69]
SCH221510 Hs Agonist 7.2 pKi 139
pKi 7.2 (Ki 6.5x10-8 M) [139]
Description: Radioligand binding assay
SR16835 Hs Agonist 7.1 pKi 133
pKi 7.1 (Ki 7.99x10-8 M) [133]
Description: Radioligand binding assay
codeine Hs Full agonist 6.9 pKi 132
pKi 6.9 [132]
tapentadol Hs Agonist 6.8 pKi 135
pKi 6.8 (Ki 1.6x10-7 M) [135]
BW373U86 Hs Agonist 6.6 pKi 69
pKi 6.6 (Ki 2.6x10-7 M) [69]
tramadol Hs Agonist 5.8 pKi 147
pKi 5.8 (Ki 1.6x10-6 M) [147]
Description: Displacement of the mu aginist peptide DAMGO from the mu receptor expressed in CHO cells.
levorphanol Hs Agonist 9.9 pIC50 52
pIC50 9.9 (IC50 1.3x10-10 M) [52]
methadone Hs Agonist 8.4 pIC50 111
pIC50 8.4 (IC50 4.1x10-9 M) [111]
Description: Binding affinity against μ-opioid receptor (human) using [3H]DAMGO radioligand.
pethidine Hs Agonist 6.5 pIC50 111
pIC50 6.5 (IC50 3.15x10-7 M) [111]
AR-M1000390 Hs Agonist 5.4 pIC50 4
pIC50 5.4 (IC50 3.8x10-6 M) [4]
[3H]PL017 Rn Agonist - - 53
[53]
View species-specific agonist tables
Agonist Comments
pKi values were determined in the absence of Na+ and guanine nucleotides.

Discrimination of full or partial agonism is very dependent on the level of receptor expression and on the assay used to monitor agonist effects. Many agents may behave as full agonists or potent partial agonists in cell lines expressing cloned receptors in high concentration, but in other environments they may show only weak agonist activity. The identification of agonist activity in the table is largely based on the ability to stimulate GTPγ35S binding in cell lines expressing cloned human mu receptors. Agents giving 85% or greater stimulation than that given by DAMGO have been characterized as Full Agonists [132].

It is still unclear whether endomorphins are endogenous. Morphine occurs endogenously [110].

We have tagged the μ receptor as the primary drug target for hydrocodone based on this drug having the highest affinity at this receptor compared to the κ and δ receptors [102]. Similarly, we have tagged the μ receptor as the primary target of the drug hydromorphone [147].

Methadone is selective for the μ receptor: comparable IC50s at the κ and δ receptors are 512 and 1090nM respectively [111].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]diprenorphine Mm Antagonist 10.1 pKd 112
pKd 10.1 [112]
[3H]naloxone Mm Antagonist 9.0 pKd 112
pKd 9.0 [112]
naloxonazine Mm Antagonist 10.3 pKi 112
pKi 10.3 [112]
diprenorphine Mm Antagonist 10.1 pKi 112
pKi 10.1 [112]
quadazocine Hs Antagonist 10.0 pKi 132
pKi 10.0 [132]
(-)-bremazocine Hs Antagonist 9.7 pKi 132
pKi 9.7 [132]
naltrexone Hs Antagonist 9.7 pKi 132
pKi 9.7 [132]
CTOP Hs Antagonist 9.7 pKi 112
pKi 9.7 [112]
nalmefene Hs Antagonist 9.5 pKi 132
pKi 9.5 [132]
β-FNA Hs Antagonist 9.5 pKi 132
pKi 9.5 [132]
β-FNA Mm Antagonist 9.5 pKi 112
pKi 9.5 [112]
alvimopan Hs Antagonist 9.3 pKi 68
pKi 9.3 (Ki 4.7x10-10 M) [68]
diprenorphine Hs Antagonist 9.1 pKi 132
pKi 9.1 [132]
levallorphan Hs Antagonist 8.8 – 9.3 pKi 77
pKi 8.8 – 9.3 (Ki 1.69x10-9 – 4.8x10-10 M) [77]
Description: Competition binding assay- the calculated Ki varies depending on the radioligand used.
naloxone Mm Antagonist 9.0 pKi 112
pKi 9.0 [112]
nalorphine Hs Antagonist 8.9 pKi 132
pKi 8.9 [132]
naloxone Hs Antagonist 8.9 pKi 132
pKi 8.9 [132]
BNTX Hs Antagonist 8.8 pKi 132
pKi 8.8 [132]
AT-076 Hs Antagonist 8.8 pKi 156
pKi 8.8 (Ki 1.67x10-9 M) [156]
Description: Radioligand binding assay
methylnaltrexone Hs Antagonist 8.7 pKi 147
pKi 8.7 (Ki 2x10-9 M) [147]
Description: Displacement of [3H]DAMGO from human μ opioid receptors expressed in CHO cells
CTAP Hs Antagonist 8.6 pKi 21,132
pKi 8.6 [21,132]
naloxone benzoylhydrazone Hs Antagonist 8.2 – 8.7 pKi 132
pKi 8.7 [132]
pKi 8.2 [132]
naltrindole Hs Antagonist 8.2 pKi 132
pKi 8.2 [132]
naltriben Hs Antagonist 7.9 pKi 132
pKi 7.9 [132]
nor-binaltorphimine Hs Antagonist 7.7 pKi 132
pKi 7.7 [132]
View species-specific antagonist tables
Antagonist Comments
β-FNA is an electrophilic affinity label. The pKi reflects both the reversible and irreversible binding components.
CTOP is a good somatostatin receptor (sst receptor) agonist in addition to having antagonist activity at μ opioid receptors; it should never be used in studies of μ receptor function in situations where sst receptors may be involved. CTAP does not activate sst receptors [28].

The μ receptor is tagged as the primary target for the drug levallorphan, since the drug is mainly used for its antagonistic actions as an antidote to opioid overdose. Note that this drug also acts as a partial agonist at the κ receptor.
Allosteric Modulator Comments
Although no small molecules are considered direct allosteric regulators of μ receptors, a number of proteins such as G protein-coupled receptor kinases, β-arrestins and G proteins clearly regulate μ opioid receptor affinities and function. Furthermore sodium and guanyl nucleotides can modify the functional μ receptor complex and G protein interaction. Also, μ receptors are reported to form heterodimers with other receptors of the OP family or with non-opioid G protein-coupled receptors. Heterodimerisation may alter μ receptor function and/or trafficking [42,46,105].
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Adenylate cyclase stimulation
Adenylate cyclase inhibition
Phospholipase C stimulation
Potassium channel
Calcium channel
Phospholipase A2 stimulation
Phospholipase D stimulation
Other - See Comments
Comments:  The following systems have also been reported to be activated following Gi/Go activation via the μ receptor:
  • Epidermal growth factor receptor transactivation and subsequent mitogen activated protein kinase ERK [11,73]
  • Jun N-terminal kinase (JNK) expression and activity [36,60,121]
  • Signal transducer and activator of transcription 3 (STAT3) [153]
  • Focal adhesion kinase [79]
  • Nuclear Ca2+/calmodulin translocation [142]
  • Phosphatidylinositol-3 kinase expression and activity [60,100].
References:  6,16,18-19,30,39,54,63,91,93,99,103,108-109,113,136,151
Secondary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Comments:  G16 couples to the μ opioid receptor and activates PLC.
References:  55,71
Tissue Distribution
Skin: dermal and epidermal nerve fibers.
Species:  Human
Technique:  Immunohistochemistry.
References:  124
Immune cells: CEM x174 T/B lymphocytes, Raji B cells, CD4+, monocytes/macrophages, neutrophils.
Species:  Human
Technique:  RT-PCR.
References:  29
Pregnant uterus.
Species:  Mouse
Technique:  in situ hybridisation.
References:  157
CNS: caudate putamen, nucleus accumbens, endopiriform nucleus, fundus striati, habenula, amygdaloid nuclei, thalamus, hypothalamus, zona incerta, ventral tegmental area, interpeduncular nucleus, central gray, dentate gyrus, substantia nigra, the superior colliculus.
Species:  Mouse
Technique:  Radioligand binding.
References:  62
Gastrointestinal tract.
Species:  Rat
Technique:  Immunohistochemistry.
References:  7
CNS: superficial layers of the dorsal horn.
Species:  Rat
Technique:  immunocytochemistry.
References:  26-27
CNS: striatum, medial habenular nucleus, medial terminal nucleus of the accessory optic tract, interpeduncular nucleus, median raphe nucleus, parabrachial nuclei, locus coeruleus, ambiguous nucleus, nucleus of the solitary tract, and laminae I and II of the medullary and spinal dorsal horns, cerebral cortex, amygdala, thalamus, and hypothalamus.
Species:  Rat
Technique:  Immunohistochemistry.
References:  33
CNS: striatum, layers I and III of the cortex, the pyramidal cell layer of the hippocampal formation, specific nuclei of the thalamus, the pars reticulata of the substantia nigra, the interpeduncular nucleus, and the locus coeruleus.
Species:  Rat
Technique:  Radioligand binding.
References:  127
Accessory optic tract.
Species:  Rat
Technique:  Immunohistochemistry.
References:  35
CNS: superficial layers of the medullary and spinal dorsal horns. Colocalisation with substance P.
Species:  Rat
Technique:  immunocytochemistry.
References:  34,72
CNS: caudate putamen.
Species:  Rat
Technique:  immunocytochemistry.
References:  61,143
CNS: superficial layers of the spinal cord dorsal horn, nucleus caudalis of the spinal tract of the trigeminal, nucleus of the solitary tract, nucleus ambiguous, locus coeruleus, interpeduncular nucleus, lateral habenular nucleus, caudate-putamen, nucleus accumbens, ventral tegmental area, thalamus, hypothalamus, amygdaloid nuclei, nucleus accumbens, cerebral cortex, septum and diagonal band, preoptic area, medial thalamic and habenular nuclei, locus coeruleus, nucleus ambiguous, trigeminal nucleus caudalis, spinal cord substantia gelatinosa zones.
Species:  Rat
Technique:  Immunohistochemistry.
References:  96
CNS: anterior cingulate cortex, neocortex, amygdala, hippocampus, ventral dentate gyrus, presubiculum, nucleus accumbens, caudate putamen, thalamus, habenula, interpeduncular nucleus, pars compacta of the substantia nigra, superior and inferior colliculi, raphe nuclei.
Species:  Rat
Technique:  Radioligand binding.
References:  83
Ear: cochleae.
Species:  Rat
Technique:  RT-PCR.
References:  59,106
CNS: nucleus accumbens (plasma membranes: extrasynaptic neuronal > glial)
Species:  Rat
Technique:  immunocytochemistry.
References:  125
CNS: nucleus accumbens (plasma membranes of GABAergic neurons).
Species:  Rat
Technique:  immunocytochemistry.
References:  126
CNS: locus coeruleus (noradrenergic perikarya and dendrites).
Species:  Rat
Technique:  immunocytochemistry.
References:  137-138
CNS: accessory olfactory bulb, striatal patches and streaks, amygdaloid nuclei, ventral hippocampal subiculum and dentate gyrus, numerous thalamic nuclei, geniculate bodies, central grey, superior and inferior colliculi, solitary and pontine nuclei and substantia nigra.
Species:  Rat
Technique:  Radioligand binding.
References:  119
CNS: thalamus, striosomes of the caudate-putamen, globus pallidus, cerebral cortex.
Species:  Rat
Technique:  in situ hybridisation.
References:  32
CNS: thalamic, brainstem and reticular core nuclei (highest in the habenular and thalamic nuclei).
Species:  Rat
Technique:  in situ hybridisation.
References:  43
CNS: accessory olfactory bulb, anterior olfactory nuclei, striatal patches of the nucleus accumbens and caudate-putamen, endopiriform nucleus, claustrum, diagonal band of Broca, globus pallidus, ventral pallidum, bed nucleus of stria terminalis, most thalamic nuclei, medial and posteriocortical medial amygdala, lateral, dorsomedial, posterior and mammillary nuclei of the hypothalamus, presubiculum, subiculum, rostral interpeduncular nucleus, median raphe, inferior colliculus, parabrachial nucleus, locus coeruleus, central grey, nucleus ambiguus, nucleus of the solitary tract, nucleus gracilis, nucleus cuneatus, dorsal motor nucleus of vagus.
Species:  Rat
Technique:  In situ hybridisation and radioligand binding.
References:  82
CNS: thalamus, striatum, hypothalamus and pons-medulla > hippocampus and midbrain > cerebral cortex and cerebellum.
Species:  Rat
Technique:  Northern blotting.
References:  90
CNS: olfactory bulb, caudate-putamen, nucleus accumbens, lateral and medial septum, diagonal band of Broca, bed nucleus of the stria terminalis, most thalamic nuclei, hippocampus, amygdala, medial preoptic area, superior and inferior colliculi, central gray, dorsal and median raphe, raphe magnus, locus coeruleus, parabrachial nucleus, pontine and medullary reticular nuclei, nucleus ambiguus, nucleus of the solitary tract, nucleus gracilis and cuneatus, dorsal motor nucleus of vagus, spinal cord, dorsal root ganglia.
Species:  Rat
Technique:  in situ hybridisation.
References:  81
CNS: superficial layers (laminae I and II) of the dorsal horn of the spinal cord.
Species:  Rat
Technique:  Radioligand binding.
References:  13
CNS: Purkinje cells and granular and molecular layers of the fetal, neonatal and adult cerebellum.
Species:  Rat
Technique:  Immunohistochemistry.
References:  97
CNS: Olfactory bulb, striatal patches and subcallosal streak, medial septum, piriform and cingulate cortex, entorhinal cortex, bed nucleus stria terminalis, medial preoptic area, globus and ventral pallidum, thalamic nuclei, lateral hypothalamus, mammillary nuclei , hippocampus, amygdaloid nuclei, ventral and lateral periaqueductal grey, ventral tegmental area and substantia nigra pars compacta, superior and inferior colliculi, interpeduncular nuclei, locus ceruleus, parabrachial nuclei, median raphe, nucleus of the solitary tract, spinal cord (dorsal root ganglia and layers I and II).
Species:  Rat
Technique:  in situ hybridisation.
References:  128
CNS: olfactory bulb.
Species:  Rat
Technique:  immunocytochemistry.
References:  118
CNS: cerebral cortex, striatum, hippocampus, locus coeruleus, superficial laminae of the dorsal horn.
Species:  Rat
Technique:  Immunohistochemistry.
References:  5
Tissue Distribution Comments
μ opioid receptors are widely distributed with dense labelling throughout the fore, mid and hindbrain regions in the CNS. Quantitatively, the μ receptor is the most highly expressed of all the opioid receptors. Although the early studies used non-selective ligands such as [3H]dihydromorphine, characterisation of the distribution of the μ opioid receptor has been aided by the availability of [3H]DAMGO, a highly selective opioid agonist that has been the ligand of choice for labelling μ opioid receptors for over 20 years. Immunohistochemistry has largely confirmed receptor autoradiography.

For a review of μ opioid receptor expression in the rat see [80].
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of intracellular cAMP levels in SH-SY5Y cells endogenously expressing the μ receptor.
Species:  Human
Tissue:  SH-SY5Y cells.
Response measured:  Inhibition of cAMP accumulation.
References:  152
Measurement of [35S]GTPγS binding.
Species:  Rat
Tissue:  Brain slices.
Response measured:  [35S]GTPγS binding.
References:  120
Physiological Functions
Constriction of the pupil.
Species:  Human
Tissue:  Pupil.
References:  98
DAMGO increases the conductance of an inwardly rectifying potassium conductance and hyperpolarises locus coeruleus neurons.
Species:  Rat
Tissue:  Brain.
References:  103
μ receptor agonsts reduce bith early (GABAA receptor-mediated) and late (GABAB receptor-mediated) inhibitory postsynaptic currents in the dentate gyrus of hippocampal slices.
Species:  Rat
Tissue:  Hippocampal slices.
References:  148
Morphine inhibits N- and P/Q-type Ca2+ channels in the nucleus traxtus solitarius of the rat.
Species:  Rat
Tissue:  Brain.
References:  113
Morphine is responsible for modulating the Ca2+ currents in the mouse periaqueductal grey neurons.
Species:  Mouse
Tissue:  Periaqueductal grey neurons.
References:  30
Morphine inhibits interpheron (IFN)-γ promotor activity in activated mouse T cells, which is mediated through two distinct cAMP-dependent pathways, the NF-κB signalling pathway and the ERK1/2, p38 MAPK, AP-1/NFAT pathway.
Species:  Mouse
Tissue:  T cells.
References:  144
Body temperature regulation:
μ receptor activation induces hypothermia, blocked by selective μ receptor antagonists. The effect is centrally mediated, involving both oxidative metabolism and heat exchange.
Species:  Rat
Tissue:  In vivo.
References:  51
Physiological Consequences of Altering Gene Expression
Analgesia:
Untreated μ receptor knockout mice display shorter latencies on tail flick and hot plate tests for spinal and supraspinal nociceptive responses than wild-type mice, which support the role for endogenous opioid-peptide interactions with the μ receptor in normal nociceptive processing. Interestingly, analgesia produced by the δ opioid receptor agonist [D-Pen2,D-Pen5]enkephalin (DPDPE) in hot plate and tail flick tests is dramatically reduced in μ opioid receptor knockout mice in a gene-dose-dependent fashion, suggesting that DPDPE may require μ opioid receptor occupancies for full efficacy.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  75,84,116,122-123
Analgesia:
Loss of μ opioid receptors prevents the plasma membrane translocation of δ opioid receptors in the dorsal horn of the spinal cord caused by chronic inflammatory pain induced by intraplantar injection of Freund's adjuvant.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  94-95
Addictions; drug-induced reinforcement:
Opioid self-administration is abolished in μ receptor knockout mice. On the contrary, morphine is aversive in the μ opioid deficient mice by interaction with κ opioid receptors. In addition, μ opioid receptors may play a role in mediating various addictive agents such as ethanol, cocaine, nicotine and cannabinoid. Ethanol consumption is decreased in μ opioid knockout mice, and the animals exhibit less ethanol reward in a conditioned place preference paradigm.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  8-9,12,31,44,48-49,56
Addictions; locomotor activity:
Cocaine-induced locomotor activity but not sensitisation is abolished in μ receptor knockout mice, while wild-type and heterozygous μ receptor mice display reduced cocaine conditioned place-preference, confirming a central role of μ receptors in drug reward but opposing effects in locomotor sensitisation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  150
Emotional responsivity:
μ opioid receptors may play a role in the modification of emotional responses to novelty, anxiety and depression. μ receptor knockout mice show less anxiety in the elevated plus maze and emergence tests, reduced response to novel stimuli in the novelty test and less depressive-like behaviour in the forced swim test.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  37
Attachment behaviour:
Pups of μ receptor knockout mice emit fewer ultrasonic vocalisations when removed from their mothers. It indicates a role for μ opioid receptors in diseases characterised by deficits in attachment behaviour, such as autism or reactive attachment disorder.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  92
Modulation of neurotransmitter systems, dopamine:
Administration of apomorphine increases the locomotor activity of μ receptor knockout mice more than wild-type mice, which may be related to the increased binding sites of the dopamine D2 receptor in the caudate putamen of receptor deficient mice. A tonically active μ opioid system modulates the basal dopamine neurotransmission in the nucleus accumbens (NAc). Microdialysis studies have revealed significant decreases in the dopamine fraction in μ opioid receptor knckout mice. μ opioid receptor knockout mice show diminished food-anticipatory activity which is dependent on μ-regulated dopaminergic activity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  22,131
Modulation of neurotransmitter systems, acetylcholine:
Muscarinic M1 receptor mRNA and protein levels are reduced in various bran regions when compared to the wild-type. In μ opioid receptor deficient mice an up-regulation of acetylcholinesterase activity and compensatory down-regulation of M2 muscarinic receptors in the striatal caudate putamen and nucleus accumbens have been reported, which can be associated with the enhanced tremors after administration of acetylcholinesterase inhibitors.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  130
Modulation of neurotransmitter systems, glutamate, somatostatin:
An increase in glutamate and somatostatin binding was observed in μ receptor knockout mice, which may contribute to the enhanced excitability in these mice, showing an accelerated kindling development induced by the convulsant drug pentylenetetrazol.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  92
Learning and memory:
Several studies have demonstrated that the loss of μ opioid receptors decreases LTP in the dentate gyrus of the hippocampus, suggesting the possibility that the lack of μ opioid receptors may acccompany a change in learning and memory. μ opioid receptor knockout mice show a significant spatial memory impairment compared to wild-type in the Morris water maze. They also exhibit an impairment in the ultimate level of spatial learning, suggesting that the μ opioid receptor may play a positive role in learning and memory by increasing LTP in CA3 neurons. On the other hand, the learning deficit induced in pentylenetetrazol kindling id absent in μ opioid receptor knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  57-58,85
Immune responses:
In μ receptor knockout mice chronic morphine administration cannot induce lymphoid organ atrophy, nor diminish the ratio of CD4+ CD8+ cells in the thymus nor reduce natural killer activity. Morphine modulation of macrophage phagocytosis and macrophage secretion of TNFα is not observed in μ receptor knockout animals. In contrast, morphine reduction of splenic and thymic cell number and mitogen-induced proliferation are unaffected, as is morphine inhibition of Il-1 and Il-6 secretion by macrophages. Morphine treatment promotes T(H2) differentiation through a μ opioid dependent mechanism. Developing T cells are responsive to the chemotactic effect of μ opioid agonists, an effect not seen in μ opioid knockout mice. Deficiency of μ receptor exacerbates experimental colitis whereas administration of the μ receptor agonist DAMGO reduces inflammation in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  41,88,107,114-115
Other physiological functions:
Sexual function in male homozygotes is affected, as shown by reducing mating activity and a decrease in sperm count and motility. Morphine-induced inhibition of gastrointestinal transit is abolished in μ receptor knockout mice, and basal GI motility is lower as compared to heterozygous and wild-type animals. μ opioid receptor knockout mice develop insulin resistance more rapidly than wild-type mice indicating a role for μ in controlling insulin resistance.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  25,129
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Oprm1tm1Jlw Oprm1tm1Jlw/Oprm1tm1Jlw
involves: 129P2/OlaHsd
MGI:97441  MP:0009748 abnormal behavioral response to addictive substance PMID: 18207746 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0009278 abnormal bone marrow cell physiology PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0009278 abnormal bone marrow cell physiology PMID: 9126934 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:97441  MP:0000188 abnormal circulating glucose level PMID: 16505249 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0006410 abnormal common myeloid progenitor cell morphology PMID: 9126934 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd * BALB/c * C57BL/6
MGI:97441  MP:0002912 abnormal excitatory postsynaptic potential PMID: 10727705 
Oprm1tm1Yxp Oprm1tm1Yxp/Oprm1tm1Yxp
involves: 129/Sv * C57BL/6
MGI:97441  MP:0006001 abnormal intestinal transit time PMID: 19273844 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0003959 abnormal lean body mass PMID: 19221053 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd * BALB/cJ * C57BL/6J
MGI:97441  MP:0003633 abnormal nervous system physiology PMID: 15893889 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0002803 abnormal operant conditional behavior PMID: 15355329 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
B6.129S-Oprm1
MGI:97441  MP:0002803 abnormal operant conditional behavior PMID: 15355329 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0001970 abnormal pain threshold PMID: 10835636  8893006 
Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1tm1Uhl
involves: 129S7/SvEvBrd * C57BL/6J
MGI:97441  MP:0001970 abnormal pain threshold PMID: 9037090 
Oprd1tm1Jep|Oprm1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv * 129S2/SvPas
MGI:97438  MGI:97441  MP:0008872 abnormal physiological response to xenobiotic PMID: 17544222 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0001463 abnormal spatial learning PMID: 14499482 
Oprm1tm2.1Loh Oprm1tm2.1Loh/Oprm1tm2.1Loh
Not Specified
MGI:97441  MP:0001968 abnormal touch/ nociception PMID: 12525693 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0002675 asthenozoospermia PMID: 9126934 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0009776 decreased behavioral withdrawal response PMID: 10835636 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 9555078 
Oprm1+|Oprm1tm1Loh Oprm1tm1Loh/Oprm1+
involves: 129P2/OlaHsd
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 9555078 
Oprm1tm1Yxp Oprm1tm1Yxp/Oprm1tm1Yxp
involves: 129/Sv * C57BL/6
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 19273844 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 9126934 
Oprm1tm1Jabl Oprm1tm1Jabl/Oprm1tm1Jabl
C57BL/6-Oprm1
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 19528658 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001935 decreased litter size PMID: 9126934 
Oprm1+|Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1+
either: B6.129S7-Oprm1 or (involves: 129S7/SvEvBrd)
MGI:97441  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 11377918 
Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1tm1Uhl
involves: 129S7/SvEvBrd * C57BL/6J
MGI:97441  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 11377918 
Oprm1+|Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1+
either: B6.129S7-Oprm1 or (involves: 129S7/SvEvBrd)
MGI:97441  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 11377918 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 9555078 
Oprm1+|Oprm1tm1Loh Oprm1tm1Loh/Oprm1+
involves: 129P2/OlaHsd
MGI:97441  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 9555078 
Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1tm1Uhl
involves: 129S7/SvEvBrd * C57BL/6J
MGI:97441  MP:0003998 decreased thermal nociceptive threshold PMID: 9037090 
Oprm1tm1Jabl Oprm1tm1Jabl/Oprm1tm1Jabl
C57BL/6-Oprm1
MGI:97441  MP:0003998 decreased thermal nociceptive threshold PMID: 19528658 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0009749 enhanced behavioral response to addictive substance PMID: 15355329 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
B6.129S-Oprm1
MGI:97441  MP:0009749 enhanced behavioral response to addictive substance PMID: 15355329 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv
MGI:97441  MP:0009779 enhanced behavioral response to anesthetic PMID: 11032994 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
involves: 129S/SvEv
MGI:97441  MP:0009779 enhanced behavioral response to anesthetic PMID: 11032994 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0009754 enhanced behavioral response to cocaine PMID: 12781916 
Oprm1+|Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1+
either: B6.129S7-Oprm1 or (involves: 129S7/SvEvBrd)
MGI:97441  MP:0009713 enhanced conditioned place preference behavior PMID: 11377918 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0009171 enlarged pancreatic islets PMID: 19221053 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0001402 hypoactivity PMID: 8893006 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001402 hypoactivity PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0001402 hypoactivity PMID: 9126934 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0002578 impaired ability to fire action potentials PMID: 15926936 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv
MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 10195199  11032994 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
involves: 129S/SvEv
MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 10195199  11032994 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
involves: 129S2/SvPas
MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 10195199 
Oprd1tm1Jep|Oprm1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv * 129S2/SvPas
MGI:97438  MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 17544222 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 8893006 
Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1tm1Uhl
involves: 129S7/SvEvBrd * C57BL/6J
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 11377918 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 12781916  9555078 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 9126934 
Oprm1tm1Jabl Oprm1tm1Jabl/Oprm1tm1Jabl
C57BL/6-Oprm1
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 19528658 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 10195199  11032994 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
involves: 129S/SvEv
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 10195199  11032994 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
involves: 129S2/SvPas
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 10195199 
Oprd1tm1Jep|Oprm1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv * 129S2/SvPas
MGI:97438  MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 17544222 
Oprm1tm1Jabl Oprm1tm1Jabl/Oprm1tm1Jabl
C57BL/6-Oprm1
MGI:97441  MP:0009712 impaired conditioned place preference behavior PMID: 19528658 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0005292 improved glucose tolerance PMID: 19221053 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0001260 increased body weight PMID: 19221053 
Oprm1tm1Jlw Oprm1tm1Jlw/Oprm1tm1Jlw
involves: 129P2/OlaHsd
MGI:97441  MP:0001981 increased chemically-elicited antinociception PMID: 18207746 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0002079 increased circulating insulin level PMID: 19221053 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0003063 increased coping response PMID: 10835636 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0003135 increased erythroid progenitor cell number PMID: 9126934 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0003058 increased insulin secretion PMID: 19221053 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0009108 increased pancreas weight PMID: 19221053 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0005458 increased percent body fat PMID: 19221053 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0009336 increased splenocyte proliferation PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0009336 increased splenocyte proliferation PMID: 9126934 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0010024 increased total body fat amount PMID: 19221053 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0002574 increased vertical activity PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0002574 increased vertical activity PMID: 9126934 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0008911 induced hyperactivity PMID: 15355329 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
B6.129S-Oprm1
MGI:97441  MP:0008911 induced hyperactivity PMID: 15355329 
Oprm1tm2Loh Oprm1tm2Loh/Oprm1tm2Loh
Not Specified
MGI:97441  MP:0002169 no abnormal phenotype detected PMID: 12525693 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0002687 oligozoospermia PMID: 9126934 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd * BALB/c * C57BL/6
MGI:97441  MP:0001473 reduced long term potentiation PMID: 10727705 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001922 reduced male fertility PMID: 9126934 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001380 reduced male mating frequency PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0001380 reduced male mating frequency PMID: 9126934 
Biologically Significant Variants
Type:  Splice variants
Species:  Mouse
Description:  Several splice variant forms of the μ receptor (formerly MOR-1) have been identified. These variant forms were designated MOR-1A through MOR-1X; some of the variants express truncated forms of the receptor. The B, C and D variants differ in the amino acid composition at the C-terminus. The distribution of the protein expressed from the B, C and D variant forms has been studied by immunohistochemistry in the rat brain. They show a different distribution in the brain and spinal cord. When compared to the μ receptor, MOR-1D is deferentially desensitised in response to opioid agonists.
References:  1-3,14,63,65,67,87,101,104,117-118,134,158
Type:  Single nucleotide polymorphism
Species:  Human
Description:  An Asn40 -> Asp polymorphism has been found in high abundance in the caucasian and asian population. There are studies showing functional differences of the variant to wild-type receptor in vitro and in vivo. In addition, there are several reports showing association of this polymorphism with addiction and idiopathic epilepsy.
Amino acid change:  N40D
References:  10,15,66,76,86
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A rare Ser268 -> Pro polymorphism has been identified in the human receptor gene. The variant receptor possesses a marked reduction in coupling efficiency and is less desensitised upon agonist exposure.
Amino acid change:  S268P
References:  64
Biologically Significant Variant Comments
There are many additional polymorphisms of the μ receptor which are either without function or their functional significance is presently unknown.

References

Show »

1. Abbadie C, Pan YX, Pasternak GW. (2000) Differential distribution in rat brain of mu opioid receptor carboxy terminal splice variants MOR-1C-like and MOR-1-like immunoreactivity: evidence for region-specific processing. J Comp Neurol419: 244-256. [PMID:10723002]

2. Abbadie C, Pan YX, Pasternak GW. (2004) Immunohistochemical study of the expression of exon11-containing mu opioid receptor variants in mouse brain. Neuroscience127: 419-430. [PMID:15262332]

3. Abbadie C, Pasternak GW. (2001) Differential in vivo internalization of MOR-1 and MOR-1C by morphine. Neuroreport12: 3069-3072. [PMID:11568638]

4. Arora S, Keenan SM, Peng Y, Welsh W, Zhang Q. (2006) Opioid receptor subtype-selective agents. Patent number: WO2006124687 A1. Assignee: Arora S, Keenan SM, Peng Y, Welsh W, Zhang Q.. Priority date: 12/05/2005. Publication date: 23/11/2006.

5. Arvidsson U, Riedl M, Chakrabarti S, Lee JH, Nakano AH, Dado RJ, Loh HH, Law PY, Wessendorf MW, Elde R. (1995) Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J Neurosci15: 3328-3341. [PMID:7751913]

6. Avidor-Reiss T, Nevo I, Saya D, Bayewitch M, Vogel Z. (1997) Opiate-induced adenylyl cyclase superactivation is isozyme-specific. J Biol Chem272: 5040-5047. [PMID:9030567]

7. Bagnol D, Mansour A, Akil H, Watson SJ. (1997) Cellular localization and distribution of the cloned mu and kappa opioid receptors in rat gastrointestinal tract. Neuroscience81: 579-591. [PMID:9300443]

8. Becker A, Grecksch G, Brödemann R, Kraus J, Peters B, Schroeder H, Thiemann W, Loh HH, Höllt V. (2000) Morphine self-administration in mu-opioid receptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol361: 584-589. [PMID:10882032]

9. Becker A, Grecksch G, Kraus J, Loh HH, Schroeder H, Höllt V. (2002) Rewarding effects of ethanol and cocaine in mu opioid receptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol365: 296-302. [PMID:11919654]

10. Befort K, Filliol D, Decaillot FM, Gaveriaux-Ruff C, Hoehe MR, Kieffer BL. (2001) A single nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling. J Biol Chem276: 3130-3137. [PMID:11067846]

11. Belcheva MM, Szùcs M, Wang D, Sadee W, Coscia CJ. (2001) mu-Opioid receptor-mediated ERK activation involves calmodulin-dependent epidermal growth factor receptor transactivation. J Biol Chem276: 33847-33853. [PMID:11457825]

12. Berrendero F, Kieffer BL, Maldonado R. (2002) Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in mu-opioid receptor knock-out mice. J Neurosci22: 10935-10940. [PMID:12486188]

13. Besse D, Lombard MC, Besson JM. (1991) Autoradiographic distribution of mu, delta and kappa opioid binding sites in the superficial dorsal horn, over the rostrocaudal axis of the rat spinal cord. Brain Res548: 287-291. [PMID:1651143]

14. Bolan EA, Pan YX, Pasternak GW. (2004) Functional analysis of MOR-1 splice variants of the mouse mu opioid receptor gene Oprm. Synapse51: 11-18. [PMID:14579421]

15. Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L, Gong J, Schluger J, Strong JA, Leal SM, Tischfield JA, Kreek MJ, Yu L. (1998) Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci U S A95: 9608-9613. [PMID:9689128]

16. Bourinet E, Soong TW, Stea A, Snutch TP. (1996) Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc Natl Acad Sci U S A93: 1486-1491. [PMID:8643659]

17. Breslin HJ, Diamond CJ, Kavash RW, Cai C, Dyatkin AB, Miskowski TA, Zhang SP, Wade PR, Hornby PJ, He W. (2012) Identification of a dual δ OR antagonist/μ OR agonist as a potential therapeutic for diarrhea-predominant Irritable Bowel Syndrome (IBS-d). Bioorg. Med. Chem. Lett.22 (14): 4869-72. [PMID:22695132]

18. Carter BD, Medzihradsky F. (1993) Go mediates the coupling of the mu opioid receptor to adenylyl cyclase in cloned neural cells and brain. Proc Natl Acad Sci U S A90: 4062-4066. [PMID:8097884]

19. Chan JS, Chiu TT, Wong YH. (1995) Activation of type II adenylyl cyclase by the cloned mu-opioid receptor: coupling to multiple G proteins. J Neurochem65: 2682-2689. [PMID:7595566]

20. Chang KJ, Rigdon GC, Howard JL, McNutt RW. (1993) A novel, potent and selective nonpeptidic delta opioid receptor agonist BW373U86. J. Pharmacol. Exp. Ther.267 (2): 852-7. [PMID:8246159]

21. Chang KJ, Wei ET, Killian A, Chang JK. (1983) Potent morphiceptin analogs: structure activity relationships and morphine-like activities. J. Pharmacol. Exp. Ther.227 (2): 403-8. [PMID:6313901]

22. Chefer VI, Kieffer BL, Shippenberg TS. (2003) Basal and morphine-evoked dopaminergic neurotransmission in the nucleus accumbens of MOR- and DOR-knockout mice. Eur J Neurosci18: 1915-1922. [PMID:14622224]

23. Chen Y, Mestek A, Liu J, Hurley JA, Yu L. (1993) Molecular cloning and expression of a mu-opioid receptor from rat brain. Mol. Pharmacol.44: 8-12. [PMID:8393525]

24. Chen Z, Davies E, Miller WS, Shan S, Valenzano KJ, Kyle DJ. (2004) Design and synthesis of 4-phenyl piperidine compounds targeting the mu receptor. Bioorg. Med. Chem. Lett.14 (21): 5275-9. [PMID:15454210]

25. Cheng JT, Liu IM, Hsu CF. (2003) Rapid induction of insulin resistance in opioid mu-receptor knock-out mice. Neurosci Lett339: 139-142. [PMID:12614914]

26. Cheng PY, Liu-Chen LY, Pickel VM. (1997) Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat cervical spinal cord. Brain Res778: 367-380. [PMID:9459554]

27. Cheng PY, Moriwaki A, Wang JB, Uhl GR, Pickel VM. (1996) Ultrastructural localization of mu-opioid receptors in the superficial layers of the rat cervical spinal cord: extrasynaptic localization and proximity to Leu5-enkephalin. Brain Res731: 141-154. [PMID:8883864]

28. Chieng B, Connor M, Christie MJ. (1996) The mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-HN2 (CTOP) [but not D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-HN2 (CTAP)] produces a nonopioid receptor-mediated increase in K+conductance of rat locus coeruleus neurons. Mol. Pharmacol.50: 650-655. [PMID:8794906]

29. Chuang TK, Killam KF, Chuang LF, Kung HF, Sheng WS, Chao CC, Yu L, Chuang RY. (1995) Mu opioid receptor gene expression in immune cells. Biochem Biophys Res Commun216: 922-930. [PMID:7488213]

30. Connor M, Schuller A, Pintar JE, Christie MJ. (1999) Mu-opioid receptor modulation of calcium channel current in periaqueductal grey neurons from C57B16/J mice and mutant mice lacking MOR-1. Br J Pharmacol126: 1553-1558. [PMID:10323586]

31. Contarino A, Picetti R, Matthes HW, Koob GF, Kieffer BL, Gold LH. (2002) Lack of reward and locomotor stimulation induced by heroin in mu-opioid receptor-deficient mice. Eur J Pharmacol446: 103-109. [PMID:12098591]

32. Delfs JM, Kong H, Mestek A, Chen Y, Yu L, Reisine T, Chesselet MF. (1994) Expression of mu opioid receptor mRNA in rat brain: an in situ hybridization study at the single cell level. J Comp Neurol345: 46-68. [PMID:8089277]

33. Ding YQ, Kaneko T, Nomura S, Mizuno N. (1996) Immunohistochemical localization of mu-opioid receptors in the central nervous system of the rat. J Comp Neurol367: 375-402. [PMID:8698899]

34. Ding YQ, Nomura S, Kaneko T, Mizuno N. (1995) Co-localization of mu-opioid receptor-like and substance P-like immunoreactivities in axon terminals within the superficial layers of the medullary and spinal dorsal horns of the rat. Neurosci Lett198: 45-48. [PMID:8570093]

35. Ding YQ, Nomura S, Kaneko T, Mizuno N. (1995) Presynaptic localization of mu-opioid receptor-like immunoreactivity in retinal axon terminals within the terminal nuclei of the accessory optic tract: a light and electron microscope study in the rat. Neurosci Lett199: 139-142. [PMID:8584243]

36. Fan XL, Zhang JS, Zhang XQ, Ma L. (2003) Chronic morphine treatment and withdrawal induce up-regulation of c-Jun N-terminal kinase 3 gene expression in rat brain. Neuroscience122: 997-1002. [PMID:14643766]

37. Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F, Befort K, Gaveriaux-Ruff C, Dierich A, LeMeur M, Valverde O, Maldonado R, Kieffer BL. (2000) Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet25: 195-200. [PMID:10835636]

38. Fukuda K, Kato S, Mori K, Nishi M, Takeshima H. (1993) Primary structures and expression from cDNAs of rat opioid receptor delta- and mu-subtypes. FEBS Lett327: 311-314. [PMID:8394245]

39. Fukuda K, Kato S, Morikawa H, Shoda T, Mori K. (1996) Functional coupling of the delta-,and kappa-opioid receptors to mitogen-activated protein kinase and arachidonate release in Chinese hamster ovary cells. J. Neurochem.67: 1309-1316. [PMID:8752140]

40. Fulton BS, Knapp BI, Bidlack JM, Neumeyer JL. (2008) Synthesis and pharmacological evaluation of hydrophobic esters and ethers of butorphanol at opioid receptors. Bioorg. Med. Chem. Lett.18 (16): 4474-6. [PMID:18674902]

41. Gaveriaux-Ruff C, Matthes HW, Peluso J, Kieffer BL. (1998) Abolition of morphine-immunosuppression in mice lacking the mu-opioid receptor gene. Proc Natl Acad Sci U S A95: 6326-6330. [PMID:9600964]

42. George SR, Fan T, Xie Z, Tse R, Tam V, Varghese G, O'Dowd BF. (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem275: 26128-26135. [PMID:10842167]

43. George SR, Zastawny RL, Briones-Urbina R, Cheng R, Nguyen T, Heiber M, Kouvelas A, Chan AS, O'Dowd BF. (1994) Distinct distributions of mu, delta and kappa opioid receptor mRNA in rat brain. Biochem Biophys Res Commun205: 1438-1444. [PMID:7802680]

44. Ghozland S, Matthes HW, Simonin F, Filliol D, Kieffer BL, Maldonado R. (2002) Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J Neurosci.22: 1146-1154. [PMID:11826143]

45. Goldstein A, Naidu A. (1989) Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol. Pharmacol.36 (2): 265-72. [PMID:2549383]

46. Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA. (2000) Heterodimerization of mu and delta opioid receptors: A role in opiate synergy. J Neurosci20: RC110-RC110. [PMID:11069979]

47. Gong J, Strong JA, Zhang S, Yue X, Dehaven RN, Daubert JD, Cassel JA, Yu G, Mansson E, Yu L. (1998) Endomorphins fully activate a cloned human mu opioid receptor. FEBS Lett439: 152-156. [PMID:9849897]

48. Hall FS, Goeb M, Li XF, Sora I, Uhl GR. (2004) micro-Opioid receptor knockout mice display reduced cocaine conditioned place preference but enhanced sensitization of cocaine-induced locomotion. Brain Res Mol Brain Res121: 123-130. [PMID:14969743]

49. Hall FS, Sora I, Uhl GR. (2001) Ethanol consumption and reward are decreased in mu-opiate receptor knockout mice. Psychopharmacology (Berl)154: 43-49. [PMID:11292005]

50. Handa BK, Land AC, Lord JA, Morgan BA, Rance MJ, Smith CF. (1981) Analogues of beta-LPH61-64 possessing selective agonist activity at mu-opiate receptors. Eur. J. Pharmacol.70 (4): 531-40. [PMID:6263640]

51. Handler CM, Geller EB, Adler MW. (1992) Effect of mu-, kappa-, and delta-selective opioid agonists on thermoregulation in the rat. Pharmacol Biochem Behav43: 1209-1216. [PMID:1361992]

52. Hanessian S, Parthasarathy S, Mauduit M, Payza K. (2003) The power of visual imagery in drug design. Isopavines as a new class of morphinomimetics and their human opioid receptor binding activity. J. Med. Chem.46 (1): 34-48. [PMID:12502358]

53. Hawkins KN, Morelli M, Gulya K, Chang KJ, Yamamura HI. (1987) Autoradiographic localization of [3H] [MePhe3,D-Pro4]morphiceptin ([3H]PL017) to mu opioid receptors in rat brain. Eur. J. Pharmacol.133 (3): 351-2. [PMID:3030778]

54. Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA. (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature380: 258-262. [PMID:8637576]

55. Ho MK, New DC, Wong YH. (2002) Co-expressions of different opioid receptor types differentially modulate their signaling via G(16). Neurosignals11: 115-122. [PMID:12077485]

56. Hutcheson DM, Matthes HW, Valjent E, Sánchez-Blázquez P, Rodríguez-Díaz M, Garzón J, Kieffer BL, Maldonado R. (2001) Lack of dependence and rewarding effects of deltorphin II in mu-opioid receptor-deficient mice. Eur J Neurosci13: 153-161. [PMID:11135013]

57. Jamot L, Matthes HW, Simonin F, Kieffer BL, Roder JC. (2003) Differential involvement of the mu and kappa opioid receptors in spatial learning. Genes Brain Behav2: 80-92. [PMID:12884965]

58. Jang CG, Lee SY, Yoo JH, Yan JJ, Song DK, Loh HH, Ho IK. (2003) Impaired water maze learning performance in mu-opioid receptor knockout mice. Brain Res Mol Brain Res117: 68-72. [PMID:14499482]

59. Jongkamonwiwat N, Phansuwan-Pujito P, Sarapoke P, Chetsawang B, Casalotti SO, Forge A, Dodson H, Govitrapong P. (2003) The presence of opioid receptors in rat inner ear. Hear Res181: 85-93. [PMID:12855366]

60. Kam AY, Chan AS, Wong YH. (2004) Phosphatidylinositol-3 kinase is distinctively required for mu-, but not kappa-opioid receptor-induced activation of c-Jun N-terminal kinase. J Neurochem89: 391-402. [PMID:15056283]

61. Kaneko T, Minami M, Satoh M, Mizuno N. (1995) Immunocytochemical localization of mu-opioid receptor in the rat caudate-putamen. Neurosci Lett184: 149-152. [PMID:7715834]

62. Kitchen I, Slowe SJ, Matthes HWD, Kieffer B. (1997) Quantitative autoradiographic mapping of mu, delta and kappa-opioid receptors in knockout mice lacking the mu-opioid receptor gene. Brain Res.778: 73-88. [PMID:9462879]

63. Koch T, Brandenburg LO, Schulz S, Liang Y, Klein J, Hollt V. (2003) ADP-ribosylation factor-dependent phospholipase D2 activation is required for agonist-induced mu-opioid receptor endocytosis. J Biol Chem278: 9979-9985. [PMID:12519790]

64. Koch T, Kroslak T, Averbeck M, Mayer P, Schröder H, Raulf E, Höllt V. (2000) Allelic variation S268P of the human mu-opioid receptor affects both desensitization and G protein coupling. Mol Pharmacol58: 328-334. [PMID:10908300]

65. Koch T, Schulz S, Pfeiffer M, Klutzny M, Schröder H, Kahl E, Höllt V. (2001) C-terminal splice variants of the mouse mu-opioid receptor differ in morphine-induced internalization and receptor resensitization. J Biol Chem276: 31408-31414. [PMID:11359768]

66. Kreek MJ, Bart G, Lilly C, LaForge KS, Nielsen DA. (2005) Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol Rev57: 1-26. [PMID:15734726]

67. Kvam TM, Baar C, Rakvåg TT, Kaasa S, Krokan HE, Skorpen F. (2004) Genetic analysis of the murine mu opioid receptor: increased complexity of Oprm gene splicing. J Mol Med82: 250-255. [PMID:14991152]

68. Le Bourdonnec B, Barker WM, Belanger S, Wiant DD, Conway-James NC, Cassel JA, O'Neill TJ, Little PJ, DeHaven RN, DeHaven-Hudkins DL et al.. (2008) Novel trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines as mu opioid receptor antagonists with improved opioid receptor selectivity profiles. Bioorg. Med. Chem. Lett.18 (6): 2006-12. [PMID:18313920]

69. Le Bourdonnec B, Windh RT, Ajello CW, Leister LK, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M, Wiant DD et al.. (2008) Potent, orally bioavailable delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4'-piperidine]-4-yl)benzamide (ADL5859). J. Med. Chem.51 (19): 5893-6. [PMID:18788723]

70. Le Bourdonnec B, Windh RT, Leister LK, Zhou QJ, Ajello CW, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M et al.. (2009) Spirocyclic delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4'-piperidine]-4-yl) benzamide (ADL5747). J. Med. Chem.52 (18): 5685-702. [PMID:19694468]

71. Lee JW, Joshi S, Chan JS, Wong YH. (1998) Differential coupling of mu-, delta-, and kappa-opioid receptors to G alpha16-mediated stimulation of phospholipase C. J Neurochem70: 2203-2211. [PMID:9572309]

72. Li JL, Ding YQ, Li YQ, Li JS, Nomura S, Kaneko T, Mizuno N. (1998) Immunocytochemical localization of mu-opioid receptor in primary afferent neurons containing substance P or calcitonin gene-related peptide. A light and electron microscope study in the rat. Brain Res794: 347-352. [PMID:9622672]