Mineralocorticoid receptor

Target id: 626

Nomenclature: Mineralocorticoid receptor

Systematic Nomenclature: NR3C2

Family: 3C. 3-Ketosteroid receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

Gene and Protein Information
Species AA Chromosomal Location Gene Symbol Gene Name Reference
Human 984 4q31.1 NR3C2 nuclear receptor subfamily 3, group C, member 2 2
Mouse 980 8 35.0 cM Nr3c2 nuclear receptor subfamily 3, group C, member 2 3
Rat 981 19q11 Nr3c2 nuclear receptor subfamily 3, group C, member 2 54
Previous and Unofficial Names
aldosterone receptor
Type I glucocorticoid receptor
MCR
MLR
MR
Database Links
Specialist databases
NURSA Receptor 10.1621/HA4YWI2VKD (Hs)
Transcriptomine NR3C2&foldChange=1.6&direction=down, NR3C2&foldChange=1.75&direction=up
Other databases
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
NeXtProt
OMIM
Orphanet
PharmGKB Gene
PhosphoSitePlus
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniProtKB
Wikipedia
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  Ligand Binding Domain (Mineralocorticoid receptor)
PDB Id:  2AA5
Ligand:  progesterone   This ligand is endogenous
Resolution:  2.2Å
Species:  Human
References:  7
Image of receptor 3D structure from RCSB PDB
Description:  DNA-binding Domain (Mineralocorticoid Receptor)
PDB Id:  4TNT
Resolution:  2.39Å
Species:  Human
References:  33
Natural/Endogenous Ligands
aldosterone
corticosterone
cortisol
progesterone
Rank order of potency (Human)
corticosterone, cortisol, aldosterone, progesterone  [61]

Download all structure-activity data for this target as a CSV file

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]aldosterone Rn Agonist 9.5 – 9.4 pKd 28,67
pKd 9.5 – 9.4 (Kd 3x10-10 – 4x10-10 M) [28,67]
prednisolone Hs Agonist 7.4 pKi 17
pKi 7.4 (Ki 3.7x10-8 M) [17]
progesterone Hs Agonist 11.0 pIC50 61
pIC50 11.0 [61]
deoxycorticosterone Hs Agonist 11.0 pIC50 61
pIC50 11.0 [61]
fludrocortisone Hs Agonist 9.9 pIC50 61
pIC50 9.9 [61]
aldosterone Hs Agonist 9.8 – 10.0 pIC50 31,61
pIC50 9.8 – 10.0 [31,61]
cortisol Hs Agonist 9.8 – 9.9 pIC50 31,61
pIC50 9.8 – 9.9 [31,61]
dexamethasone Hs Agonist 9.0 pIC50 31,61
pIC50 9.0 [31,61]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
spironolactone Hs Antagonist 8.6 pKi 4
pKi 8.6 (Ki 2.32x10-9 M) [4]
eplerenone Hs Antagonist 6.9 pKi 4
pKi 6.9 (Ki 1.24x10-7 M) [4]
finerenone Hs Antagonist 7.7 pIC50 15
pIC50 7.7 (IC50 1.8x10-8 M) [15]
nimodipine Hs Antagonist 6.8 pIC50 20
pIC50 6.8 (IC50 1.6x10-7 M) inhibition of aldosterone-induced luciferase activity in a reporter system driven by the mineralocorticoid receptor ligand binding domain [20]
onapristone Hs Antagonist 6.3 pIC50 82
pIC50 6.3 (IC50 4.7x10-7 M) [82]
drospirenone Hs Antagonist - - 56
[56]
ZK112993 Hs Antagonist - -
RU28318 Hs Antagonist - -
Antagonist Comments
Several other antagonists are in various stages of development and are reviewed by Collin et al., 2014 [18].
DNA Binding
Structure:  Homodimer, Heterodimer
HRE core sequence:  ACAAGANNNTGTTCT
Response element:  GRE, Half site, Palindrome
DNA Binding Comments
MR and GR can heterodimerize. HRE sequence has variations that contribute to gene-specific regulation.

Additional response elements are described in Ziera et al., 2009 [84]
Co-binding Partners
Name Interaction Effect Reference
Rac1 63
HMGD Physical, Functional DNA binding 9,74
Glucocorticoid receptor Physical, Functional DNA binding 42,44-46,50,71
HSP90 complex Physical, Functional Cellular localization 23,25-27,57
Epidermal growth factor receptor 29
Co-binding Partners Comments
MR interacts with other members of the HSP90 complex including, hsp70, p23, the FκBPs and the cyclopholins [14,58-59].
Main Co-regulators
Name Activity Specific Ligand dependent AF-2 dependent Comments References
PPARGC1A Co-activator No Yes No Strong MR coactivator and highly expressed in brown adipocytes. 24
PPARGC1A Co-activator Yes Yes No Elongation factor that directly interacts with the N-terminal domain of MR and acts as a potent coactivator; strongly represses GR transactivation and has no effect on AR or PR activity. 53
NCOA1 Co-activator No Yes Yes First member of a large coactivator family (SRC1, 2, 3). DNA-bound steroid receptors interact with SRC-1 which initiate sequential recruitment of SWI/SNF chromatin remodeling complexes, histone-methyltransferase proteins CARM1/PRMT1 and histone acetylases such as CBP/p300-pCAF.

Sites of interaction with the MR: AF-2; AF-1 by SRC-1e isoform. Recruits histone acetylation complex to initiate transcription; weak intrinsic histone acetyltransferase activity.
34,51,76,81
NCOA2 Co-activator - No Yes Sites of interaction with the MR: AF-1, AF-2. Enhances transactivation. 24,32,76
EP300 Co-activator - No Yes Sites of interaction with the MR: AF-1, AF-2. Exerts histone acetyltransferase activity; recruits RNA polymerase II to target gene promoter. 24
PPARGC1A Co-activator - No Yes Sites of interaction with the MR: AF-2. Recruits histone acetyltransferase complex; facilitates binding of NR to transcription initiation complex. 34,37
ELL Co-activator - No - Sites of interaction with the MR: AF-1b. RNA polymerase II elongation factor; prevents premature arrest and transient pausing of polymerase II. 53
CASP8AP2 Co-activator - No - Sites of interaction with the MR: AF-1. Regulates cell apoptosis. 48
FAF1 Co-activator - No - Sites of interaction with the MR: AF-1. Regulates cell apoptosis. 48
MTL5 Co-activator - No Yes Sites of interaction with the MR: AF-2. 60
NRIP1 Co-activator - No - Sites of interaction with the MR: N-terminal domain 81
NCOR2 Co-repressor No No Yes Recruited to antagonist bound steroid receptors followed by recruitment of histone deacetylase proteins (HDAC).

Sites of interaction with the MR: ligand binding domain.
76
NCOR1 Co-repressor No No Yes Recruited to antagonist bound steroid receptors followed by recruitment of histone deacetylase proteins (HDAC).

Sites of interaction with the MR: ligand binding domain.
76
NFYC Co-repressor - No - Sites of interaction with the MR: AF-1. Inhibits aldosterone-induced MR N-C interaction. 43
PIAS1 Co-repressor Yes Yes No PIAS1, a SUMO-E3 ligase, inhibits transactivation by MR and AR but not that by GR. Sites of interaction with the MR: N-terminal domain, possibly ligand binding domain. Exact mechanism of repressive action unclear. 70
DAXX Co-repressor - No - Sites of interaction with the MR: N-terminal domain. Regulates cell apoptosis; represses MR transactivation in some cell lines. 48
UBE2I Co-activator - No - Sites of interaction with the MR: N-terminal domain. SUMO E2-conjugating enzyme; forms coactivation complex with SRC-1. 78
TRIM24 Co-activator - No - Sites of interaction with the MR: N-terminal domain. Transcriptional coactivator / corepressor. 81
Main Co-regulators Comments
A publication describing RHA as a MR co-regulator (Kitagawa et al 2002) has been retracted [36,85].
Main Target Genes
Name Species Effect Technique Comments References
Tsc22d3 Mouse Activated 66
SCNN1A Human Activated ENaC (SCCN1A) is transcriptionally regulated by aldosterone as an early event in distal colon but not in the kidney. However, aldosterone does increase ENaC number and activity on kidney epithelial cell surface. 1,65
Sgk1 Rat Activated the focal induction of serum and glucocorticoid-regulated kinase 1 (SGK1) is in the distal nephron and colon 6,12,64
Fxyd4 Rat Activated Fxyd4 or the chanel-inducing factor (Chif) is a member of the FXYD membrane protein family associated with Na+K+ATPase. 11
Ctgf Mouse Activated Microarray, Northern blot 30
K-Ras2A None Activated Northern blot analysis, real-time RT-PCR Using the Xenopus laevis kidney-derived A6 cell line, the K-ras transcript of the K-ras gene was identified as aldosterone induced. 13,68
Per1 Mouse Activated Microarray, Northern blot 30
Per2 Mouse Activated Microarray, Northern blot 30
Cnksr3 Mouse Activated 84
Fkbp5 Rat Activated qRT-PCR of endogenous target gene, Western blotting 55
WNK1 Human Activated Semiquantitative RT-PCR 47
ICAM1 Human Activated qRT-PCR, immunoblotting 16
Edn1 Rat Activated Northern blot analysis, real-time RT-PCR 77
Serpine1 Rat Activated RT-PCR 80
Ndrg2 Rat Activated RT-PCR 10
Main Target Genes Comments
K-Ras2 gene is activated by MR in Xenopus [73]. A small G protein and a proto-oncogene was found to be rapidly induced by aldosterone, enhances Na+ current. Other genes activated include the following: Na+, K+ ATPase α1 and β1 [38-39,39].

In addition to the genes listed above, regulation of L-type Ca2+ channel [41], osteogenic genes including alkaline phosphatase (ALP) and bone morphogenetic protein-2 (BMP2) [35], the RNA polymerase II elongation factor ELL (eleven-nineteen lysine-rich leukemia; [53]), the ubiquitin-specific protease Usp2-45 [22], and Sgk1, Fkbp5, Rasl12, Tns1 and Tsc22d3 (Gilz) which were validated as direct target genes of MR by quantitative RT-qPCR and ChIP-qPCR in a study using a murine distal convoluted tubular epithelial cell-line [72].
Tissue Distribution
Brain, heart, kidney, colon, aorta, hippocampus, hypothalamus, adrenal fasciculata.
Species:  Human
Technique:  Northern, Q-PCR, in situ, Western, immunohistology
References:  19,40
Tissue Distribution Comments
Classic aldosterone-sensitive tissues include epithelia with high electrical resistance, such as the distal parts of the nephron, the surface epithelium of the distal colon, and salivary and sweat gland ducts. More recently, other MR-expressing cells have been identified, either epithelial, as in epidermal keratinocytes, or nonepithelial, as in the neurons of the central nervous system, the cardiac myocytes, and the endothelial and smooth muscle cells of the vasculature (large vessels). Similar patterns of expression are also seen in rodents.

There is also extensive documentation of MR expression in renal and cardiac cell types (reviewed in Odermatt and Kratschmar, 2012 [49]).

In addition to those human tissues listed above, there are now many more documented in the literature, including female reproductive tissues (ovary, breast), auditory and retinal tissues, inflammatory cells, particularly the monocyte/macrophage lineage, the rest of the gastrointestinal tract although highest levels are undoubtedly in the distal colon.
Functional Assays
Renal clearance
Species:  Mouse
Tissue:  Urine
Response measured:  Ion levels
References:  5
Colonic transepithelial Na+ reabsorption
Species:  Mouse
Tissue:  Colon, in vivo
Response measured:  Colonic transepithelial potential difference is measured in vivo by a double-barreled flexible polyethylene tube that could be perfused by Ringer-type solution ± amiloride (3 µmol/liter). This tube was inserted into the rectum at a length of 7 mm. The electrical potential of this tube is measured by a high input resistance differential amplifier and was referenced to an Ag/AgCl electrode that was inserted under the skin
References:  5,65
Physiological Consequences of Altering Gene Expression
Homozygous MR-deficient mice:- show normal prenatal development, during week one they developed symptoms of pseudohypoaldosteronism, lost weight and died at around day 10 after birth from dehydration by renal sodium and water loss. At day 8, -/- mice showed hyperkalemia, hyponatremia, and a strong increase in renin, angiotensin II, and aldosterone plasma concentrations.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  5
A conditional knock-down model by expressing solely in the heart an antisense mRNA directed against the murine MR. Within 2-3 mo, mice developed severe heart failure and cardiac fibrosis in the absence of hypertension or chronic hyperaldosteronism.
Species:  Mouse
Tissue:  Heart
Technique:  Antisense oligonucleotide
References:  3
Physiological Consequences of Altering Gene Expression Comments
There are now a series of tissue-specific MR knockouts. The physiology of these at baseline is limited although in a pathophysiology context the effects are profound (see [79]).
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Nr3c2tm2Gsc|Tg(Camk2a-cre)2Gsc Nr3c2tm2Gsc/Nr3c2tm2Gsc,Tg(Camk2a-cre)2Gsc/0
involves: 129P2/OlaHsd * C57BL/6 * FVB/N
MGI:2181425  MGI:99459  MP:0002761 abnormal hippocampal mossy fiber morphology PMID: 16368758 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0001765 abnormal ion homeostasis PMID: 9689096 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0002829 abnormal juxtaglomerular apparatus PMID: 9689096 
Nr3c2tm1Krst|Tg(Camk2a-cre)2Gsc Nr3c2tm1Krst/Nr3c2tm1Krst,Tg(Camk2a-cre)2Gsc/?
involves: FVB/N
MGI:2181425  MGI:99459  MP:0004753 abnormal miniature excitatory postsynaptic currents PMID: 16361444 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0005325 abnormal renal glomerulus morphology PMID: 9689096 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0010109 abnormal renal sodium reabsorption PMID: 9689096 
Nr3c2tm2Gsc|Tg(Camk2a-cre)2Gsc Nr3c2tm2Gsc/Nr3c2tm2Gsc,Tg(Camk2a-cre)2Gsc/0
involves: 129P2/OlaHsd * C57BL/6 * FVB/N
MGI:2181425  MGI:99459  MP:0003461 abnormal response to novel object PMID: 16368758 
Nr3c2tm2Gsc|Tg(Camk2a-cre)2Gsc Nr3c2tm2Gsc/Nr3c2tm2Gsc,Tg(Camk2a-cre)2Gsc/0
involves: 129P2/OlaHsd * C57BL/6 * FVB/N
MGI:2181425  MGI:99459  MP:0001463 abnormal spatial learning PMID: 16368758 
Nr3c2tm2Gsc|Tg(Camk2a-cre)2Gsc Nr3c2tm2Gsc/Nr3c2tm2Gsc,Tg(Camk2a-cre)2Gsc/0
involves: 129P2/OlaHsd * C57BL/6 * FVB/N
MGI:2181425  MGI:99459  MP:0008428 abnormal spatial working memory PMID: 16368758 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0005634 decreased circulating sodium level PMID: 9689096 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0001429 dehydration PMID: 9689096 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0010128 hypovolemia PMID: 9689096 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0002666 increased circulating aldosterone level PMID: 9689096 
Nr3c2+|Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2+
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0002666 increased circulating aldosterone level PMID: 9689096 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0005627 increased circulating potassium level PMID: 9689096 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0003352 increased circulating renin level PMID: 9689096 
Nr3c2+|Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2+
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0003352 increased circulating renin level PMID: 9689096 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0002608 increased hematocrit PMID: 9689096 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0005582 increased renin activity PMID: 9689096 
Nr3c2+|Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2+
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0005582 increased renin activity PMID: 9689096 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0006316 increased urine sodium level PMID: 9689096 
Nr3c2+|Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2+
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0006316 increased urine sodium level PMID: 9689096 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0006275 natriuresis PMID: 9689096 
Nr3c2+|Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2+
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0006275 natriuresis PMID: 9689096 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0002082 postnatal lethality PMID: 9689096 
Nr3c2tm2.1Gsc Nr3c2tm2.1Gsc/Nr3c2tm2.1Gsc
involves: C57BL/6
MGI:99459  MP:0002082 postnatal lethality PMID: 16368758 
Nr3c2tm1Gsc Nr3c2tm1Gsc/Nr3c2tm1Gsc
involves: 129P2/OlaHsd * C57BL/6
MGI:99459  MP:0001263 weight loss PMID: 9689096 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Pseudohyperaldosteronism type 2
Synonyms: Hypertension, early-onset, autosomal dominant, with severe exacerbation in pregnancy [OMIM: 605115]
OMIM: 605115
Orphanet: ORPHA88660
Comments: 
References:  62,69
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human S819L Gain of function
Disease:  Renal pseudohypoaldosteronism type 1
Synonyms: Pseudohypoaldosteronism, type 1, autosomal dominant; PHA1A [OMIM: 177735]
OMIM: 177735
Orphanet: ORPHA171871
Role: 
Comments: 
References:  21,62,69,75
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human G633R Loss of function 62
Missense Human Q776R Loss of function 62
Missense Human L924P Loss of function 69
Missense Human L979P Loss of function 62
Biologically Significant Variants
Type:  Alternative promoters and splicing
Species:  Human
Description:  mineralocorticoid receptor isoform 1 (MR-A) is the full length transcript
Protein accession: 
References:  52
Type:  Alternative promoters and splicing
Species:  Human
Description:  mineralocorticoid receptor isoform 2 (MR-B) is an N-terminus truncated transcript of hMR
Protein accession: 
References:  52
Biologically Significant Variant Comments
Human mineralocorticoid receptor isoform 1 (MR-A) has higher transactivation activity than MR-B. Other splicing variants include: A 12-bp insertion at the 3' of exon 3 results in a four-residue addition in between the two zinc fingers of the DBD and no difference in activity compared to the wild-type receptor; a 10-bp deletion in rat MR results truncated LBD at residue 807, unresponsive to aldosterone, and no interference with wild-tpe receptor function; exon-skipping in human generates mutants lacking exon 5 or both exons 5 and 6 which binds to DNA and modulate wild-type receptor activity in a ligand-independent manner [8,81,83].

References

Show »

1. Amasheh S, Epple HJ, Mankertz J, Detjen K, Goltz M, Schulzke JD, Fromm M. (2000) Differential regulation of ENaC by aldosterone in rat early and late distal colon. Ann. N. Y. Acad. Sci.915: 92-4. [PMID:11193605]

2. Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM. (1987) Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science237 (4812): 268-75. [PMID:3037703]

3. Beggah AT, Escoubet B, Puttini S, Cailmail S, Delage V, Ouvrard-Pascaud A, Bocchi B, Peuchmaur M, Delcayre C, Farman N, Jaisser F. (2002) Reversible cardiac fibrosis and heart failure induced by conditional expression of an antisense mRNA of the mineralocorticoid receptor in cardiomyocytes. Proc. Natl. Acad. Sci. U.S.A.99 (10): 7160-5. [PMID:11997477]

4. Bell MG, Gernert DL, Grese TA, Belvo MD, Borromeo PS, Kelley SA, Kennedy JH, Kolis SP, Lander PA, Richey R et al.. (2007) (S)-N-{3-[1-cyclopropyl-1-(2,4-difluoro-phenyl)-ethyl]-1H-indol-7-yl}-methanesulfonamide: a potent, nonsteroidal, functional antagonist of the mineralocorticoid receptor. J. Med. Chem.50 (26): 6443-5. [PMID:18038968]

5. Berger S, Bleich M, Schmid W, Cole TJ, Peters J, Watanabe H, Kriz W, Warth R, Greger R, Schütz G. (1998) Mineralocorticoid receptor knockout mice: pathophysiology of Na+ metabolism. Proc. Natl. Acad. Sci. U.S.A.95 (16): 9424-9. [PMID:9689096]

6. Bhargava A, Fullerton MJ, Myles K, Purdy TM, Funder JW, Pearce D, Cole TJ. (2001) The serum- and glucocorticoid-induced kinase is a physiological mediator of aldosterone action. Endocrinology142 (4): 1587-94. [PMID:11250940]

7. Bledsoe RK, Madauss KP, Holt JA, Apolito CJ, Lambert MH, Pearce KH, Stanley TB, Stewart EL, Trump RP, Willson TM, Williams SP. (2005) A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor. J. Biol. Chem.280 (35): 31283-93. [PMID:15967794]

8. Bloem LJ, Guo C, Pratt JH. (1995) Identification of a splice variant of the rat and human mineralocorticoid receptor genes. J. Steroid Biochem. Mol. Biol.55 (2): 159-62. [PMID:7495694]

9. Boonyaratanakornkit V, Melvin V, Prendergast P, Altmann M, Ronfani L, Bianchi ME, Taraseviciene L, Nordeen SK, Allegretto EA, Edwards DP. (1998) High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol. Cell. Biol.18 (8): 4471-87. [PMID:9671457]

10. Boulkroun S, Fay M, Zennaro MC, Escoubet B, Jaisser F, Blot-Chabaud M, Farman N, Courtois-Coutry N. (2002) Characterization of rat NDRG2 (N-Myc downstream regulated gene 2), a novel early mineralocorticoid-specific induced gene. J. Biol. Chem.277 (35): 31506-15. [PMID:12072429]

11. Brennan FE, Fuller PJ. (1999) Acute regulation by corticosteroids of channel-inducing factor gene messenger ribonucleic acid in the distal colon. Endocrinology140 (3): 1213-8. [PMID:10067846]

12. Brennan FE, Fuller PJ. (2000) Rapid upregulation of serum and glucocorticoid-regulated kinase (sgk) gene expression by corticosteroids in vivo. Mol. Cell. Endocrinol.166 (2): 129-36. [PMID:10996431]

13. Brennan FE, Fuller PJ. (2006) Mammalian K-ras2 is a corticosteroid-induced gene in vivo. Endocrinology147 (6): 2809-16. [PMID:16543373]

14. Bruner KL, Derfoul A, Robertson NM, Guerriero G, Fernandes-Alnemri T, Alnemri ES, Litwack G. (1997) The unliganded mineralocorticoid receptor is associated with heat shock proteins 70 and 90 and the immunophilin FKBP-52. Recept Signal Transduct7 (2): 85-98. [PMID:9392437]

15. Bärfacker L, Kuhl A, Hillisch A, Grosser R, Figueroa-Pérez S, Heckroth H, Nitsche A, Ergüden JK, Gielen-Haertwig H, Schlemmer KH et al.. (2012) Discovery of BAY 94-8862: a nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases. ChemMedChem7 (8): 1385-403. [PMID:22791416]

16. Caprio M, Newfell BG, la Sala A, Baur W, Fabbri A, Rosano G, Mendelsohn ME, Jaffe IZ. (2008) Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ. Res.102 (11): 1359-67. [PMID:18467630]

17. Coghlan MJ, Kym PR, Elmore SW, Wang AX, Luly JR, Wilcox D, Stashko M, Lin CW, Miner J, Tyree C et al.. (2001) Synthesis and characterization of non-steroidal ligands for the glucocorticoid receptor: selective quinoline derivatives with prednisolone-equivalent functional activity. J. Med. Chem.44 (18): 2879-85. [PMID:11520196]

18. Collin M, Niemann F, Jaisser F. (2014) Mineralocorticoid receptor modulators: a patent review (2007 - 2012). Expert Opin Ther Pat24 (2): 177-83. [PMID:24215301]

19. de Kloet ER, Van Acker SA, Sibug RM, Oitzl MS, Meijer OC, Rahmouni K, de Jong W. (2000) Brain mineralocorticoid receptors and centrally regulated functions. Kidney Int.57 (4): 1329-36. [PMID:10760063]

20. Dietz JD, Du S, Bolten CW, Payne MA, Xia C, Blinn JR, Funder JW, Hu X. (2008) A number of marketed dihydropyridine calcium channel blockers have mineralocorticoid receptor antagonist activity. Hypertension51 (3): 742-8. [PMID:18250364]

21. Escoubet B, Couffignal C, Laisy JP, Mangin L, Chillon S, Laouénan C, Serfaty JM, Jeunemaitre X, Mentré F, Zennaro MC. (2013) Cardiovascular effects of aldosterone: insight from adult carriers of mineralocorticoid receptor mutations. Circ Cardiovasc Genet6 (4): 381-90. [PMID:23852419]

22. Fakitsas P, Adam G, Daidié D, van Bemmelen MX, Fouladkou F, Patrignani A, Wagner U, Warth R, Camargo SM, Staub O et al.. (2007) Early aldosterone-induced gene product regulates the epithelial sodium channel by deubiquitylation. J. Am. Soc. Nephrol.18 (4): 1084-92. [PMID:17344426]

23. Faresse N, Ruffieux-Daidie D, Salamin M, Gomez-Sanchez CE, Staub O. (2010) Mineralocorticoid receptor degradation is promoted by Hsp90 inhibition and the ubiquitin-protein ligase CHIP. Am. J. Physiol. Renal Physiol.299 (6): F1462-72. [PMID:20861078]

24. Fuse H, Kitagawa H, Kato S. (2000) Characterization of transactivational property and coactivator mediation of rat mineralocorticoid receptor activation function-1 (AF-1). Mol. Endocrinol.14 (6): 889-99. [PMID:10847590]

25. Galigniana MD, Echeverría PC, Erlejman AG, Piwien-Pilipuk G. (2010) Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore. Nucleus1 (4): 299-308. [PMID:21113270]

26. Galigniana MD, Erlejman AG, Monte M, Gomez-Sanchez C, Piwien-Pilipuk G. (2010) The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol. Cell. Biol.30 (5): 1285-98. [PMID:20038533]

27. Gallo LI, Ghini AA, Piwien Pilipuk G, Galigniana MD. (2007) Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity. Biochemistry46 (49): 14044-57. [PMID:18001136]

28. Ge RS, Dong Q, Sottas CM, Latif SA, Morris DJ, Hardy MP. (2005) Stimulation of testosterone production in rat Leydig cells by aldosterone is mineralocorticoid receptor mediated. Mol. Cell. Endocrinol.243 (1-2): 35-42. [PMID:16188378]

29. Grossmann C, Gekle M. (2012) Interaction between mineralocorticoid receptor and epidermal growth factor receptor signaling. Mol. Cell. Endocrinol.350 (2): 235-41. [PMID:21827828]

30. Gumz ML, Popp MP, Wingo CS, Cain BD. (2003) Early transcriptional effects of aldosterone in a mouse inner medullary collecting duct cell line. Am. J. Physiol. Renal Physiol.285 (4): F664-73. [PMID:12770840]

31. Hellal-Levy C, Couette B, Fagart J, Souque A, Gomez-Sanchez C, Rafestin-Oblin M. (1999) Specific hydroxylations determine selective corticosteroid recognition by human glucocorticoid and mineralocorticoid receptors. FEBS Lett.464 (1-2): 9-13. [PMID:10611474]

32. Hong H, Kohli K, Garabedian MJ, Stallcup MR. (1997) GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell. Biol.17 (5): 2735-44. [PMID:9111344]

33. Hudson WH, Youn C, Ortlund EA. (2014) Crystal structure of the mineralocorticoid receptor DNA binding domain in complex with DNA. PLoS ONE9 (9): e107000. [PMID:25188500]

34. Hultman ML, Krasnoperova NV, Li S, Du S, Xia C, Dietz JD, Lala DS, Welsch DJ, Hu X. (2005) The ligand-dependent interaction of mineralocorticoid receptor with coactivator and corepressor peptides suggests multiple activation mechanisms. Mol. Endocrinol.19 (6): 1460-73. [PMID:15761029]

35. Jaffe IZ, Tintut Y, Newfell BG, Demer LL, Mendelsohn ME. (2007) Mineralocorticoid receptor activation promotes vascular cell calcification. Arterioscler. Thromb. Vasc. Biol.27 (4): 799-805. [PMID:17234727]

36. Kitagawa H, Yanagisawa J, Fuse H, Ogawa S, Yogiashi Y, Okuno A, Nagasawa H, Nakajima T, Matsumoto T, Kato S. (2002) Ligand-selective potentiation of rat mineralocorticoid receptor activation function 1 by a CBP-containing histone acetyltransferase complex. Mol. Cell. Biol.22 (11): 3698-706. [PMID:11997506]

37. Knutti D, Kaul A, Kralli A. (2000) A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol. Cell. Biol.20 (7): 2411-22. [PMID:10713165]

38. Kolla V, Litwack G. (2000) Transcriptional regulation of the human Na/K ATPase via the human mineralocorticoid receptor. Mol. Cell. Biochem.204 (1-2): 35-40. [PMID:10718622]

39. Kolla V, Robertson NM, Litwack G. (1999) Identification of a mineralocorticoid/glucocorticoid response element in the human Na/K ATPase alpha1 gene promoter. Biochem. Biophys. Res. Commun.266 (1): 5-14. [PMID:10581156]

40. Krozowski ZS, Funder JW. (1983) Renal mineralocorticoid receptors and hippocampal corticosterone-binding species have identical intrinsic steroid specificity. Proc. Natl. Acad. Sci. U.S.A.80 (19): 6056-60. [PMID:6310613]

41. Lesouhaitier O, Chiappe A, Rossier MF. (2001) Aldosterone increases T-type calcium currents in human adrenocarcinoma (H295R) cells by inducing channel expression. Endocrinology142 (10): 4320-30. [PMID:11564691]

42. Liu W, Wang J, Sauter NK, Pearce D. (1995) Steroid receptor heterodimerization demonstrated in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A.92 (26): 12480-4. [PMID:8618925]

43. Murai-Takeda A, Shibata H, Kurihara I, Kobayashi S, Yokota K, Suda N, Mitsuishi Y, Jo R, Kitagawa H, Kato S et al.. (2010) NF-YC functions as a corepressor of agonist-bound mineralocorticoid receptor. J. Biol. Chem.285 (11): 8084-93. [PMID:20054001]

44. Nishi M. (2010) Imaging of transcription factor trafficking in living cells: lessons from corticosteroid receptor dynamics. Methods Mol. Biol.647: 199-212. [PMID:20694669]

45. Nishi M, Kawata M. (2007) Dynamics of glucocorticoid receptor and mineralocorticoid receptor: implications from live cell imaging studies. Neuroendocrinology85 (3): 186-92. [PMID:17446698]

46. Nishi M, Tanaka M, Matsuda K, Sunaguchi M, Kawata M. (2004) Visualization of glucocorticoid receptor and mineralocorticoid receptor interactions in living cells with GFP-based fluorescence resonance energy transfer. J. Neurosci.24 (21): 4918-27. [PMID:15163683]

47. Náray-Fejes-Tóth A, Snyder PM, Fejes-Tóth G. (2004) The kidney-specific WNK1 isoform is induced by aldosterone and stimulates epithelial sodium channel-mediated Na+ transport. Proc. Natl. Acad. Sci. U.S.A.101 (50): 17434-9. [PMID:15583131]

48. Obradović D, Tirard M, Némethy Z, Hirsch O, Gronemeyer H, Almeida OF. (2004) DAXX, FLASH, and FAF-1 modulate mineralocorticoid and glucocorticoid receptor-mediated transcription in hippocampal cells--toward a basis for the opposite actions elicited by two nuclear receptors?. Mol. Pharmacol.65 (3): 761-9. [PMID:14978255]

49. Odermatt A, Kratschmar DV. (2012) Tissue-specific modulation of mineralocorticoid receptor function by 11β-hydroxysteroid dehydrogenases: an overview. Mol. Cell. Endocrinol.350 (2): 168-86. [PMID:21820034]

50. Ou XM, Storring JM, Kushwaha N, Albert PR. (2001) Heterodimerization of mineralocorticoid and glucocorticoid receptors at a novel negative response element of the 5-HT1A receptor gene. J. Biol. Chem.276 (17): 14299-307. [PMID:11278286]

51. Oñate SA, Tsai SY, Tsai MJ, O'Malley BW. (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science270 (5240): 1354-7. [PMID:7481822]

52. Pascual-Le Tallec L, Demange C, Lombès M. (2004) Human mineralocorticoid receptor A and B protein forms produced by alternative translation sites display different transcriptional activities. Eur. J. Endocrinol.150 (4): 585-90. [PMID:15080790]

53. Pascual-Le Tallec L, Simone F, Viengchareun S, Meduri G, Thirman MJ, Lombès M. (2005) The elongation factor ELL (eleven-nineteen lysine-rich leukemia) is a selective coregulator for steroid receptor functions. Mol. Endocrinol.19 (5): 1158-69. [PMID:15650021]

54. Patel PD, Sherman TG, Goldman DJ, Watson SJ. (1989) Molecular cloning of a mineralocorticoid (type I) receptor complementary DNA from rat hippocampus. Mol. Endocrinol.3 (11): 1877-85. [PMID:2558305]

55. Petrovich E, Asher C, Garty H. (2014) Induction of FKBP51 by aldosterone in intestinal epithelium. J. Steroid Biochem. Mol. Biol.139: 78-87. [PMID:24139875]

56. Pollow K, Juchem M, Elger W, Jacobi N, Hoffmann G, Möbus V. (1992) Dihydrospirorenone (ZK30595): a novel synthetic progestagen--characterization of binding to different receptor proteins. Contraception46 (6): 561-74. [PMID:1493716]

57. Pratt WB, Galigniana MD, Morishima Y, Murphy PJ. (2004) Role of molecular chaperones in steroid receptor action. Essays Biochem.40: 41-58. [PMID:15242338]

58. Pratt WB, Toft DO. (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev.18 (3): 306-60. [PMID:9183567]

59. Rafestin-Oblin ME, Couette B, Radanyi C, Lombes M, Baulieu EE. (1989) Mineralocorticosteroid receptor of the chick intestine. Oligomeric structure and transformation. J. Biol. Chem.264 (16): 9304-9. [PMID:2542305]

60. Rogerson FM, Yao YZ, Young MJ, Fuller PJ. (2014) Identification and characterization of a ligand-selective mineralocorticoid receptor coactivator. FASEB J.28 (10): 4200-10. [PMID:24907116]

61. Rupprecht R, Reul JM, van Steensel B, Spengler D, Söder M, Berning B, Holsboer F, Damm K. (1993) Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands. Eur. J. Pharmacol.247 (2): 145-54. [PMID:8282004]

62. Sartorato P, Cluzeaud F, Fagart J, Viengchareun S, Lombès M, Zennaro MC. (2004) New naturally occurring missense mutations of the human mineralocorticoid receptor disclose important residues involved in dynamic interactions with deoxyribonucleic acid, intracellular trafficking, and ligand binding. Mol. Endocrinol.18 (9): 2151-65. [PMID:15192075]

63. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J, Takai Y, Fujita T. (2008) Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat. Med.14 (12): 1370-6. [PMID:19029984]

64. Shigaev A, Asher C, Latter H, Garty H, Reuveny E. (2000) Regulation of sgk by aldosterone and its effects on the epithelial Na(+) channel. Am. J. Physiol. Renal Physiol.278 (4): F613-9. [PMID:10751222]

65. Skrabal F, Auböck J, Edwards CR, Braunsteiner H. (1978) Subtraction potential difference: In-vivo assay for mineralocorticoid activity. Lancet1 (8059): 298-302. [PMID:75336]

66. Soundararajan R, Zhang TT, Wang J, Vandewalle A, Pearce D. (2005) A novel role for glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodium transport. J. Biol. Chem.280 (48): 39970-81. [PMID:16216878]

67. Stephenson G, Krozowski Z, Funder JW. (1984) Extravascular CBG-like sites in rat kidney and mineralocorticoid receptor specificity. Am. J. Physiol.246 (2 Pt 2): F227-33. [PMID:6320679]

68. Stockand JD, Spier BJ, Worrell RT, Yue G, Al-Baldawi N, Eaton DC. (1999) Regulation of Na(+) reabsorption by the aldosterone-induced small G protein K-Ras2A. J. Biol. Chem.274 (50): 35449-54. [PMID:10585415]

69. Tajima T, Kitagawa H, Yokoya S, Tachibana K, Adachi M, Nakae J, Suwa S, Katoh S, Fujieda K. (2000) A novel missense mutation of mineralocorticoid receptor gene in one Japanese family with a renal form of pseudohypoaldosteronism type 1. J. Clin. Endocrinol. Metab.85 (12): 4690-4. [PMID:11134129]

70. Tallec LP, Kirsh O, Lecomte MC, Viengchareun S, Zennaro MC, Dejean A, Lombès M. (2003) Protein inhibitor of activated signal transducer and activator of transcription 1 interacts with the N-terminal domain of mineralocorticoid receptor and represses its transcriptional activity: implication of small ubiquitin-related modifier 1 modification. Mol. Endocrinol.17 (12): 2529-42. [PMID:14500761]

71. Trapp T, Rupprecht R, Castrén M, Reul JM, Holsboer F. (1994) Heterodimerization between mineralocorticoid and glucocorticoid receptor: a new principle of glucocorticoid action in the CNS. Neuron13 (6): 1457-62. [PMID:7993637]

72. Ueda K, Fujiki K, Shirahige K, Gomez-Sanchez CE, Fujita T, Nangaku M, Nagase M. (2014) Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor. Biochem. Biophys. Res. Commun.445 (1): 132-7. [PMID:24491541]

73. Verrey F. (1999) Early aldosterone action: toward filling the gap between transcription and transport. Am. J. Physiol.277 (3 Pt 2): F319-27. [PMID:10484514]

74. Verrijdt G, Haelens A, Schoenmakers E, Rombauts W, Claessens F. (2002) Comparative analysis of the influence of the high-mobility group box 1 protein on DNA binding and transcriptional activation by the androgen, glucocorticoid, progesterone and mineralocorticoid receptors. Biochem. J.361 (Pt 1): 97-103. [PMID:11742533]

75. Walker BR, Andrew R, Escoubet B, Zennaro MC. (2014) Activation of the hypothalamic-pituitary-adrenal axis in adults with mineralocorticoid receptor haploinsufficiency. J. Clin. Endocrinol. Metab.99 (8): E1586-91. [PMID:24712576]

76. Wang Q, Anzick S, Richter WF, Meltzer P, Simons SS. (2004) Modulation of transcriptional sensitivity of mineralocorticoid and estrogen receptors. J. Steroid Biochem. Mol. Biol.91 (4-5): 197-210. [PMID:15336697]

77. Wong S, Brennan FE, Young MJ, Fuller PJ, Cole TJ. (2007) A direct effect of aldosterone on endothelin-1 gene expression in vivo. Endocrinology148 (4): 1511-7. [PMID:17218419]

78. Yokota K, Shibata H, Kurihara I, Kobayashi S, Suda N, Murai-Takeda A, Saito I, Kitagawa H, Kato S, Saruta T et al.. (2007) Coactivation of the N-terminal transactivation of mineralocorticoid receptor by Ubc9. J. Biol. Chem.282 (3): 1998-2010. [PMID:17105732]

79. Young MJ, Rickard AJ. (2015) Mineralocorticoid receptors in the heart: lessons from cell-selective transgenic animals. J. Endocrinol.224 (1): R1-13. [PMID:25335936]

80. Yuan J, Jia R, Bao Y. (2007) Aldosterone up-regulates production of plasminogen activator inhibitor-1 by renal mesangial cells. J. Biochem. Mol. Biol.40 (2): 180-8. [PMID:17394767]

81. Zennaro MC, Souque A, Viengchareun S, Poisson E, Lombès M. (2001) A new human MR splice variant is a ligand-independent transactivator modulating corticosteroid action. Mol. Endocrinol.15 (9): 1586-98. [PMID:11518808]

82. Zhi L, Ringgenberg JD, Edwards JP, Tegley CM, West SJ, Pio B, Motamedi M, Jones TK, Marschke KB, Mais DE et al.. (2003) Development of progesterone receptor antagonists from 1,2-dihydrochromeno[3,4-f]quinoline agonist pharmacophore. Bioorg. Med. Chem. Lett.13 (12): 2075-8. [PMID:12781198]

83. Zhou MY, Gomez-Sanchez CE, Gomez-Sanchez EP. (2000) An alternatively spliced rat mineralocorticoid receptor mRNA causing truncation of the steroid binding domain. Mol. Cell. Endocrinol.159 (1-2): 125-31. [PMID:10687858]

84. Ziera T, Irlbacher H, Fromm A, Latouche C, Krug SM, Fromm M, Jaisser F, Borden SA. (2009) Cnksr3 is a direct mineralocorticoid receptor target gene and plays a key role in the regulation of the epithelial sodium channel. FASEB J.23 (11): 3936-46. [PMID:19567370]

85. (2014) Retraction for Kitagawa et al., Ligand-selective potentiation of rat mineralocorticoid receptor activation function 1 by a CBP-containing histone acetyltransferase complex. Mol. Cell. Biol.34 (5): 916. [PMID:24509261]

How to cite this page

3C. 3-Ketosteroid receptors: Mineralocorticoid receptor. Last modified on 12/08/2015. Accessed on 04/09/2015. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=626.