LPA<sub>5</sub> receptor | Lysophospholipid (LPA) receptors | IUPHAR/BPS Guide to PHARMACOLOGY

Top ▲

LPA5 receptor

Target not currently curated in GtoImmuPdb

Target id: 124

Nomenclature: LPA5 receptor

Family: Lysophospholipid (LPA) receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates.  » Email us

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 372 12p13.31 LPAR5 lysophosphatidic acid receptor 5
Mouse 7 372 6 Lpar5 lysophosphatidic acid receptor 5
Rat 7 384 4q42 Lpar5 lysophosphatidic acid receptor 5
Previous and Unofficial Names
GPR93 | LPAR5 | GPR92 | G protein-coupled receptor 92
Database Links
Specialist databases
GPCRDB lpar5_human (Hs), lpar5_mouse (Mm)
Other databases
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
RefSeq Nucleotide
RefSeq Protein
Natural/Endogenous Ligands
farnesyl diphosphate
farnesyl monophosphate
Comments: Proposed ligand, two publications

Download all structure-activity data for this target as a CSV file

Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
LPA Hs Full agonist 8.2 pKd 4
pKd 8.2 (Kd 6.4x10-9 M) [4]
alkyl glycerol phosphate 18:1 Rn Full agonist 8.7 pEC50 16
pEC50 8.7 (EC50 2x10-9 M) [16]
farnesyl monophosphate Hs Agonist 7.3 pEC50 16
pEC50 7.3 [16]
farnesyl diphosphate Hs Partial agonist 5.8 – 6.5 pEC50 12,16
pEC50 5.8 – 6.5 (EC50 1.46x10-6 – 2.9x10-7 M) [12,16]
LPA Hs Agonist 4.3 – 7.9 pEC50 9,12,15
pEC50 4.3 – 7.9 [9,12,15]
octyl thiophosphatidic acid Rn Partial agonist 5.7 pEC50 16
pEC50 5.7 (EC50 2.1x10-6 M) [16]
N-arachidonoylglycine Hs Partial agonist <4.3 pEC50 12,16
pEC50 <4.3 (EC50 >5x10-5 M) [12,16]
View species-specific agonist tables
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
AS2717638 Hs Antagonist 7.4 pIC50 11
pIC50 7.4 (IC50 3.8x10-8 M) [11]
Description: IC50 value determined in a cAMP accumulation assay.
TCLPA5 Hs Antagonist 6.1 pIC50 5
pIC50 6.1 (IC50 8x10-7 M) [5]
Description: Inhibitor of KI6425-induced activation of a LPA5-RH7777 cell line.
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family
G12/G13 family
Other - See Comments
Comments:  Increases cAMP, intracellular calcium, conductance change pathway unknown. Others include: Rho. For a detailed review please see [17].
References:  6
Tissue Distribution
Mast cells, platelets, spleen, heart, small intestine, placenta, colon, liver
Species:  Human
Technique:  Northern blot and RT-PCR
References:  1,10
Small intestine, lung, heart, stomach, colon, spleen, thymus, skin, liver, platelets, mast cells, gastrointestinal lymphocytes, dorsal root ganglia, early embryonic forebrain, rostral midbrain, hindbrain, choroid plexus, embryonic stem cell, abdominal/thoracic aortic vascular smooth muscle cell.
Species:  Mouse
Technique:  RT-PCR, in situ hybridisation, IHC
References:  2,4,6,12-13
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Receptor internalization
Species:  Rat
Tissue:  Brain
Response measured:  Receptor internalization in B103 neuroblastoma cells
References:  6
Neurite retraction
Species:  Rat
Tissue:  Brain
Response measured:  Neurite retraction in B103 neuroblastoma cells
References:  6
Stress fiber formation
Species:  Rat
Tissue:  Liver
Response measured:  Stress fiber formation in RH7777 hepatoma cells
References:  6
Release of proinflammatory cytokines
Species:  Mouse
Tissue:  Microglia
Response measured:  Increased CD40, CD86, inducible nitric oxide synthase, and COX-2.
References:  14
Physiological Functions
Release of MIP-1β by mast cells
Species:  Human
Tissue:  Immune
References:  10
Chemorepellent for B16 melanoma cells
Species:  Mouse
Tissue:  Skin
References:  3
Sodium dependent water absorption
Species:  Mouse
Tissue:  Intestine
References:  8
Mediation of neuropathic pain
Species:  Mouse
Tissue:  Spinal cord
References:  7
M1 inflammatory polarization.
Species:  Mouse
Tissue:  Microglia
References:  14
Physiological Consequences of Altering Gene Expression
Mice with receptor knockout are protected from partial sciatic nerve ligation-medated neuropathic pain; no baseline phenotype
Species:  Mouse
Tissue:  Spinal cord: dorsal root ganglia and dorsal horn
Technique:  Gene knockouts
References:  7


Show »

1. Amisten S, Braun OO, Bengtsson A, Erlinge D. (2008) Gene expression profiling for the identification of G-protein coupled receptors in human platelets. Thromb. Res., 122 (1): 47-57. [PMID:17920662]

2. Dancs PT, Ruisanchez É, Balogh A, Panta CR, Miklós Z, Nüsing RM, Aoki J, Chun J, Offermanns S, Tigyi G et al.. (2017) LPA1 receptor-mediated thromboxane A2 release is responsible for lysophosphatidic acid-induced vascular smooth muscle contraction. FASEB J., 31 (4): 1547-1555. [PMID:28069828]

3. Jongsma M, Matas-Rico E, Rzadkowski A, Jalink K, Moolenaar WH. (2011) LPA is a chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. PLoS ONE, 6 (12): e29260. [PMID:22195035]

4. Kotarsky K, Boketoft A, Bristulf J, Nilsson NE, Norberg A, Hansson S, Owman C, Sillard R, Leeb-Lundberg LM, Olde B. (2006) Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J. Pharmacol. Exp. Ther., 318 (2): 619-28. [PMID:16651401]

5. Kozian DH, Evers A, Florian P, Wonerow P, Joho S, Nazare M. (2012) Selective non-lipid modulator of LPA5 activity in human platelets. Bioorg. Med. Chem. Lett., 22 (16): 5239-43. [PMID:22801643]

6. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J. (2006) GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J. Biol. Chem., 281 (33): 23589-97. [PMID:16774927]

7. Lin ME, Rivera RR, Chun J. (2012) Targeted deletion of LPA5 identifies novel roles for lysophosphatidic acid signaling in development of neuropathic pain. J. Biol. Chem., 287 (21): 17608-17. [PMID:22461625]

8. Lin S, Yeruva S, He P, Singh AK, Zhang H, Chen M, Lamprecht G, de Jonge HR, Tse M, Donowitz M, Hogema BM, Chun J, Seidler U, Yun CC. (2010) Lysophosphatidic acid stimulates the intestinal brush border Na(+)/H(+) exchanger 3 and fluid absorption via LPA(5) and NHERF2. Gastroenterology, 138 (2): 649-58. [PMID:19800338]

9. Lu Y, Wang Z, Li CM, Chen J, Dalton JT, Li W, Miller DD. (2010) Synthesis, in vitro structure-activity relationship, and in vivo studies of 2-arylthiazolidine-4-carboxylic acid amides as anticancer agents. Bioorg. Med. Chem., 18 (2): 477-95. [PMID:20056548]

10. Lundequist A, Boyce JA. (2011) LPA5 is abundantly expressed by human mast cells and important for lysophosphatidic acid induced MIP-1β release. PLoS ONE, 6 (3): e18192. [PMID:21464938]

11. Murai N, Hiyama H, Kiso T, Sekizawa T, Watabiki T, Oka H, Aoki T. (2017) Analgesic effects of novel lysophosphatidic acid receptor 5 antagonist AS2717638 in rodents. Neuropharmacology, 126: 97-107. [PMID:28859883]

12. Oh DY, Yoon JM, Moon MJ, Hwang JI, Choe H, Lee JY, Kim JI, Kim S, Rhim H, O'Dell DK, Walker JM, Na HS, Lee MG, Kwon HB, Kim K, Seong JY. (2008) Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. J. Biol. Chem., 283 (30): 21054-64. [PMID:18499677]

13. Ohuchi H, Hamada A, Matsuda H, Takagi A, Tanaka M, Aoki J, Arai H, Noji S. (2008) Expression patterns of the lysophospholipid receptor genes during mouse early development. Dev. Dyn., 237 (11): 3280-94. [PMID:18924241]

14. Plastira I, Bernhart E, Goeritzer M, Reicher H, Kumble VB, Kogelnik N, Wintersperger A, Hammer A, Schlager S, Jandl K et al.. (2016) 1-Oleyl-lysophosphatidic acid (LPA) promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype. J Neuroinflammation, 13 (1): 205. [PMID:27565558]

15. Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, Merritt A, Bassoni DL, Raab WJ, Quinn E, Wehrman TS et al.. (2013) Screening β-Arrestin Recruitment for the Identification of Natural Ligands for Orphan G-Protein-Coupled Receptors. J Biomol Screen, 18 (5): 599-609. [PMID:23396314]

16. Williams JR, Khandoga AL, Goyal P, Fells JI, Perygin DH, Siess W, Parrill AL, Tigyi G, Fujiwara Y. (2009) Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate receptor indicates role in human platelet activation. J. Biol. Chem., 284 (25): 17304-19. [PMID:19366702]

17. Yung YC, Stoddard NC, Chun J. (2014) LPA receptor signaling: pharmacology, physiology, and pathophysiology. J. Lipid Res., 55 (7): 1192-1214. [PMID:24643338]


Show »

How to cite this page

Select citation format: