Top ▲

MCH1 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 280

Nomenclature: MCH1 receptor

Family: Melanin-concentrating hormone receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 422 22q13.2 MCHR1 melanin concentrating hormone receptor 1 10,43
Mouse 7 353 15 E1 Mchr1 melanin-concentrating hormone receptor 1 42
Rat 7 353 7q34 Mchr1 melanin-concentrating hormone receptor 1 48
Gene and Protein Information Comments
MCHR1 genes have been identified in Xenopus [40], goldfish [59], flounder [81], zebrafish [52] and shark [58].
Previous and Unofficial Names Click here for help
GPR24 | MCH1R | G protein-coupled receptor 24 | MCH receptor 1 | somatostatin receptor-like protein
Database Links Click here for help
Specialist databases
GPCRdb mchr1_human (Hs), mchr1_mouse (Mm), mchr1_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Associated Proteins Click here for help
Interacting Proteins
Name Effect References
MIZIP 13
regulator of G-protein signaling 8 (RGS8) 55
regulator of G-protein signaling 2 (RGS2) 56
neurochondrin 26
periplakin 62
Associated Protein Comments
MIZIP (ZMYND19; Q96E35) colocalizes with MCH1 receptor in HEK293 cells when the proteins are coexpressed using a yeast two-hybrid system [12]. The interaction occurs at the C-terminus of the receptor.
Neurochondrin (NCDN; Q9UBB6) and periplakin (PPL; O60437) both inhibit GTPγS binding, GIRK activity and Ca2+ mobilisation in HEK293 cells when the proteins are coexpressed using a yeast two-hybrid system [26,62]. Again, the interactions occur at the C-terminus of the receptor.
In cotransfected HEK293 cells RGS8 (P57771) inhibits Gi/o and Gq-dependent Ca2+ mobilisation via an interaction within the third cytoplasmic loop [55]. In similar experiments RGS2 (P41220) inhibits Gq-dependent Ca2+ mobilisation [56].
Natural/Endogenous Ligands Click here for help
melanin-concentrating hormone {Sp: Human, Mouse, Rat}

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I]MCH (human, mouse, rat) Peptide Ligand is labelled Ligand is radioactive Hs Full agonist 9.7 – 10.8 pKd 15
pKd 9.7 – 10.8 (Kd 2x10-10 – 1.6x10-11 M) [15]
[125I][Phe13,Tyr19]MCH Peptide Ligand is labelled Ligand is radioactive Hs Full agonist 9.2 pKd 11
pKd 9.2 (Kd 7x10-10 M) [11]
S36057 Peptide Hs Full agonist 10.1 – 10.4 pKi 5
pKi 10.1 – 10.4 [5]
S36057 Peptide Rn Full agonist 10.1 – 10.3 pKi 79
pKi 10.1 – 10.3 [79]
melanin-concentrating hormone {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 9.7 – 10.5 pKi 5,15
pKi 9.7 – 10.5 [5,15]
melanin-concentrating hormone {Sp: Human, Mouse, Rat} Peptide Ligand is endogenous in the given species Rn Full agonist 9.8 – 10.0 pKi 79
pKi 9.8 – 10.0 [79]
MCH6-17 Peptide Rn Full agonist 9.4 – 9.7 pKi 79
pKi 9.4 – 9.7 [79]
MCH6-17 Peptide Hs Full agonist 9.2 – 9.8 pKi 5
pKi 9.2 – 9.8 [5]
MCH (salmon) Peptide Click here for species-specific activity table Hs Full agonist 9.4 – 9.6 pKi 5,15
pKi 9.4 – 9.6 [5,15]
MCH (salmon) Peptide Rn Full agonist 9.3 – 9.5 pKi 79
pKi 9.3 – 9.5 [79]
[Phe13,Tyr19]MCH Peptide Rn Full agonist 9.2 – 9.5 pKi 79
pKi 9.2 – 9.5 [79]
C3 Peptide Hs Full agonist 8.7 – 8.9 pKi 79
pKi 8.7 – 8.9 [79]
S36077 Peptide Hs Full agonist 6.7 – 7.4 pKi 5
pKi 6.7 – 7.4 [5]
S36077 Peptide Rn Full agonist 6.6 – 7.2 pKi 79
pKi 6.6 – 7.2 [79]
variant MCH Peptide Hs Full agonist 6.5 – 6.6 pKi 15
pKi 6.5 – 6.6 [15]
Ac-hMCH-(6-16)-NH2 Peptide Click here for species-specific activity table Hs Full agonist 9.7 – 9.9 pIC50 7
pIC50 9.7 – 9.9 [7]
compound 2 [PMID: 11375253] Peptide Hs Full agonist 9.7 pIC50 5
pIC50 9.7 [5]
[Phe13,Tyr19]MCH Peptide Click here for species-specific activity table Hs Full agonist 8.2 – 10.0 pIC50 15,42,70
pIC50 8.2 – 10.0 [15,42,70]
p-guanidinobenzoyl-MCH-(7-17) Peptide Hs Full agonist 8.4 pIC50 6
pIC50 8.4 [6]
View species-specific agonist tables
Agonist Comments
Ligand rank potency: melanin-concentrating hormone > MCH (salmon)
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
SNAP-7941 Small molecule or natural product Hs Antagonist 9.2 pA2 10
pA2 9.2 [10]
SNAP-7941 Small molecule or natural product Hs Antagonist 9.7 pKd 10
pKd 9.7 [10]
S38151 Peptide Hs Antagonist 9.3 – 10.0 pKd 6
pKd 9.3 – 10.0 [6]
[125I]S36057 Peptide Ligand is labelled Ligand is radioactive Hs Antagonist 9.2 – 9.5 pKd 5
pKd 9.2 – 9.5 (Kd 6.3x10-10 – 3.2x10-10 M) [5]
[125I](3-iodo-Tyr13)-MCH Peptide Ligand is labelled Ligand is radioactive Hs Antagonist 9.2 – 9.4 pKd 5
pKd 9.2 – 9.4 [5]
tetralin_urea analogue (7o) Small molecule or natural product Hs Antagonist 9.1 pKi 31
pKi 9.1 [31]
S36541 Peptide Hs Antagonist 7.9 – 8.3 pKi 5
pKi 7.9 – 8.3 [5]
ATC0065 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.8 – 7.9 pKi 14
pKi 7.8 – 7.9 [14]
[3H]SNAP-7941 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 7.8 pKi 10
pKi 7.8 [10]
SB-568849 Small molecule or natural product Hs Antagonist 7.7 pKi 89
pKi 7.7 [89]
S36539 Peptide Hs Antagonist 7.3 – 8.0 pKi 5
pKi 7.3 – 8.0 [5]
S36540 Peptide Hs Antagonist 7.2 – 7.8 pKi 5
pKi 7.2 – 7.8 [5]
compound 17 [PMID: 17125263] Small molecule or natural product Hs Antagonist 9.4 pIC50 83
pIC50 9.4 [83]
GW803430 Small molecule or natural product Hs Antagonist 9.3 pIC50 34
pIC50 9.3 [34]
4-arylphthalazin-1(2H)-3,4-Di-F Small molecule or natural product Primary target of this compound Hs Antagonist 9.0 pIC50 51
pIC50 9.0 (IC50 1x10-9 M) [51]
compound (R)-10h [PMID: 22490048] Small molecule or natural product Primary target of this compound Hs Antagonist 8.8 pIC50 39
pIC50 8.8 (IC50 1.58x10-9 M) [39]
7-fluorochromone-2-carboxamide Small molecule or natural product Hs Antagonist 8.5 pIC50 53
pIC50 8.5 [53]
compound 4b [PMID: 19683441] Small molecule or natural product Primary target of this compound Hs Antagonist 8.3 pIC50 80
pIC50 8.3 (IC50 4.79x10-9 M) [80]
T-226296 Small molecule or natural product Hs Antagonist 8.3 pIC50 82
pIC50 8.3 (IC50 5.01x10-9 M) [82]
TPI 1361-17 Small molecule or natural product Hs Antagonist 8.2 pIC50 63
pIC50 8.2 [63]
ATC0175 Small molecule or natural product Hs Antagonist 7.9 – 8.1 pIC50 14
pIC50 7.9 – 8.1 (IC50 1.35x10-8 – 7.23x10-9 M) [14]
AZ13483342 Small molecule or natural product Primary target of this compound Hs Antagonist 7.8 – 8.1 pIC50 4,30
pIC50 7.8 – 8.1 (IC50 1.5x10-8 – 8.6x10-9 M) [4,30]
[Ava9,10,Ava14,15]-Ac-hMCH6-16-NH2 Peptide Click here for species-specific activity table Hs Antagonist 7.0 – 7.5 pIC50 7
pIC50 7.0 – 7.5 [7]
pyrrolidine MCHR1 antagonist 1 Small molecule or natural product Primary target of this compound Hs Antagonist 7.2 pIC50 25
pIC50 7.2 (IC50 6x10-8 M) [25]
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
MQ1 Small molecule or natural product Primary target of this compound Hs Negative 8.7 – 9.0 pIC50 39,74
pIC50 8.7 – 9.0 (IC50 2.2x10-9 – 1.1x10-9 M) [39,74]
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Gi/Go family
Gq/G11 family
Adenylyl cyclase inhibition
Phospholipase C stimulation
References:  33,67,72-73
Tissue Distribution Click here for help
Olfactory system, hippocampal formation (ventromedial nucleus, arcuate nucleus, and zona incerta), subiculum, basolateral amygdala, shell of the nucleus accumbens. Brainstem; locus coeruleus, facial, hypoglossal, motor trigeminal, and dorsal motor vagus nuclei.
Species:  Human
Technique:  in situ hybridization.
References:  71
Pituitary > brain.

Cingulate gyrus > superior frontal gyrus > parahippocampal gyrus > medial frontal gyrus > hippocampus > nucleus accumbens > hypothalamus.
Species:  Human
Technique:  Quantitative RT-PCR.
References:  36
Ovary > brain (substantia nigra > temporal lobe > occipital lobe, parietal lobe, hippocampus, amygdala, hypothalamus > frontal lobe, cerebral cortex, corpus callosum, cerebral peduncles, caudate nucleus > spinal cord, thalamus, medulla oblongata, pons, cerebellum) > liver > testis.
Species:  Human
Technique:  Quantitative RT-PCR.
References:  61
Motile cilia in epidymal cells in the 3rd ventricle
Species:  Mouse
Technique:  In situ hybridization and immunohistochemistry
References:  20
Nonmotile cilia in hippocampus, nucleus accumbens, caudate-putamen, olfactory bulb, and hypothalamus.
Species:  Mouse
Technique:  Immunohistochemistry
References:  9,57
Ventromedial and dorsomedial nuclei of the hypothalamus.
Species:  Rat
Technique:  in situ hybridization.
References:  15,72
Hippocampal formation > olefactory system > cerebral cortex > thalamus, basal and limbic forebrain, hyothalamus, pons and medulla, midbrain, spinal cord.
Species:  Rat
Technique:  in situ hybridization.
References:  50
Brain; accumbens nucleus, shell; field CA1 of Ammon's horn; central amygdaloid nucleus; cingulate cortex; claustrum; central medial thalamic nucleus; audate-putamen; dorsal raphe; entorhinal cortex;locuscoeruleus; subiculum; superior colliculus; olfactory tubercle; ventromedial hypothalamus.
Species:  Rat
Technique:  Autoradiography.
References:  10
Cerebral cortex, caudate putamen, hippocampal formation, amygdala, hypothalamus, thalamus, mesencephalon, rhombencephalon.
Species:  Rat
Technique:  In situ hybridization and immunohistochemistry.
References:  35
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of cAMP levels in HEK 293 cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  HEK 293 cells
Response measured:  Inhibition of forskolin-induced cAMP accumulation.
References:  15,67
Measurement of IP3 production in CHO cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of IP3 production.
References:  33,87
Measurement of intracellular Ca2+ in HEK 293 cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Increase in intracellular Ca2+.
References:  15
Measurement of MAP kinase activity via PKC-dependent and PKC-independent mechanisms in CHO cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Activation of MAP kinase activity.
References:  33
Measurement of intracellular Ca2+ in cells transfected with the rat MCH1 receptor.
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  Increase in intracellular Ca2+.
References:  50
Measurement of cAMP levels in HEK 293 cells transfected with the rat MCH1 receptor.
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  Inhibition of forskolin-stimulated cAMP accumulation.
References:  50,87
Measurement of cAMP levels in CHO cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of forskolin-stimulated cAMP accumulation.
References:  33,72,77
Measurement of GIRK-mediated currents in Xenopus oocytes transfected with the human MCH1 receptor.
Species:  Rat
Tissue:  Xenopus oocytes.
Response measured:  Strong inward current.
References:  12
Measurement of GIRK-mediated currents in Xenopus oocytes transfected with the human MCH1 receptor.
Species:  Rat
Tissue:  Xenopus oocytes.
Response measured:  Strong inward current.
References:  12
Measurement of intracellular Ca2+ in CHO cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Increase in intracellular Ca2+.
References:  33,87
Measurement of cAMP levels in HEK 293 cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Inhibition of β-adreninic receptor-induced cAMP accumulation.
References:  67
Measurement of ERK phosphorylation in HEK 293 cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Induction of ERK phosphyrlation.
References:  67
Measurement of forskolin-stimulated cAMP accumulation in SK-MEL37 cells endogneously expressing the MCH1 receptor.
Species:  Human
Tissue:  SK-MEL37 cells.
Response measured:  Inhibition of forskolin-stimulated cAMP accumulation.
References:  73
Measurement of MAPK activity in SK-MEL37 cells endogenously expressing the MCH1 receptor.
Species:  Human
Tissue:  SK-MEL37 cells.
Response measured:  Activation of MAPK phosphorylation of ERK1/ERK2.
References:  73
Measurement of cAMP accumulation, Ca2+ mobilisation and CD3-stimulated in vitro proliferation in peripheral blood mononuclear (PBM) cells.
Species:  Human
Tissue:  PBM cells.
Response measured:  Induction of cAMP production and Ca2+ mobilisation, decrease in cell proliferation.
References:  86
Measurement of cAMP accumulation, Ca2+ mobilisation and CD3-stimulated in vitro proliferation in peripheral blood mononuclear (PBM) cells.
Species:  Mouse
Tissue:  PBM cells.
Response measured:  Induction of cAMP production and Ca2+ mobilisation, decrease in cell proliferation.
References:  86
Measurement of dopamine-induced dopamine-induced phosphorylation of the AMPA glutamate receptor subunit GluR1 at Ser845 in nucleus accumbens shell exaplants.
Species:  Rat
Tissue:  Nucleus accumbens shell exaplants.
Response measured:  Activation of MCH1 blocks phosphorylation.
References:  28
Measurement of p53, MAP kinase, Elk-1 and Egr-1 in SH-SY5Y cells endogenously expressing the MCH1 receptor.
Species:  Human
Tissue:  SH-SY5Y cells.
Response measured:  Induction of phosphorylation of p53, MAP kinase, Elk-1 and up-regulation of Egr-1.
References:  22
Functional Assay Comments
Calcium accumulation and mobilisation and downstream ERK phosphorylation have been reported using goldfish [32], Xenopus tropicalis [40] and flounder [81] MCH1 receptors.
Physiological Functions Click here for help
Modulation of food intake.
Species:  Rat
Tissue:  In vivo.
References:  10,28,69,82
Blockades of the MCH1 receptor produces effects similar to clinically used antidepressants and anxiolytics in models of depression/anxiety.
Species:  Rat
Tissue:  In vivo.
References:  10,14,23,28,78
Regulation of feeding behaviour.
Species:  Mouse
Tissue:  In vivo.
References:  68
Modulation of food intake and body weight.
Species:  Rat
Tissue:  In vivo.
References:  27,45
Modulation of appetite and caloric efficiency.
Species:  Rat
Tissue:  In vivo.
References:  76
Stressor-induced acetylcholine release within the prefrontal cortex is blocked by MCH1 antagonism.
Species:  Mouse
Tissue:  In vivo.
References:  78
Administration of MCH to the nucleus accumbens increases depressive behaviour.
Species:  Rat
Tissue:  In vivo.
References:  28
Regulation of alcohol intake.
Species:  Rat
Tissue:  In vivo.
References:  24
Autocrine regulation of pancreatic islet function and growth
Species:  Human
Tissue:  pancreatic cells
References:  66
MCH modulates the firing of medium spiny neurons either when applied alone or in conjunction with bothdopamine D1 and D2 agonists
Species:  Rat
Tissue:  In vitro
References:  17,75
MCH strongly inhibits an exclusive population of septal vGluT2-GnRH neurons activated by kisspeptin
Species:  Mouse
Tissue:  In vivo.
References:  90
Activation of MCH neurons by optogenetic, or applying MCH on slices, stimulate the beating frequency of ependymal cells in the third ventricle.
Species:  Mouse
Tissue:  In vivo and In vitro
References:  20-21
Depending on the brain region that is targeted, MCH microinjection can either stimulate, decrease or have no effect on ethanol consumption
Species:  Rat
Tissue:  In vivo.
References:  60
MCH1 receptor antagonist suppresses alcohol self-administration and eliminates reinstatement of alcohol-seeking.
Species:  Rat
Tissue:  In vivo.
References:  19
Microinjection of MCH or modulation of MCH neurons using optogenetic affect sleep architecture. This effect has been studied in rat and mouse.
Species:  Rat
Tissue:  In vivo.
References:  8,37,44,46-47,84
Injection of an anti-MCH antibody decreases epithelial damage and the expression of fibrosis markers and cytokines induced by chronic colitis.
Species:  Mouse
Tissue:  In vivo.
References:  91
Physiological Consequences of Altering Gene Expression Click here for help
MCH1 receptor knockout mice are lean and have reduced fat mass compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  54
Stressor-evoked acetylcholine release within the prefrontal cortex blocking by MCH1 receptor antagonism is not observed in MCH1 receptor knockout mice, compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  78
Mice lacking the MCH1 receptor are hyperphagic and resistant to diet-induced obesity, compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  16
MCH1 receptor knockout mice are more active, less anxious and less emotionally reactive when compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  49
Mice with ppMCH deletion developed attenuated toxin-A mediated intestinal inflammation and secretion (C57BL6 mice)
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  41
ppMCH knockout mice demonstrate abnormal olfactory behaviors including food seeking or aggressive behaviour toward intruders (C57BL6 mice)
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  2
MCHR1 receptor knockout mice present an elevated body temperature and a reduction in non-REM sleep time (in C57BL6 mice).
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  3
Mice with ppMCH deletion sleep less under basal condition but the sleep rebound after total sleep deprivation is normal (in C57BL6 mice)
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  88
MCHR1 receptor knockout mice exhibit hypersomniac phenotype in basal condition or after total sleep deprivation and are lees sensitive to the wake promoting effect of modafinil (in129/Sv mice)
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  1
CHR1 receptor knockout mice exhibit decreased AMPA and NMDA transmission, impaired LTP and strongly decreased LTD (in mixed C57BL6 and 129/Sv mice)
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  65
MCHR1 receptor knockout mice have larger thyroid follicles and exhibit reduced circulating iodothyronine but higher TRH ans TSH levels (C57BL6 mice)
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  18
MCHR1 receptor knockout mice have larger third and lateral ventricles due to decreased cilia beating frequency of ependymal cells (C57BL6 mice)
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  20-21
Under chronic food restriction MCHR1 knockout mice exhibit increased CPP for amphetamine whereas it is not the case, either for amphetamine or cocaine, under free feeding (C57BL6 mice)
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  29,85
Decreased cocaine-induced CPP and sensitization in MCHR1 knockout mice (C57BL6 mice)
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  17
APC mice lacking ppMCH develop fewer, smaller and less dysplastic tumor in the intestine and colon. Apoptotic indices of intestinal adenomas is increased (C57BL6 mice.)
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  64
Mice with ppMCH deletion are more susceptible to Salmonella Typhimurium infections (C57BL6 mice)
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  38
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0005450 abnormal energy expenditure PMID: 15130877 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0005450 abnormal energy expenditure PMID: 12072376 
Mchr1tm1.1Blak Mchr1tm1.1Blak/Mchr1tm1.1Blak
involves: 129S1/Sv * 129S2/SvPas * 129X1/SvJ * FVB/N
MGI:2180756  MP:0003194 abnormal frequency of paradoxical sleep PMID: 18380672 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0003953 abnormal hormone level PMID: 11867747 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0005266 abnormal metabolism PMID: 11867747 
Mchr1tm1Blak Mchr1tm1Blak/Mchr1tm1Blak
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:2180756  MP:0002272 abnormal nervous system electrophysiology PMID: 15926931 
Mchr1tm1Blak Mchr1tm1Blak/Mchr1tm1Blak
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:2180756  MP:0002799 abnormal passive avoidance behavior PMID: 15926931 
Mchr1tm1Lex Mchr1tm1Lex/Mchr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:2180756  MP:0005322 abnormal serotonin concentration PMID: 15988472 
Mchr1tm1.1Blak Mchr1tm1.1Blak/Mchr1tm1.1Blak
involves: 129S1/Sv * 129S2/SvPas * 129X1/SvJ * FVB/N
MGI:2180756  MP:0001501 abnormal sleep pattern PMID: 18380672 
Mchr1tm1Lex Mchr1tm1Lex/Mchr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:2180756  MP:0001360 abnormal social investigation PMID: 15988472 
Mchr1tm1Lex Mchr1tm1Lex/Mchr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:2180756  MP:0001364 decreased anxiety-related response PMID: 15988472 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0001262 decreased body weight PMID: 15130877 
Mchr1+|Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1+
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0001262 decreased body weight PMID: 15130877 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0002727 decreased circulating insulin level PMID: 12072376 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0005668 decreased circulating leptin level PMID: 12072376 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0005668 decreased circulating leptin level PMID: 11867747 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0005459 decreased percent body fat PMID: 11867747 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0010379 decreased respiratory quotient PMID: 11867747 
Mchr1tm1Lex Mchr1tm1Lex/Mchr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:2180756  MP:0010167 decreased response to stress-induced hyperthermia PMID: 15988472 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0005471 decreased thyroxine level PMID: 11867747 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0010025 decreased total body fat amount PMID: 15130877 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0010025 decreased total body fat amount PMID: 12072376 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0001399 hyperactivity PMID: 15130877 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0001399 hyperactivity PMID: 11867747 
Mchr1tm1.1Blak Mchr1tm1.1Blak/Mchr1tm1.1Blak
involves: 129S1/Sv * 129S2/SvPas * 129X1/SvJ * FVB/N
MGI:2180756  MP:0009747 impaired behavioral response to xenobiotic PMID: 18380672 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0005533 increased body temperature PMID: 15130877 
Mchr1tm1Lex Mchr1tm1Lex/Mchr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:2180756  MP:0005533 increased body temperature PMID: 15988472 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0001745 increased circulating corticosterone level PMID: 11867747 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0003911 increased drinking behavior PMID: 11867747 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0003909 increased eating behavior PMID: 12072376 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0003909 increased eating behavior PMID: 11867747 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0002626 increased heart rate PMID: 15130877 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0003960 increased lean body mass PMID: 11867747 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0005659 increased resistance to diet-induced obesity PMID: 15130877 
Mchr1tm1Blak Mchr1tm1Blak/Mchr1tm1Blak
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:2180756  MP:0005659 increased resistance to diet-induced obesity PMID: 15926931 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0005659 increased resistance to diet-induced obesity PMID: 12072376 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0005659 increased resistance to diet-induced obesity PMID: 11867747 
Mchr1tm1Ohl Mchr1tm1Ohl/Mchr1tm1Ohl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0000066 osteoporosis PMID: 15147966 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0001433 polyphagia PMID: 15130877 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0008489 postnatal slow weight gain PMID: 12072376 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0001263 weight loss PMID: 12072376 
General Comments
In humans, MCH2 shares a similar distribution pattern as MCH1. However no role is ascribed yet to MCH2 due both to the lack of expression in rodents and the lack of selective antagonists.

References

Show »

1. Adamantidis A, Salvert D, Goutagny R, Lakaye B, Gervasoni D, Grisar T, Luppi PH, Fort P. (2008) Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. Eur J Neurosci, 27 (7): 1793-800. [PMID:18380672]

2. Adams AC, Domouzoglou EM, Chee MJ, Segal-Lieberman G, Pissios P, Maratos-Flier E. (2011) Ablation of the hypothalamic neuropeptide melanin concentrating hormone is associated with behavioral abnormalities that reflect impaired olfactory integration. Behav Brain Res, 224 (1): 195-200. [PMID:21669232]

3. Ahnaou A, Dautzenberg FM, Huysmans H, Steckler T, Drinkenburg WH. (2011) Contribution of melanin-concentrating hormone (MCH1) receptor to thermoregulation and sleep stabilization: evidence from MCH1 (-/-) mice. Behav Brain Res, 218 (1): 42-50. [PMID:21074567]

4. AstraZeneca. AZ13483342. Accessed on 16/09/2014. Modified on 16/09/2014. astrazeneca.com, http://openinnovation.astrazeneca.com/what-we-offer/compound/az13483342/

5. Audinot V, Lahaye C, Suply T, Beauverger P, Rodriguez M, Galizzi JP, Fauchère JL, Boutin JA. (2001) [125I]-S36057: a new and highly potent radioligand for the melanin-concentrating hormone receptor. Br J Pharmacol, 133 (3): 371-8. [PMID:11375253]

6. Audinot V, Zuana OD, Fabry N, Ouvry C, Nosjean O, Henlin JM, Fauchère JL, Boutin JA. (2009) S38151 [p-guanidinobenzoyl-[Des-Gly(10)]-MCH(7-17)] is a potent and selective antagonist at the MCH(1) receptor and has anti-feeding properties in vivo. Peptides, 30 (11): 1997-2007. [PMID:19619599]

7. Bednarek MA, Hreniuk DL, Tan C, Palyha OC, MacNeil DJ, Van der Ploeg LH, Howard AD, Feighner SD. (2002) Synthesis and biological evaluation in vitro of selective, high affinity peptide antagonists of human melanin-concentrating hormone action at human melanin-concentrating hormone receptor 1. Biochemistry, 41 (20): 6383-90. [PMID:12009900]

8. Benedetto L, Rodriguez-Servetti Z, Lagos P, D'Almeida V, Monti JM, Torterolo P. (2013) Microinjection of melanin concentrating hormone into the lateral preoptic area promotes non-REM sleep in the rat. Peptides, 39: 11-5. [PMID:23123302]

9. Berbari NF, Johnson AD, Lewis JS, Askwith CC, Mykytyn K. (2008) Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell, 19 (4): 1540-7. [PMID:18256283]

10. Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B, Heurich R, Lichtblau H, Shaposhnik Z, Daniewska I, Blackburn TP, Branchek TA, Gerald C, Vaysse PJ, Forray C. (2002) Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med, 8: 825-830. [PMID:12118247]

11. Burgaud JL, Poosti R, Fehrentz JA, Martinez J, Nahon JL. (1997) Melanin-concentrating hormone binding sites in human SVK14 keratinocytes. Biochem Biophys Res Commun, 241 (3): 622-9. [PMID:9434758]

12. Bächner D, Kreienkamp H, Weise C, Buck F, Richter D. (1999) Identification of melanin concentrating hormone (MCH) as the natural ligand for the orphan somatostatin-like receptor 1 (SLC-1). FEBS Lett, 457 (3): 522-4. [PMID:10471841]

13. Bächner D, Kreienkamp HJ, Richter D. (2002) MIZIP, a highly conserved, vertebrate specific melanin-concentrating hormone receptor 1 interacting zinc-finger protein. FEBS Lett, 526 (1-3): 124-8. [PMID:12208518]

14. Chaki S, Funakoshi T, Hirota-Okuno S, Nishiguchi M, Shimazaki T, Iijima M, Grottick AJ, Kanuma K, Omodera K, Sekiguchi Y, Okuyama S, Tran TA, Semple G, Thomsen W. (2005) Anxiolytic- and antidepressant-like profile of ATC0065 and ATC0175: nonpeptidic and orally active melanin-concentrating hormone receptor 1 antagonists. J Pharmacol Exp Ther, 313: 831-839. [PMID:15677346]

15. Chambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin J, Liu WS et al.. (1999) Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature, 400 (6741): 261-5. [PMID:10421367]

16. Chen Y, Hu C, Hsu CK, Zhang Q, Bi C, Asnicar M, Hsiung HM, Fox N, Slieker LJ, Yang DD et al.. (2002) Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity. Endocrinology, 143 (7): 2469-77. [PMID:12072376]

17. Chung S, Hopf FW, Nagasaki H, Li CY, Belluzzi JD, Bonci A, Civelli O. (2009) The melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci USA, 106 (16): 6772-7. [PMID:19342492]

18. Chung S, Liao XH, Di Cosmo C, Van Sande J, Wang Z, Refetoff S, Civelli O. (2012) Disruption of the melanin-concentrating hormone receptor 1 (MCH1R) affects thyroid function. Endocrinology, 153 (12): 6145-54. [PMID:23024261]

19. Cippitelli A, Karlsson C, Shaw JL, Thorsell A, Gehlert DR, Heilig M. (2010) Suppression of alcohol self-administration and reinstatement of alcohol seeking by melanin-concentrating hormone receptor 1 (MCH1-R) antagonism in Wistar rats. Psychopharmacology (Berl.), 211 (4): 367-75. [PMID:20628734]

20. Conductier G, Brau F, Viola A, Langlet F, Ramkumar N, Dehouck B, Lemaire T, Chapot R, Lucas L, Rovère C et al.. (2013) Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume. Nat Neurosci, 16 (7): 845-7. [PMID:23708141]

21. Conductier G, Martin AO, Risold PY, Jego S, Lavoie R, Lafont C, Mollard P, Adamantidis A, Nahon JL. (2013) Control of ventricular ciliary beating by the melanin concentrating hormone-expressing neurons of the lateral hypothalamus: a functional imaging survey. Front Endocrinol (Lausanne), 4: 182. [PMID:24324458]

22. Cotta-Grand N, Rovère C, Guyon A, Cervantes A, Brau F, Nahon JL. (2009) Melanin-concentrating hormone induces neurite outgrowth in human neuroblastoma SH-SY5Y cells through p53 and MAPKinase signaling pathways. Peptides, 30 (11): 2014-24. [PMID:19540893]

23. David DJ, Klemenhagen KC, Holick KA, Saxe MD, Mendez I, Santarelli L, Craig D, Zong H, Swanson C, Hegde LG, Ping XI, Dong D, Marzabadi MR, Gerald C, Hen R. (2007) Efficacy of the MCHR1 antagonist N-[3-(1-{[4-(3,4-difluorophenoxy)phenyl]methyl}(4-piperidyl))-4-methylphenyl]-2-methylpropanamide (SNAP 94847) in mouse models of anxiety and depression following acute and chronic administration is independent of hippocampal neurogenesis. J Pharmacol Exp Ther,: -. [PMID:17237257]

24. Duncan EA, Rider TR, Jandacek RJ, Clegg DJ, Benoit SC, Tso P, Woods SC. (2006) The regulation of alcohol intake by melanin-concentrating hormone in rats. Pharmacol Biochem Behav, 85 (4): 728-35. [PMID:17188345]

25. Fox BM, Natero R, Richard K, Connors R, Roveto PM, Beckmann H, Haller K, Golde J, Xiao SH, Kayser F. (2011) Novel pyrrolidine melanin-concentrating hormone receptor 1 antagonists with reduced hERG inhibition. Bioorg Med Chem Lett, 21 (8): 2460-7. [PMID:21414780]

26. Francke F, Ward RJ, Jenkins L, Kellett E, Richter D, Milligan G, Bächner D. (2006) Interaction of neurochondrin with the melanin-concentrating hormone receptor 1 interferes with G protein-coupled signal transduction but not agonist-mediated internalization. J Biol Chem, 281 (43): 32496-507. [PMID:16945926]

27. Frezzotti R, Caporossi A. (1990) Pathogenesis of posterior capsular opacification. Part I. Epidemiological and clinico-statistical data. J Cataract Refract Surg, 16 (3): 347-52. [PMID:2355323]

28. Georgescu D, Sears RM, Hommel JD, Barrot M, Bolaños CA, Marsh DJ, Bednarek MA, Bibb JA, Maratos-Flier E, Nestler EJ et al.. (2005) The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci, 25 (11): 2933-40. [PMID:15772353]

29. Geuzaine A, Tyhon A, Grisar T, Brabant C, Lakaye B, Tirelli E. (2014) Amphetamine reward in food restricted mice lacking the melanin-concentrating hormone receptor-1. Behav Brain Res, 262: 14-20. [PMID:24412349]

30. Giordanetto F, Karlsson O, Lindberg J, Larsson LO, Linusson A, Evertsson E, Morgan DG, Inghardt T. (2007) Discovery of cyclopentane- and cyclohexane-trans-1,3-diamines as potent melanin-concentrating hormone receptor 1 antagonists. Bioorg Med Chem Lett, 17 (15): 4232-41. [PMID:17532215]

31. Guo T, Gu H, Hobbs DW, Busler DE, Rokosz LL. (2007) Discovery of tetralin ureas as potent melanin concentrating hormone 1 receptor antagonists. Bioorg Med Chem Lett, 17 (6): 1718-21. [PMID:17251014]

32. Hamamoto A, Mizusawa K, Takahashi A, Saito Y. (2011) Signalling pathway of goldfish melanin-concentrating hormone receptors 1 and 2. Regul Pept, 169 (1-3): 6-12. [PMID:21539863]

33. Hawes BE, Kil E, Green B, O'Neill K, Fried S, Graziano MP. (2000) The melanin-concentrating hormone receptor couples to multiple G proteins to activate diverse intracellular signaling pathways. Endocrinology, 141 (12): 4524-32. [PMID:11108264]

34. Hertzog DL, Al-Barazanji KA, Bigham EC, Bishop MJ, Britt CS, Carlton DL, Cooper JP, Daniels AJ, Garrido DM, Goetz AS et al.. (2006) The discovery and optimization of pyrimidinone-containing MCH R1 antagonists. Bioorg Med Chem Lett, 16 (18): 4723-7. [PMID:16870432]

35. Hervieu GJ, Cluderay JE, Harrison D, Meakin J, Maycox P, Nasir S, Leslie RA. (2000) The distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) receptor gene, slc-1, in the central nervous system of the rat. Eur J Neurosci, 12 (4): 1194-216. [PMID:10762350]

36. Hill J, Duckworth M, Murdock P, Rennie G, Sabido-David C, Ames RS, Szekeres P, Wilson S, Bergsma DJ, Gloger IS et al.. (2001) Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J Biol Chem, 276 (23): 20125-9. [PMID:11274220]

37. Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR. (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci, 16 (11): 1637-43. [PMID:24056699]

38. Karagiannis AK, Ziogas DC, Gras-Miralles B, Geiger BM, Nagel J, Trebicka E, Najarian R, Cherayil BJ, Kokkotou E. (2013) Increased susceptibility of melanin-concentrating hormone-deficient mice to infection with Salmonella enterica serovar Typhimurium. Infect Immun, 81 (1): 166-72. [PMID:23115043]

39. Kasai S, Kamata M, Masada S, Kunitomo J, Kamaura M, Okawa T, Takami K, Ogino H, Nakano Y, Ashina S et al.. (2012) Synthesis, structure-activity relationship, and pharmacological studies of novel melanin-concentrating hormone receptor 1 antagonists 3-aminomethylquinolines: reducing human ether-a-go-go-related gene (hERG) associated liabilities. J Med Chem, 55 (9): 4336-51. [PMID:22490048]

40. Kobayashi Y, Hamamoto A, Hirayama T, Saito Y. (2015) Molecular cloning, expression, and signaling pathway of four melanin-concentrating hormone receptors from Xenopus tropicalis. Gen Comp Endocrinol, 212: 114-23. [PMID:24662390]

41. Kokkotou E, Espinoza DO, Torres D, Karagiannides I, Kosteletos S, Savidge T, O'Brien M, Pothoulakis C. (2009) Melanin-concentrating hormone (MCH) modulates C difficile toxin A-mediated enteritis in mice. Gut, 58 (1): 34-40. [PMID:18824554]

42. Kokkotou EG, Tritos NA, Mastaitis JW, Slieker L, Maratos-Flier E. (2001) Melanin-concentrating hormone receptor is a target of leptin action in the mouse brain. Endocrinology, 142 (2): 680-6. [PMID:11159839]

43. Kolakowski Jr LF, Jung BP, Nguyen T, Johnson MP, Lynch KR, Cheng R, Heng HH, George SR, O'Dowd BF. (1996) Characterization of a human gene related to genes encoding somatostatin receptors. FEBS Lett, 398 (2-3): 253-8. [PMID:8977118]

44. Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen Jr WB, van den Pol AN, Mulholland PJ, Shiromani PJ. (2013) Optogenetic stimulation of MCH neurons increases sleep. J Neurosci, 33 (25): 10257-63. [PMID:23785141]

45. Kowalski TJ, Farley C, Cohen-Williams ME, Varty G, Spar BD. (2004) Melanin-concentrating hormone-1 receptor antagonism decreases feeding by reducing meal size. Eur J Pharmacol, 497 (1): 41-7. [PMID:15321733]

46. Lagos P, Monti JM, Jantos H, Torterolo P. (2012) Microinjection of the melanin-concentrating hormone into the lateral basal forebrain increases REM sleep and reduces wakefulness in the rat. Life Sci, 90 (23-24): 895-9. [PMID:22579511]

47. Lagos P, Torterolo P, Jantos H, Chase MH, Monti JM. (2009) Effects on sleep of melanin-concentrating hormone (MCH) microinjections into the dorsal raphe nucleus. Brain Res, 1265: 103-10. [PMID:19230831]

48. Lakaye B, Minet A, Zorzi W, Grisar T. (1998) Cloning of the rat brain cDNA encoding for the SLC-1 G protein-coupled receptor reveals the presence of an intron in the gene. Biochim Biophys Acta, 1401: 216-220. [PMID:9531978]

49. Lalonde R, Qian S. (2007) Exploratory activity, motor coordination, and spatial learning in Mchr1 knockout mice. Behav Brain Res, 178: 293-304. [PMID:17270288]

50. Lembo PM, Grazzini E, Cao J, Hubatsch DA, Pelletier M, Hoffert C, St-Onge S, Pou C, Labrecque J, Groblewski T et al.. (1999) The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nat Cell Biol, 1 (5): 267-71. [PMID:10559938]

51. Lim CJ, Kim SH, Lee BH, Oh KS, Yi KY. (2012) 4-arylphthalazin-1(2H)-one derivatives as potent antagonists of the melanin concentrating hormone receptor 1 (MCH-R1). Bioorg Med Chem Lett, 22 (1): 427-30. [PMID:22137790]

52. Logan DW, Bryson-Richardson RJ, Pagán KE, Taylor MS, Currie PD, Jackson IJ. (2003) The structure and evolution of the melanocortin and MCH receptors in fish and mammals. Genomics, 81 (2): 184-91. [PMID:12620396]

53. Lynch JK, Freeman JC, Judd AS, Iyengar R, Mulhern M, Zhao G, Napier JJ, Wodka D, Brodjian S, Dayton BD et al.. (2006) Optimization of chromone-2-carboxamide melanin concentrating hormone receptor 1 antagonists: assessment of potency, efficacy, and cardiovascular safety. J Med Chem, 49 (22): 6569-84. [PMID:17064075]

54. Marsh DJ, Weingarth DT, Novi DE, Chen HY, Trumbauer ME, Chen AS, Guan XM, Jiang MM, Feng Y, Camacho RE et al.. (2002) Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA, 99 (5): 3240-5. [PMID:11867747]

55. Miyamoto-Matsubara M, Chung S, Saito Y. (2010) Functional interaction of regulator of G protein signaling-2 with melanin-concentrating hormone receptor 1. Ann N Y Acad Sci, 1200: 112-9. [PMID:20633139]

56. Miyamoto-Matsubara M, Saitoh O, Maruyama K, Aizaki Y, Saito Y. (2008) Regulation of melanin-concentrating hormone receptor 1 signaling by RGS8 with the receptor third intracellular loop. Cell Signal, 20 (11): 2084-94. [PMID:18760349]

57. Miyoshi K, Kasahara K, Miyazaki I, Asanuma M. (2009) Lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Biochem Biophys Res Commun, 388 (4): 757-62. [PMID:19703416]

58. Mizusawa K, Amiya N, Yamaguchi Y, Takabe S, Amano M, Breves JP, Fox BK, Grau EG, Hyodo S, Takahashi A. (2012) Identification of mRNAs coding for mammalian-type melanin-concentrating hormone and its receptors in the scalloped hammerhead shark Sphyrna lewini. Gen Comp Endocrinol, 179 (1): 78-87. [PMID:22884735]

59. Mizusawa K, Saito Y, Wang Z, Kobayashi Y, Matsuda K, Takahashi A. (2009) Molecular cloning and expression of two melanin-concentrating hormone receptors in goldfish. Peptides, 30 (11): 1990-6. [PMID:19397943]

60. Morganstern I, Chang GQ, Chen YW, Barson JR, Zhiyu Y, Hoebel BG, Leibowitz SF. (2010) Role of melanin-concentrating hormone in the control of ethanol consumption: Region-specific effects revealed by expression and injection studies. Physiol Behav, 101 (4): 428-37. [PMID:20670637]

61. Mori M, Harada M, Terao Y, Sugo T, Watanabe T, Shimomura Y, Abe M, Shintani Y, Onda H, Nishimura O et al.. (2001) Cloning of a novel G protein-coupled receptor, SLT, a subtype of the melanin-concentrating hormone receptor. Biochem Biophys Res Commun, 283 (5): 1013-8. [PMID:11355873]

62. Murdoch H, Feng GJ, Bächner D, Ormiston L, White JH, Richter D, Milligan G. (2005) Periplakin interferes with G protein activation by the melanin-concentrating hormone receptor-1 by binding to the proximal segment of the receptor C-terminal tail. J Biol Chem, 280 (9): 8208-20. [PMID:15590649]

63. Nagasaki H, Chung S, Dooley CT, Wang Z, Li C, Saito Y, Clark SD, Houghten RA, Civelli O. (2009) The pharmacological properties of a novel MCH1 receptor antagonist isolated from combinatorial libraries. Eur J Pharmacol, 602 (2-3): 194-202. [PMID:19041642]

64. Nagel JM, Geiger BM, Karagiannis AK, Gras-Miralles B, Horst D, Najarian RM, Ziogas DC, Chen X, Kokkotou E. (2012) Reduced intestinal tumorigenesis in APCmin mice lacking melanin-concentrating hormone. PLoS ONE, 7 (7): e41914. [PMID:22848656]

65. Pachoud B, Adamantidis A, Ravassard P, Luppi PH, Grisar T, Lakaye B, Salin PA. (2010) Major impairments of glutamatergic transmission and long-term synaptic plasticity in the hippocampus of mice lacking the melanin-concentrating hormone receptor-1. J Neurophysiol, 104 (3): 1417-25. [PMID:20592115]

66. Pissios P, Ozcan U, Kokkotou E, Okada T, Liew CW, Liu S, Peters JN, Dahlgren G, Karamchandani J, Kudva YC et al.. (2007) Melanin concentrating hormone is a novel regulator of islet function and growth. Diabetes, 56 (2): 311-9. [PMID:17259374]

67. Pissios P, Trombly DJ, Tzameli I, Maratos-Flier E. (2003) Melanin-concentrating hormone receptor 1 activates extracellular signal-regulated kinase and synergizes with G(s)-coupled pathways. Endocrinology, 144 (8): 3514-23. [PMID:12865333]

68. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek R, Kanarek R, Maratos-Flier E. (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature, 380 (6571): 243-7. [PMID:8637571]

69. Rossi M, Choi SJ, O'Shea D, Miyoshi T, Ghatei MA, Bloom SR. (1997) Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinology, 138 (1): 351-5. [PMID:8977423]

70. Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong SS, Feighner SD, Tan CP, Fukami T, Iwaasa H et al.. (2001) Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc Natl Acad Sci USA, 98 (13): 7564-9. [PMID:11404457]

71. Saito Y, Cheng M, Leslie FM, Civelli O. (2001) Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol, 435 (1): 26-40. [PMID:11370009]

72. Saito Y, Nothacker HP, Wang Z, Lin SH, Leslie F, Civelli O. (1999) Molecular characterization of the melanin-concentrating-hormone receptor. Nature, 400 (6741): 265-9. [PMID:10421368]

73. Saito Y, Wang Z, Hagino-Yamagishi K, Civelli O, Kawashima S, Maruyama K. (2001) Endogenous melanin-concentrating hormone receptor SLC-1 in human melanoma SK-MEL-37 cells. Biochem Biophys Res Commun, 289 (1): 44-50. [PMID:11708774]

74. Sakurai T, Ogawa K, Ishihara Y, Kasai S, Nakayama M. (2014) The MCH(1) receptor, an anti-obesity target, is allosterically inhibited by 8-methylquinoline derivatives possessing subnanomolar binding and long residence times. Br J Pharmacol, 171 (5): 1287-98. [PMID:24670150]

75. Sears RM, Liu RJ, Narayanan NS, Sharf R, Yeckel MF, Laubach M, Aghajanian GK, DiLeone RJ. (2010) Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone. J Neurosci, 30 (24): 8263-73. [PMID:20554878]

76. Shearman LP, Camacho RE, Sloan Stribling D, Zhou D, Bednarek MA, Hreniuk DL, Feighner SD, Tan CP, Howard AD, Van der Ploeg LH et al.. (2003) Chronic MCH-1 receptor modulation alters appetite, body weight and adiposity in rats. Eur J Pharmacol, 475 (1-3): 37-47. [PMID:12954357]

77. Shimomura Y, Mori M, Sugo T, Ishibashi Y, Abe M, Kurokawa T, Onda H, Nishimura O, Sumino Y, Fujino M. (1999) Isolation and identification of melanin-concentrating hormone as the endogenous ligand of the SLC-1 receptor. Biochem Biophys Res Commun, 261: 622-626. [PMID:10441476]

78. Smith DG, Davis RJ, Rorick-Kehn L, Morin M, Witkin JM, McKinzie DL, Nomikos GG, Gehlert DR. (2006) Melanin-concentrating hormone-1 receptor modulates neuroendocrine, behavioral, and corticolimbic neurochemical stress responses in mice. Neuropsychopharmacology, 31 (6): 1135-45. [PMID:16205780]

79. Suply T, Della Zuana O, Audinot V, Rodriguez M, Beauverger P, Duhault J, Canet E, Galizzi JP, Nahon JL, Levens N et al.. (2001) SLC-1 receptor mediates effect of melanin-concentrating hormone on feeding behavior in rat: a structure-activity study. J Pharmacol Exp Ther, 299 (1): 137-46. [PMID:11561073]

80. Suzuki T, Kameda M, Ando M, Miyazoe H, Sekino E, Ito S, Masutani K, Kamijo K, Takezawa A, Moriya M et al.. (2009) Discovery of novel diarylketoxime derivatives as selective and orally active melanin-concentrating hormone 1 receptor antagonists. Bioorg Med Chem Lett, 19 (18): 5339-45. [PMID:19683441]

81. Takahashi A, Kosugi T, Kobayashi Y, Yamanome T, Schiöth HB, Kawauchi H. (2007) The melanin-concentrating hormone receptor 2 (MCH-R2) mediates the effect of MCH to control body color for background adaptation in the barfin flounder. Gen Comp Endocrinol, 151 (2): 210-9. [PMID:17324419]

82. Takekawa S, Asami A, Ishihara Y, Terauchi J, Kato K, Shimomura Y, Mori M, Murakoshi H, Kato K, Suzuki N et al.. (2002) T-226296: a novel, orally active and selective melanin-concentrating hormone receptor antagonist. Eur J Pharmacol, 438 (3): 129-35. [PMID:11909603]

83. Tavares FX, Al-Barazanji KA, Bishop MJ, Britt CS, Carlton DL, Cooper JP, Feldman PL, Garrido DM, Goetz AS, Grizzle MK et al.. (2006) 6-(4-chlorophenyl)-3-substituted-thieno[3,2-d]pyrimidin-4(3H)-one-based melanin-concentrating hormone receptor 1 antagonist. J Med Chem, 49 (24): 7108-18. [PMID:17125263]

84. Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A. (2014) Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci, 34 (20): 6896-909. [PMID:24828644]

85. Tyhon A, Lakaye B, Adamantidis A, Tirelli E. (2008) Amphetamine- and cocaine-induced conditioned place preference and concomitant psychomotor sensitization in mice with genetically inactivated melanin-concentrating hormone MCH(1) receptor. Eur J Pharmacol, 599 (1-3): 72-80. [PMID:18848539]

86. Verlaet M, Adamantidis A, Coumans B, Chanas G, Zorzi W, Heinen E, Grisar T, Lakaye B. (2002) Human immune cells express ppMCH mRNA and functional MCHR1 receptor. FEBS Lett, 527 (1-3): 205-10. [PMID:12220661]

87. Wang S, Behan J, O'Neill K, Weig B, Fried S, Laz T, Bayne M, Gustafson E, Hawes BE. (2001) Identification and pharmacological characterization of a novel human melanin-concentrating hormone receptor, mch-r2. J Biol Chem, 276 (37): 34664-70. [PMID:11459838]

88. Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M. (2008) Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience, 156 (4): 819-29. [PMID:18809470]

89. Witty DR, Bateson J, Hervieu GJ, Al-Barazanji K, Jeffrey P, Hamprecht D, Haynes A, Johnson CN, Muir AI, O'Hanlon PJ et al.. (2006) Discovery of potent and stable conformationally constrained analogues of the MCH R1 antagonist SB-568849. Bioorg Med Chem Lett, 16 (18): 4872-8. [PMID:16839763]

90. Wu M, Dumalska I, Morozova E, van den Pol A, Alreja M. (2009) Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proc Natl Acad Sci USA, 106 (40): 17217-22. [PMID:19805188]

91. Ziogas DC, Gras-Miralles B, Mustafa S, Geiger BM, Najarian RM, Nagel JM, Flier SN, Popov Y, Tseng YH, Kokkotou E. (2013) Anti-melanin-concentrating hormone treatment attenuates chronic experimental colitis and fibrosis. Am J Physiol Gastrointest Liver Physiol, 304 (10): G876-84. [PMID:23538494]

Contributors

Show »

How to cite this page