Top ▲

GABAA receptor γ2 subunit

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 414

Nomenclature: GABAA receptor γ2 subunit

Family: GABAA receptors

Gene and Protein Information Click here for help
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 4 467 5q34 GABRG2 gamma-aminobutyric acid type A receptor subunit gamma2 26,40
Mouse 4 474 11 24.8 cM Gabrg2 gamma-aminobutyric acid type A receptor, subunit gamma 2 38
Rat 4 466 10q21 Gabrg2 gamma-aminobutyric acid type A receptor subunit gamma 2 29
Previous and Unofficial Names Click here for help
CAE2 | ECA2 | Gabrg-2 | GEFSP3 | gamma-aminobutyric acid receptor subunit gamma-2 | gamma-aminobutyric acid (GABA) A receptor, gamma 2 | gamma-aminobutyric acid (GABA) A receptor, subunit gamma 2 | gamma-aminobutyric acid (GABA) A receptor | gamma-aminobutyric acid type A receptor gamma 2 subunit | gamma-aminobutyric acid type A receptor gamma2 subunit
Database Links Click here for help
Alphafold
CATH/Gene3D
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
GABA

Download all structure-activity data for this target as a CSV file go icon to follow link

Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Use-dependent Value Parameter Concentration range (M) Voltage-dependent (mV) Reference
picrotoxin Small molecule or natural product Click here for species-specific activity table Hs - no - - - no

Not voltage dependent
TBPS Small molecule or natural product Click here for species-specific activity table Hs - no - - - no

Not voltage dependent
Tissue Distribution Click here for help
Olfactory bulb (granule cells), tenia tecta, thalamus (medio dorsal, dorsolateral geniculate, ventrolateral geniculate, ventral posterior nucleus)
Expression level:  Low
Species:  Rat
Technique:  In situ hybridisation
References:  24,41
Olfactory bulb (mitral cells), pyriform cortex, hippocampus (CA1, CA3, dentate gyrus), erebellum (Purkinje cells)
Expression level:  High
Species:  Rat
Technique:  In situ hybridisation
References:  41
Olfactory bulb (periglomerular and tufted cells), neocortex (layers II/III, IV, and V/IV), basal nuclei (caudate putamen, nucleus accumbens, globus pallidus, endopeduncular nucleus, claustrum, subthalamic nucleus), amygdala (central medial and lateral amgdaloid nucleus), septum (bed nuleus of stria terminalis, lateral and medial septum, diagonal band), medial habenula, thalamus (paraventricular and rhomboid nucleus, medial geniculate nucleus, parafascicular nucleus, zona incerta), hypothalamus (medial preoptic area, arcuate nucleus, dorsomedial nucleus, ventromedial nucleus), midbrain (red nucleus), inferior colliculi (central nucleus), substantia nigra (pars reticulata, pars compacta), cerebellum (stellate, basket and granule cells)
Expression level:  Medium
Species:  Rat
Technique:  In situ hybridisation
References:  24,41
The γ2 subunit is part on average of at least 80% of all GABA(A) receptors in virtually all neurons across all brain regions including the olfactory system, cerebral cortex, hippocampus, dentate gyrus, amygdala, septal and basal forebrain, cerebral nuclei, thalamus, hypothalamus, midbrain and pons, medulla, cranial nerve nuclei, cerebellum
Expression level:  High
Species:  Rat
Technique:  In situ hybridisation
References:  11,25
Tissue Distribution Comments
The data tabulated for the human and mouse γ2 subunits correspond to transcript variant 1 encoding the variant commonly referred to as γ2L. The data tabulated for rat correspond to transcript variant 2 encoding a shorter version of γ2 (γ2S, 466 amino acid residues) that lacks eight amino acids in the M3-M4 cytoplamic loop region.
Physiological Consequences of Altering Gene Expression Click here for help
shRNA mediated knock down of γ2 mRNA results in reduced GABAergic innervation of pyramidal cells
Species:  Rat
Tissue:  Brain, cultured hippoxampal neurons
Technique:  shRNA mediated knockdown
References:  18
Knockout of the γ2 subunit results in loss of 94% of [3H] flumazenil binding sites and loss of 22% of GABA ([3H]SR 95531) binding sites. It is asociated with perinatal lethality with very few mice surviving to maximally the 3rd postnatal week (Gunther et al., 1995). GABA-evoked whole cell currents of dorsal root ganglia neurons are reduced to approx 37% of wildtype controls (Gunther et al., 1995). Loss of the γ2 subunit results in loss of postsynaptic GABA(A) receptors and the subsynaptic scafold protein gephyrin from virtually all GABAergic synapses. Functionally this is reflected in virtually complete loss of GABAergic miniature inhibitory synaptic currents (mIPSCs) (Essrich et al., 1998; Schweizer et al., 2003; Alldred et al., 2005). Similar functional deficits in GABAergic synapses are observed upon cell type-specific knockout of the γ2 subunit (Wulff et al., 2009, 2010).
Species:  Mouse
Tissue:  Brain, dorsal root ganglia, cortical neuron cultures
Technique:  Knockout
References:  1,10,12,28,42-43
Conditional homozygous deletion of the γ2 subunit in glutamatergic neurons of the forebrain in the 4th-5th postnatal week results in a lethal epilepsy phenotype (Schweizer et al., 2003).
Species:  Mouse
Tissue:  Forebrain
Technique:  Cre-loxP, CaMKII-Cre mediated recombination
References:  28
A mouse model of the human R82Q mutation (R43Q in the mature peptide), which is associated with familial childhood absence epilepsy (CAE-2), shows behavioral arrest associated with 6-to 7-Hz spike-and-wave discharges, which are blocked by ethosuximide. Mice that are homozygous for the corresponding mutation show a perinatally lethal phenotype comparable to that of γ2 KO mice
Species:  Mouse
Tissue: 
Technique:  Knock-in
References:  34
Heterozygous deletion of the γ2 subunit in mice results in elevated trait anxiety and altered emotional behavior reminiscent of melancholic depression. This phenotype includes increased behavioral sensitivity to diazepam, enhanced trace conditioning and deficits in ambiguous cue discrimination learning but unaltered delay conditioning, context conditioning and spatial learning (Crestani et al., 1999). The γ2+/- model includes reduced survival of adult-born hippocampal neurons, increased behavioral passivity in the forced swim and tail suspension tests (Earnheart et al., 2007), depression related anhedonia in the sucrose consumption test, as well as constitutively elevated serum corticosterone levels (Shen et al., 2010). The anxiety- like but not the depression-related behavior in the forced swim, tail suspension and sucrose consumption tests are reversed with fluoxetine. By contrast, chronic treatment with the tricyclic antidepressant desipramine reverses anxiety and depression related behavior in all four tests and also normalizes HPA axis function (Shen et al., 2010). Conditional deletion of the γ2 subunt indicates that HPA axis dysfunction is independent of a GABA(A) receptor deficit in the hypothalamus. Moreover, γ2-deficit-induced HPA axis dysfunction is insufficient to induce anxiety and depression-related behavior of γ2+/- mice (Shen et al., 2010)
Species:  Mouse
Tissue: 
Technique:  Heteroygous knockout, forebrain glutamatergc neuron-specific heterozygous knockout, developmental stage- specific knockout
References:  7,9,30
Global elimination of the Y365/367 tyrosine phosphorylation site in the major cytoplasmic loop region of the γ2 subunit (Y365/367F) results in reduced endocytosis and increased accumulation of γ2-containing GABA(A) receptors at inhibitory synapses selectively on pyramidal cells of the hippocampal CA3 region. Behaviorally, the mice show impaired spatial object recognition.
Species:  Mouse
Tissue: 
Technique:  Knock-in γ2
References:  35
Transgenic expression of the γ2S or γ2L subunit under control of the human beta actin gene promoter in a γ2 knockout (perinatally lethal) background is sufficient to restore postsynaptic clustering and inhibitory synaptic function of GABA(A) receptors, leading to viable mice without an overt behavioral phenotype
Species:  Mouse
Tissue: 
Technique:  Transgenic expression, knockout
References:  3
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Dravet syndrome
Synonyms: Epileptic encephalopathy, early infantile, 6; EIEE6 [OMIM: 607208]
Severe myoclonic epilepsy of infancy; SMEI [OMIM: 607208]
Disease Ontology: DOID:0060171
OMIM: 607208
Orphanet: ORPHA33069
Role: 
References:  6,22-23
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Nonsense Human Q40X First amino acid of mature peptide 14
Nonsense Human Q390X 13
Disease:  Epilepsy, childhood absence, susceptibility to, 2; ECA2
Synonyms: Childhood absence epilepsy [Orphanet: ORPHA64280] [Disease Ontology: DOID:1825]
Disease Ontology: DOID:1825
OMIM: 607681
Orphanet: ORPHA64280
Role: 
Side effects:  Generalized tonic-clonic seizures often develop in adolescence
References:  8
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human R82Q 20,37
Splice site Human IVS6 + 2T ->6 GT->GG Splice donor site in intron 6 16
Disease:  Febrile Convulsions, Familial 8, FEB8
Synonyms: Generalized epilepsy with febrile seizures-plus [Orphanet: ORPHA36387]
OMIM: 611277
Orphanet: ORPHA36387
Role: 
References:  20-21,37
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human R82Q 20,37
Missense Human R177G 2
Splice site Human IVS6 + 2T ->6 GT->GG Splice donor site in intron 6 16
Disease:  Generalized epilepsy with febrile seizures plus; type 3; GEFSP3
Synonyms: Generalized epilepsy with febrile seizures-plus [Orphanet: ORPHA36387] [Disease Ontology: DOID:0060170]
Disease Ontology: DOID:0060170
OMIM: 611277
Orphanet: ORPHA36387
Role: 
References:  27,32
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human K328M 4
Nonsense Human Q390X 13
Nonsense Human Q429X 33
Clinically-Relevant Mutations and Pathophysiology Comments
Amino acid numbers tabulated refer to full-length precursor proteins encoded by transcript variant 1. Thus, K328M corresponds to K289M, R82Q corresponds to R43Q. R177G correponds to R138G (mislabeled as R139G in Ohmori et al., 2002 [23]) of the mature protein.
Biologically Significant Variants Click here for help
Type:  Splice variant
Species:  Human
Description:  Transcript variant 1 encoding γ2L
Amino acids:  475
Nucleotide accession: 
Protein accession: 
References:  15,26
Type:  Splice variant
Species:  Human
Description:  Transcript variant 2, encodes a γ2S subunit lacking 8 amino acid in the M3-M4 cytoplasmic loop region compared to γ2L
Amino acids:  467
Nucleotide accession: 
Protein accession: 
References:  15,26
Type:  Splice variant
Species:  Human
Description:  Transcript variant 3, encodes an alternatively spliced version of the γ2 subunit with an additional 40 amino acids in the extracellular domain compared to transcript variants 1 and 2.
Amino acids:  515
Nucleotide accession: 
Protein accession: 
References:  15,26
Type:  Splice variant
Species:  Rat
Description:  Transcript variant 2, encodes a γ2S subunit lacking 8 amino acid in the M3-M4 cytoplasmic loop region compared to γ2L
Amino acids:  466
Nucleotide accession: 
Protein accession: 
References:  19,31,36
Type:  Splice variant
Species:  Mouse
Description:  Transcript variant 1 encoding γ2L
Amino acids:  474
Nucleotide accession: 
Protein accession: 
References:  5
Type:  Splice variant
Species:  Mouse
Description:  Transcript variant 2, encodes the γ2S subunit lacking 8 amino acid in the M3-M4 cytoplasmic loop region compared to γ2L
Amino acids:  466
Nucleotide accession: 
Protein accession: 
References:  5,17
Biologically Significant Variant Comments
A transcript variant 1 of the rat Gabrg2 gene is not currently available in the rat genome database. However, the 24bp acid exon that distinguishes mouse and human transcript variant 1 from transcript variant 2 (encoding LLRMFSFK) is conserved in the rat genomic sequence NM_183327. Transcript variants 1 and 2 are further available for the bovine gene [39].

References

Show »

1. Alldred MJ, Mulder-Rosi J, Lingenfelter SE, Chen G, Lüscher B. (2005) Distinct gamma2 subunit domains mediate clustering and synaptic function of postsynaptic GABAA receptors and gephyrin. J Neurosci, 25 (3): 594-603. [PMID:15659595]

2. Audenaert D, Schwartz E, Claeys KG, Claes L, Deprez L, Suls A, Van Dyck T, Lagae L, Van Broeckhoven C, Macdonald RL et al.. (2006) A novel GABRG2 mutation associated with febrile seizures. Neurology, 67 (4): 687-90. [PMID:16924025]

3. Baer K, Essrich C, Balsiger S, Wick MJ, Harris RA, Fritschy JM, Lüscher B. (2000) Rescue of gamma2 subunit-deficient mice by transgenic overexpression of the GABAA receptor gamma2S or gamma2L subunit isoforms. Eur J Neurosci, 12 (7): 2639-43. [PMID:10947838]

4. Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud'homme JF, Baulac M, Brice A, Bruzzone R, LeGuern E. (2001) First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet, 28 (1): 46-8. [PMID:11326274]

5. Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT, Mouse Genome Database Group. (2011) The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res, 39 (Database issue): D842-8. [PMID:21051359]

6. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. (2001) De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet, 68 (6): 1327-32. [PMID:11359211]

7. Crestani F, Lorez M, Baer K, Essrich C, Benke D, Laurent JP, Belzung C, Fritschy JM, Lüscher B, Mohler H. (1999) Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat Neurosci, 2 (9): 833-9. [PMID:10461223]

8. Crunelli V, Leresche N. (2002) Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci, 3 (5): 371-82. [PMID:11988776]

9. Earnheart JC, Schweizer C, Crestani F, Iwasato T, Itohara S, Mohler H, Lüscher B. (2007) GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. J Neurosci, 27 (14): 3845-54. [PMID:17409249]

10. Essrich C, Lorez M, Benson JA, Fritschy JM, Lüscher B. (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci, 1 (7): 563-71. [PMID:10196563]

11. Fritschy JM, Mohler H. (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol, 359 (1): 154-94. [PMID:8557845]

12. Günther U, Benson J, Benke D, Fritschy JM, Reyes G, Knoflach F, Crestani F, Aguzzi A, Arigoni M, Lang Y. (1995) Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci USA, 92 (17): 7749-53. [PMID:7644489]

13. Harkin LA, Bowser DN, Dibbens LM, Singh R, Phillips F, Wallace RH, Richards MC, Williams DA, Mulley JC, Berkovic SF et al.. (2002) Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet, 70 (2): 530-6. [PMID:11748509]

14. Hirose S. (2006) A new paradigm of channelopathy in epilepsy syndromes: intracellular trafficking abnormality of channel molecules. Epilepsy Res, 70 Suppl 1: S206-17. [PMID:16860540]

15. HUGO Gene Nomenclature Committee at the European Bioinformatics Institute. . Accessed on 06/12/2011. Modified on 06/12/2011. HUGO Gene Nomenclature Committee, http://www.genenames.org/

16. Kananura C, Haug K, Sander T, Runge U, Gu W, Hallmann K, Rebstock J, Heils A, Steinlein OK. (2002) A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol, 59 (7): 1137-41. [PMID:12117362]

17. Kofuji P, Wang JB, Moss SJ, Huganir RL, Burt DR. (1991) Generation of two forms of the gamma-aminobutyric acidA receptor gamma 2-subunit in mice by alternative splicing. J Neurochem, 56 (2): 713-5. [PMID:1846404]

18. Li RW, Yu W, Christie S, Miralles CP, Bai J, Loturco JJ, De Blas AL. (2005) Disruption of postsynaptic GABA receptor clusters leads to decreased GABAergic innervation of pyramidal neurons. J Neurochem, 95 (3): 756-70. [PMID:16248887]

19. Malherbe P, Sigel E, Baur R, Persohn E, Richards JG, Mohler H. (1990) Functional characteristics and sites of gene expression of the alpha 1, beta 1, gamma 2-isoform of the rat GABAA receptor. J Neurosci, 10 (7): 2330-7. [PMID:2165521]

20. Marini C, Harkin LA, Wallace RH, Mulley JC, Scheffer IE, Berkovic SF. (2003) Childhood absence epilepsy and febrile seizures: a family with a GABA(A) receptor mutation. Brain, 126 (Pt 1): 230-40. [PMID:12477709]

21. Nabbout R, Prud'homme JF, Herman A, Feingold J, Brice A, Dulac O, LeGuern E. (2002) A locus for simple pure febrile seizures maps to chromosome 6q22-q24. Brain, 125 (Pt 12): 2668-80. [PMID:12429594]

22. No authors listed. (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia, 30 (4): 389-99. [PMID:2502382]

23. Ohmori I, Ouchida M, Ohtsuka Y, Oka E, Shimizu K. (2002) Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy. Biochem Biophys Res Commun, 295 (1): 17-23. [PMID:12083760]

24. Persohn E, Malherbe P, Richards JG. (1992) Comparative molecular neuroanatomy of cloned GABAA receptor subunits in the rat CNS. J Comp Neurol, 326 (2): 193-216. [PMID:1336019]

25. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. (2000) GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience, 101 (4): 815-50. [PMID:11113332]

26. Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH. (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature, 338 (6216): 582-5. [PMID:2538761]

27. Scheffer IE, Berkovic SF. (1997) Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain, 120 ( Pt 3): 479-90. [PMID:9126059]

28. Schweizer C, Balsiger S, Bluethmann H, Mansuy IM, Fritschy JM, Mohler H, Lüscher B. (2003) The gamma 2 subunit of GABA(A) receptors is required for maintenance of receptors at mature synapses. Mol Cell Neurosci, 24 (2): 442-50. [PMID:14572465]

29. Seeburg PH, Wisden W, Verdoorn TA, Pritchett DB, Werner P, Herb A, Lüddens H, Sprengel R, Sakmann B. (1990) The GABAA receptor family: molecular and functional diversity. Cold Spring Harb Symp Quant Biol, 55: 29-40. [PMID:1966765]

30. Shen Q, Lal R, Luellen BA, Earnheart JC, Andrews AM, Luscher B. (2010) gamma-Aminobutyric acid-type A receptor deficits cause hypothalamic-pituitary-adrenal axis hyperactivity and antidepressant drug sensitivity reminiscent of melancholic forms of depression. Biol Psychiatry, 68 (6): 512-20. [PMID:20579975]

31. Shivers BD, Killisch I, Sprengel R, Sontheimer H, Köhler M, Schofield PR, Seeburg PH. (1989) Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron, 3 (3): 327-37. [PMID:2561970]

32. Singh R, Scheffer IE, Crossland K, Berkovic SF. (1999) Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic epilepsy syndrome. Ann Neurol, 45 (1): 75-81. [PMID:9894880]

33. Sun H, Zhang Y, Liang J, Liu X, Ma X, Wu H, Xu K, Qin J, Qi Y, Wu X. (2008) SCN1A, SCN1B, and GABRG2 gene mutation analysis in Chinese families with generalized epilepsy with febrile seizures plus. J Hum Genet, 53 (8): 769-74. [PMID:18566737]

34. Tan HO, Reid CA, Single FN, Davies PJ, Chiu C, Murphy S, Clarke AL, Dibbens L, Krestel H, Mulley JC et al.. (2007) Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy. Proc Natl Acad Sci USA, 104 (44): 17536-41. [PMID:17947380]

35. Tretter V, Revilla-Sanchez R, Houston C, Terunuma M, Havekes R, Florian C, Jurd R, Vithlani M, Michels G, Couve A et al.. (2009) Deficits in spatial memory correlate with modified {gamma}-aminobutyric acid type A receptor tyrosine phosphorylation in the hippocampus. Proc Natl Acad Sci USA, 106 (47): 20039-44. [PMID:19903874]

36. Twigger SN, Shimoyama M, Bromberg S, Kwitek AE, Jacob HJ, RGD Team. (2007) The Rat Genome Database, update 2007--easing the path from disease to data and back again. Nucleic Acids Res, 35 (Database issue): D658-62. [PMID:17151068]

37. Wallace RH, Marini C, Petrou S, Harkin LA, Bowser DN, Panchal RG, Williams DA, Sutherland GR, Mulley JC, Scheffer IE et al.. (2001) Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet, 28 (1): 49-52. [PMID:11326275]

38. Wang JB, Burt DR. (1991) Differential expression of two forms of GABAA receptor gamma 2-subunit in mice. Brain Res Bull, 27 (5): 731-5. [PMID:1661635]

39. Whiting P, McKernan RM, Iversen LL. (1990) Another mechanism for creating diversity in gamma-aminobutyrate type A receptors: RNA splicing directs expression of two forms of gamma 2 phosphorylation site. Proc Natl Acad Sci USA, 87 (24): 9966-70. [PMID:1702226]

40. Wilcox AS, Warrington JA, Gardiner K, Berger R, Whiting P, Altherr MR, Wasmuth JJ, Patterson D, Sikela JM. (1992) Human chromosomal localization of genes encoding the gamma 1 and gamma 2 subunits of the gamma-aminobutyric acid receptor indicates that members of this gene family are often clustered in the genome. Proc Natl Acad Sci USA, 89 (13): 5857-61. [PMID:1321425]

41. Wisden W, Laurie DJ, Monyer H, Seeburg PH. (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci, 12 (3): 1040-62. [PMID:1312131]

42. Wulff P, Ponomarenko AA, Bartos M, Korotkova TM, Fuchs EC, Bähner F, Both M, Tort AB, Kopell NJ, Wisden W et al.. (2009) Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc Natl Acad Sci USA, 106 (9): 3561-6. [PMID:19204281]

43. Wulff P, Schonewille M, Renzi M, Viltono L, Sassoè-Pognetto M, Badura A, Gao Z, Hoebeek FE, van Dorp S, Wisden W et al.. (2009) Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci, 12 (8): 1042-9. [PMID:19578381]

Contributors

Show »

How to cite this page