Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Glutamate transporters present the unusual structural motif of 8TM segments and 2 re-entrant loops [25]. The crystal structure of a glutamate transporter homologue (GltPh) from Pyrococcus horikoshii supports this topology and indicates that the transporter assembles as a trimer, where each monomer is a functional unit capable of substrate permeation [6,40,54] reviewed by [28]). This structural data is in agreement with the proposed quaternary structure for EAAT2 [21] and several functional studies that propose the monomer is the functional unit [23,31,34,45]. Recent evidence suggests that EAAT3 and EAAT4 may assemble as heterotrimers [39]. The activity of glutamate transporters located upon both neurones (predominantly EAAT3, 4 and 5) and glia (predominantly EAAT 1 and 2) serves, dependent upon their location, to regulate excitatory neurotransmission, maintain low ambient extracellular concentrations of glutamate (protecting against excitotoxicity) and provide glutamate for metabolism including the glutamate-glutamine cycle. The Na+/K+-ATPase that maintains the ion gradients that drive transport has been demonstrated to co-assemble with EAAT1 and EAAT2 [42]. Recent evidence supports altered glutamate transport and novel roles in brain for splice variants of EAAT1 and EAAT2 [20,35]. Three patients with dicarboxylic aminoaciduria (DA) were recently found to have loss-of-function mutations in EAAT3 [5]. DA is characterized by excessive excretion of the acidic amino acids glutamate and aspartate and EAAT3 is the predominant glutamate/aspartate transporter in the kidney. Enhanced expression of EAAT2 resulting from administration of β-lactam antibacterials (e.g. ceftriaxone) is neuroprotective and occurs through NF-κB-mediated EAAT2 promoter activation [19,36,43] reviewed by [30]). PPARγ activation (e.g. by rosiglitazone) also leads to enhanced expression of EAAT though promoter activation [41]. In addition, several translational activators of EAAT2 have recently been described [8] along with treatments that increase the surface expression of EAAT2 (e.g. [33,58]), or prevent its down-regulation (e.g. [22]). A thermodynamically uncoupled Cl- flux, activated by Na+ and glutamate [24,29,38] (Na+ and aspartate in the case of GltPh [44]), is sufficiently large, in the instances of EAAT4 and EAAT5, to influence neuronal excitability [50,53]. Indeed, it has recently been suggested that the primary function of EAAT5 is as a slow anion channel gated by glutamate, rather than a glutamate transporter [18].
EAAT1 (Excitatory amino acid transporter 1 / SLC1A3) C Show summary »« Hide summary
|
|||||||||||||||||||||||||||||||||||||||||||||||
EAAT2 (Excitatory amino acid transporter 2 / SLC1A2) C Show summary »« Hide summary
|
|||||||||||||||||||||||||||||||||||||||||||||||
EAAT3 (Excitatory amino acid transporter 3 / SLC1A1) C Show summary »« Hide summary
|
|||||||||||||||||||||||||||||||||||||||||||||||
EAAT4 (Excitatory amino acid transporter 4 / SLC1A6) C Show summary »« Hide summary
|
|||||||||||||||||||||||||||||||||||||||||||||||
EAAT5 (Excitatory amino acid transporter 5 / SLC1A7) C Show summary »« Hide summary
|
1. Abram M, Jakubiec M, Reeb K, Cheng MH, Gedschold R, Rapacz A, Mogilski S, Socała K, Nieoczym D, Szafarz M et al.. (2022) Discovery of (R)-N-Benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide [(R)-AS-1], a Novel Orally Bioavailable EAAT2 Modulator with Drug-like Properties and Potent Antiseizure Activity In Vivo. J Med Chem, 65 (17): 11703-11725. [PMID:35984707]
2. Apricò K, Beart PM, Crawford D, O'Shea RD. (2004) Binding and transport of [3H](2S,4R)- 4-methylglutamate, a new ligand for glutamate transporters, demonstrate labeling of EAAT1 in cultured murine astrocytes. J Neurosci Res, 75 (6): 751-9. [PMID:14994336]
3. Apricò K, Beart PM, Crawford D, O'shea RD. (2007) Comparison of [(3)H]-(2S,4R)-4-methylglutamate and [(3)H]D-aspartate as ligands for binding and autoradiographic analyses of glutamate transporters. Neurochem Int, 51 (8): 507-16. [PMID:17590480]
4. Apricó K, Beart PM, Lawrence AJ, Crawford D, O'Shea RD. (2001) [(3)H](2S,4R)-4-Methylglutamate: a novel ligand for the characterization of glutamate transporters. J Neurochem, 77 (5): 1218-25. [PMID:11389172]
5. Bailey CG, Ryan RM, Thoeng AD, Ng C, King K, Vanslambrouck JM, Auray-Blais C, Vandenberg RJ, Bröer S, Rasko JE. (2011) Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Invest, 121 (1): 446-53. [PMID:21123949]
6. Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E. (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature, 445 (7126): 387-93. [PMID:17230192]
7. Colleoni S, Jensen AA, Landucci E, Fumagalli E, Conti P, Pinto A, De Amici M, Pellegrini-Giampietro DE, De Micheli C, Mennini T et al.. (2008) Neuroprotective effects of the novel glutamate transporter inhibitor (-)-3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]-isoxazole-4-carboxylic acid, which preferentially inhibits reverse transport (glutamate release) compared with glutamate reuptake. J Pharmacol Exp Ther, 326 (2): 646-56. [PMID:18451317]
8. Colton CK, Kong Q, Lai L, Zhu MX, Seyb KI, Cuny GD, Xian J, Glicksman MA, Lin CL. (2010) Identification of translational activators of glial glutamate transporter EAAT2 through cell-based high-throughput screening: an approach to prevent excitotoxicity. J Biomol Screen, 15 (6): 653-62. [PMID:20508255]
9. Coon, TR et al.. (2004) Abstract Viewer/Itinerary Planner, Program No. 168.10. In (Society for Neuroscience) .
10. Dunlop J. (2006) Glutamate-based therapeutic approaches: targeting the glutamate transport system. Curr Opin Pharmacol, 6 (1): 103-7. [PMID:16368269]
11. Dunlop J, Butera JA. (2006) Ligands targeting the excitatory amino acid transporters (EAATs). Curr Top Med Chem, 6 (17): 1897-906. [PMID:17017964]
12. Dunlop J, Eliasof S, Stack G, McIlvain HB, Greenfield A, Kowal D, Petroski R, Carrick T. (2003) WAY-855 (3-amino-tricyclo[2.2.1.02.6]heptane-1,3-dicarboxylic acid): a novel, EAAT2-preferring, nonsubstrate inhibitor of high-affinity glutamate uptake. Br J Pharmacol, 140 (5): 839-46. [PMID:14517179]
13. Dunlop J, McIlvain HB, Carrick TA, Jow B, Lu Q, Kowal D, Lin S, Greenfield A, Grosanu C, Fan K et al.. (2005) Characterization of novel aryl-ether, biaryl, and fluorene aspartic acid and diaminopropionic acid analogs as potent inhibitors of the high-affinity glutamate transporter EAAT2. Mol Pharmacol, 68 (4): 974-82. [PMID:16014807]
14. Eliasof S, McIlvain HB, Petroski RE, Foster AC, Dunlop J. (2001) Pharmacological characterization of threo-3-methylglutamic acid with excitatory amino acid transporters in native and recombinant systems. J Neurochem, 77 (2): 550-7. [PMID:11299317]
15. Esslinger CS, Agarwal S, Gerdes J, Wilson PA, Davis ES, Awes AN, O'Brien E, Mavencamp T, Koch HP, Poulsen DJ et al.. (2005) The substituted aspartate analogue L-beta-threo-benzyl-aspartate preferentially inhibits the neuronal excitatory amino acid transporter EAAT3. Neuropharmacology, 49 (6): 850-61. [PMID:16183084]
16. Fontana AC, de Oliveira Beleboni R, Wojewodzic MW, Ferreira Dos Santos W, Coutinho-Netto J, Grutle NJ, Watts SD, Danbolt NC, Amara SG. (2007) Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom. Mol Pharmacol, 72 (5): 1228-37. [PMID:17646426]
17. Fontana AC, Guizzo R, de Oliveira Beleboni R, Meirelles E Silva AR, Coimbra NC, Amara SG, dos Santos WF, Coutinho-Netto J. (2003) Purification of a neuroprotective component of Parawixia bistriata spider venom that enhances glutamate uptake. Br J Pharmacol, 139 (7): 1297-309. [PMID:12890709]
18. Gameiro A, Braams S, Rauen T, Grewer C. (2011) The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5. Biophys J, 100 (11): 2623-32. [PMID:21641307]
19. Ganel R, Ho T, Maragakis NJ, Jackson M, Steiner JP, Rothstein JD. (2006) Selective up-regulation of the glial Na+-dependent glutamate transporter GLT1 by a neuroimmunophilin ligand results in neuroprotection. Neurobiol Dis, 21 (3): 556-67. [PMID:16274998]
20. Gebhardt FM, Mitrovic AD, Gilbert DF, Vandenberg RJ, Lynch JW, Dodd PR. (2010) Exon-skipping splice variants of excitatory amino acid transporter-2 (EAAT2) form heteromeric complexes with full-length EAAT2. J Biol Chem, 285 (41): 31313-24. [PMID:20688910]
21. Gendreau S, Voswinkel S, Torres-Salazar D, Lang N, Heidtmann H, Detro-Dassen S, Schmalzing G, Hidalgo P, Fahlke C. (2004) A trimeric quaternary structure is conserved in bacterial and human glutamate transporters. J Biol Chem, 279 (38): 39505-12. [PMID:15265858]
22. Goursaud S, Focant MC, Berger JV, Nizet Y, Maloteaux JM, Hermans E. (2011) The VPAC2 agonist peptide histidine isoleucine (PHI) up-regulates glutamate transport in the corpus callosum of a rat model of amyotrophic lateral sclerosis (hSOD1G93A) by inhibiting caspase-3 mediated inactivation of GLT-1a. FASEB J, 25 (10): 3674-86. [PMID:21730107]
23. Grewer C, Balani P, Weidenfeller C, Bartusel T, Tao Z, Rauen T. (2005) Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry, 44 (35): 11913-23. [PMID:16128593]
24. Grewer C, Rauen T. (2005) Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol, 203 (1): 1-20. [PMID:15834685]
25. Grunewald M, Kanner BI. (2000) The accessibility of a novel reentrant loop of the glutamate transporter GLT-1 is restricted by its substrate. J Biol Chem, 275 (13): 9684-9. [PMID:10734120]
26. Huang S, Ryan RM, Vandenberg RJ. (2009) The role of cation binding in determining substrate selectivity of glutamate transporters. J Biol Chem, 284 (7): 4510-5. [PMID:19074430]
27. Jensen AA, Erichsen MN, Nielsen CW, Stensbøl TB, Kehler J, Bunch L. (2009) Discovery of the first selective inhibitor of excitatory amino acid transporter subtype 1. J Med Chem, 52 (4): 912-5. [PMID:19161278]
28. Jiang J, Amara SG. (2011) New views of glutamate transporter structure and function: advances and challenges. Neuropharmacology, 60 (1): 172-81. [PMID:20708631]
29. Kanai Y, Hediger MA. (2003) The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur J Pharmacol, 479 (1-3): 237-47. [PMID:14612154]
30. Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P et al.. (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol, 226 (10): 2484-93. [PMID:21792905]
31. Koch HP, Brown RL, Larsson HP. (2007) The glutamate-activated anion conductance in excitatory amino acid transporters is gated independently by the individual subunits. J Neurosci, 27 (11): 2943-7. [PMID:17360917]
32. Koch HP, Kavanaugh MP, Esslinger CS, Zerangue N, Humphrey JM, Amara SG, Chamberlin AR, Bridges RJ. (1999) Differentiation of substrate and nonsubstrate inhibitors of the high-affinity, sodium-dependent glutamate transporters. Mol Pharmacol, 56 (6): 1095-104. [PMID:10570036]
33. Lau CL, O'Shea RD, Broberg BV, Bischof L, Beart PM. (2011) The Rho kinase inhibitor Fasudil up-regulates astrocytic glutamate transport subsequent to actin remodelling in murine cultured astrocytes. Br J Pharmacol, 163 (3): 533-45. [PMID:21309758]
34. Leary GP, Stone EF, Holley DC, Kavanaugh MP. (2007) The glutamate and chloride permeation pathways are colocalized in individual neuronal glutamate transporter subunits. J Neurosci, 27 (11): 2938-42. [PMID:17360916]
35. Lee A, Pow DV. (2010) Astrocytes: Glutamate transport and alternate splicing of transporters. Int J Biochem Cell Biol, 42 (12): 1901-6. [PMID:20883814]
36. Lee SG, Su ZZ, Emdad L, Gupta P, Sarkar D, Borjabad A, Volsky DJ, Fisher PB. (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem, 283 (19): 13116-23. [PMID:18326497]
37. Levy LM, Warr O, Attwell D. (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci, 18 (23): 9620-8. [PMID:9822723]
38. Machtens JP, Kovermann P, Fahlke C. (2011) Substrate-dependent gating of anion channels associated with excitatory amino acid transporter 4. J Biol Chem, 286 (27): 23780-8. [PMID:21572047]
39. Nothmann D, Leinenweber A, Torres-Salazar D, Kovermann P, Hotzy J, Gameiro A, Grewer C, Fahlke C. (2011) Hetero-oligomerization of neuronal glutamate transporters. J Biol Chem, 286 (5): 3935-43. [PMID:21127051]
40. Reyes N, Ginter C, Boudker O. (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature, 462 (7275): 880-5. [PMID:19924125]
41. Romera C, Hurtado O, Mallolas J, Pereira MP, Morales JR, Romera A, Serena J, Vivancos J, Nombela F, Lorenzo P et al.. (2007) Ischemic preconditioning reveals that GLT1/EAAT2 glutamate transporter is a novel PPARgamma target gene involved in neuroprotection. J Cereb Blood Flow Metab, 27 (7): 1327-38. [PMID:17213861]
42. Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR. (2009) Glutamate transporter coupling to Na,K-ATPase. J Neurosci, 29 (25): 8143-55. [PMID:19553454]
43. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS et al.. (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 433 (7021): 73-7. [PMID:15635412]
44. Ryan RM, Mindell JA. (2007) The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat Struct Mol Biol, 14 (5): 365-71. [PMID:17435767]
45. Ryan RM, Mitrovic AD, Vandenberg RJ. (2004) The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J Biol Chem, 279 (20): 20742-51. [PMID:14982939]
46. Shigeri Y, Shimamoto K, Yasuda-Kamatani Y, Seal RP, Yumoto N, Nakajima T, Amara SG. (2001) Effects of threo-beta-hydroxyaspartate derivatives on excitatory amino acid transporters (EAAT4 and EAAT5). J Neurochem, 79 (2): 297-302. [PMID:11677257]
47. Shimamoto K, Lebrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N, Nakajima T. (1998) DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol Pharmacol, 53 (2): 195-201. [PMID:9463476]
48. Shimamoto K, Otsubo Y, Shigeri Y, Yasuda-Kamatani Y, Satoh M, Kaneko S, Nakagawa T. (2007) Characterization of the tritium-labeled analog of L-threo-beta-benzyloxyaspartate binding to glutamate transporters. Mol Pharmacol, 71 (1): 294-302. [PMID:17047096]
49. Shimamoto K, Shigeri Y, Yasuda-Kamatani Y, Lebrun B, Yumoto N, Nakajima T. (2000) Syntheses of optically pure beta-hydroxyaspartate derivatives as glutamate transporter blockers. Bioorg Med Chem Lett, 10 (21): 2407-10. [PMID:11078189]
50. Torres-Salazar D, Fahlke C. (2007) Neuronal glutamate transporters vary in substrate transport rate but not in unitary anion channel conductance. J Biol Chem, 282 (48): 34719-26. [PMID:17908688]
51. Vandenberg RJ, Ju P, Aubrey KR, Ryan RM, Mitrovic AD. (2004) Allosteric modulation of neurotransmitter transporters at excitatory synapses. Eur J Pharm Sci, 23 (1): 1-11. [PMID:15324920]
52. Vandenberg RJ, Mitrovic AD, Chebib M, Balcar VJ, Johnston GA. (1997) Contrasting modes of action of methylglutamate derivatives on the excitatory amino acid transporters, EAAT1 and EAAT2. Mol Pharmacol, 51 (5): 809-15. [PMID:9145919]
53. Veruki ML, Mørkve SH, Hartveit E. (2006) Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat Neurosci, 9 (11): 1388-96. [PMID:17041592]
54. Yernool D, Boudker O, Jin Y, Gouaux E. (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature, 431 (7010): 811-8. [PMID:15483603]
55. Zerangue N, Kavanaugh MP. (1996) Flux coupling in a neuronal glutamate transporter. Nature, 383 (6601): 634-7. [PMID:8857541]
56. Zerangue N, Kavanaugh MP. (1996) Interaction of L-cysteine with a human excitatory amino acid transporter. J Physiol (Lond.), 493 ( Pt 2): 419-23. [PMID:8782106]
57. Zhou LM, Gu ZQ, Costa AM, Yamada KA, Mansson PE, Giordano T, Skolnick P, Jones KA. (1997) (2S,4R)-4-methylglutamic acid (SYM 2081): a selective, high-affinity ligand for kainate receptors. J Pharmacol Exp Ther, 280 (1): 422-7. [PMID:8996224]
58. Zou S, Pita-Almenar JD, Eskin A. (2011) Regulation of glutamate transporter GLT-1 by MAGI-1. J Neurochem, 117 (5): 833-40. [PMID:21426345]
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Fabbro D, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: Transporters. Br J Pharmacol. 180 Suppl 2:S374-469.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The KB (or Ki) values reported, unless indicated otherwise, are derived from transporter currents mediated by EAATs expressed in voltage-clamped Xenopus laevis oocytes [14,46-47,52]. KB (or Ki) values derived in uptake assays are generally higher (e.g. [47]). In addition to acting as a poorly transportable inhibitor of EAAT2, (2S,4R)-4-methylglutamate, also known as SYM2081, is a competitive substrate for EAAT1 (KM = 54µM; [26,52]) and additionally is a potent kainate receptor agonist [57] which renders the compound unsuitable for autoradiographic localisation of EAATs [3]. Similarly, at concentrations that inhibit EAAT2, dihydrokainate binds to kainate receptors [47]. WAY-855 and WAY-213613 are both non-substrate inhibitors with a preference for EAAT2 over EAAT3 and EAAT1 [12-13]. NBI-59159 is a non-substrate inhibitor with modest selectivity for EAAT3 over EAAT1 (>10-fold) and EAAT2 (5-fold) [9-10]. Analogously, L-β-threo-benzyl-aspartate (L-β-BA) is a competitive non-substrate inhibitor that preferentially blocks EAAT3 versus EAAT1, or EAAT2 [15]. [3H]SYM2081 demonstrates low affinity binding (KD ≅ 6.0 µM) to EAAT1 and EAAT2 in rat brain homogenates [4] and EAAT1 in murine astrocyte membranes [2], whereas [3H]ETB-TBOA binds with high affinity to all EAATs other than EAAT3 [48]. The novel isoxazole derivative (-)-HIP-A may interact at the same site as TBOA and preferentially inhibit reverse transport of glutamate [7]. Threo-3-methylglutamate induces substrate-like currents at EAAT4, but does not elicit heteroexchange of [3H]-aspartate in synaptosome preparations, inconsistent with the behaviour of a substrate inhibitor [14]. Parawixin 1, a compound isolated from the venom from the spider Parawixia bistriata is a selective enhancer of the glutamate uptake through EAAT2 but not through EAAT1 or EAAT3 [16-17]. In addition to the agents listed in the table, DL-threo-β-hydroxyaspartate and L-trans-2,4-pyrolidine dicarboxylate act as non-selective competitive substrate inhibitors of all EAATs. Zn2+ and arachidonic acid are putative endogenous modulators of EAATs with actions that differ across transporter subtypes (reviewed by [51]).