Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide
More detailed introduction
The formylpeptide receptors (nomenclature agreed by the NC-IUPHAR Subcommittee on the formylpeptide receptor family [26]) respond to exogenous ligands such as the bacterial product fMet-Leu-Phe (fMLP) and endogenous ligands such as annexin I (ANXA1, P04083) , cathepsin G (CTSG, P08311), amyloid β42, serum amyloid A and spinorphin, derived from β-haemoglobin (HBB, P68871).
FPR1
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||
FPR2/ALX
C
Show summary »« Hide summary
More detailed page
|
|||||||||||||||||||||||||||||||||
FPR3
C
Show summary »« Hide summary
More detailed page
|
* Key recommended reading is highlighted with an asterisk
Cattaneo F, Guerra G, Ammendola R. (2010) Expression and signaling of formyl-peptide receptors in the brain. Neurochem. Res., 35 (12): 2018-26. [PMID:21042851]
* Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG. (2015) The Role of Formylated Peptides and Formyl Peptide Receptor 1 in Governing Neutrophil Function during Acute Inflammation. Am. J. Pathol., 185 (5): 1172-1184. [PMID:25791526]
* Dufton N, Perretti M. (2010) Therapeutic anti-inflammatory potential of formyl-peptide receptor agonists. Pharmacol. Ther., 127 (2): 175-88. [PMID:20546777]
Gavins FN. (2010) Are formyl peptide receptors novel targets for therapeutic intervention in ischaemia-reperfusion injury?. Trends Pharmacol. Sci., 31 (6): 266-76. [PMID:20483490]
Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL, Siltberg-Liberles J, Liberles DA, Buck LB. (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc. Natl. Acad. Sci. U.S.A., 106 (24): 9842-7. [PMID:19497865]
* Liu M, Zhao J, Chen K, Bian X, Wang C, Shi Y, Wang JM. (2012) G protein-coupled receptor FPR1 as a pharmacologic target in inflammation and human glioblastoma. Int. Immunopharmacol., 14 (3): 283-8. [PMID:22863814]
* Rabiet MJ, Macari L, Dahlgren C, Boulay F. (2011) N-formyl peptide receptor 3 (FPR3) departs from the homologous FPR2/ALX receptor with regard to the major processes governing chemoattractant receptor regulation, expression at the cell surface, and phosphorylation. J. Biol. Chem., 286 (30): 26718-31. [PMID:21543323]
* Yazid S, Norling LV, Flower RJ. (2012) Anti-inflammatory drugs, eicosanoids and the annexin A1/FPR2 anti-inflammatory system. Prostaglandins Other Lipid Mediat., 98 (3-4): 94-100. [PMID:22123264]
* Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. (2009) International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol. Rev., 61 (2): 119-61. [PMID:19498085]
1. Bae YS, Lee HY, Jo EJ, Kim JI, Kang HK, Ye RD, Kwak JY, Ryu SH. (2004) Identification of peptides that antagonize formyl peptide receptor-like 1-mediated signaling. J. Immunol., 173 (1): 607-14. [PMID:15210823]
2. Clish CB, O'Brien JA, Gronert K, Stahl GL, Petasis NA, Serhan CN. (1999) Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo. Proc. Natl. Acad. Sci. U.S.A., 96 (14): 8247-52. [PMID:10393980]
3. Fiore S, Maddox JF, Perez HD, Serhan CN. (1994) Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J. Exp. Med., 180 (1): 253-60. [PMID:8006586]
4. Fiore S, Ryeom SW, Weller PF, Serhan CN. (1992) Lipoxin recognition sites. Specific binding of labeled lipoxin A4 with human neutrophils. J. Biol. Chem., 267 (23): 16168-76. [PMID:1322894]
5. Fiore S, Serhan CN. (1995) Lipoxin A4 receptor activation is distinct from that of the formyl peptide receptor in myeloid cells: inhibition of CD11/18 expression by lipoxin A4-lipoxin A4 receptor interaction. Biochemistry, 34 (51): 16678-86. [PMID:8527441]
6. Freer RJ, Day AR, Muthukumaraswamy N, Pinon D, Wu A, Showell HJ, Becker EL. (1982) Formyl peptide chemoattractants: a model of the receptor on rabbit neutrophils. Biochemistry, 21 (2): 257-63. [PMID:6280748]
7. Freer RJ, Day AR, Radding JA, Schiffmann E, Aswanikumar S, Showell HJ, Becker EL. (1980) Further studies on the structural requirements for synthetic peptide chemoattractants. Biochemistry, 19 (11): 2404-10. [PMID:7387981]
8. Gronert K, Martinsson-Niskanen T, Ravasi S, Chiang N, Serhan CN. (2001) Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA(4) and regulation of vascular and inflammatory responses. Am. J. Pathol., 158 (1): 3-9. [PMID:11141472]
9. Guilford WJ, Bauman JG, Skuballa W, Bauer S, Wei GP, Davey D, Schaefer C, Mallari C, Terkelsen J, Tseng JL et al.. (2004) Novel 3-oxa lipoxin A4 analogues with enhanced chemical and metabolic stability have anti-inflammatory activity in vivo. J. Med. Chem., 47 (8): 2157-65. [PMID:15056011]
10. He HQ, Liao D, Wang ZG, Wang ZL, Zhou HC, Wang MW, Ye RD. (2013) Functional characterization of three mouse formyl peptide receptors. Mol. Pharmacol., 83 (2): 389-98. [PMID:23160941]
11. Koo C, Lefkowitz RJ, Snyderman R. (1982) The oligopeptide chemotactic factor receptor on human polymorphonuclear leukocyte membranes exists in two affinity states. Biochem Biophys Res Commun., 106: 442-449. [PMID:6285921]
12. Krishnamoorthy S, Recchiuti A, Chiang N, Fredman G, Serhan CN. (2012) Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. Am. J. Pathol., 180 (5): 2018-27. [PMID:22449948]
13. Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, Petasis NA, Serhan CN. (2010) Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl. Acad. Sci. U.S.A., 107 (4): 1660-5. [PMID:20080636]
14. Le Y, Murphy PM, Wang JM. (2002) Formyl-peptide receptors revisited. Trends Immunol., 23 (11): 541-8. [PMID:12401407]
15. Liang TS, Gao JL, Fatemi O, Lavigne M, Leto TL, Murphy PM. (2001) The endogenous opioid spinorphin blocks fMet-Leu-Phe-induced neutrophil chemotaxis by acting as a specific antagonist at the N-formylpeptide receptor subtype FPR. J. Immunol., 167 (11): 6609-14. [PMID:11714831]
16. Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN. (1997) Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J. Biol. Chem., 272 (11): 6972-8. [PMID:9054386]
17. Migeotte I, Riboldi E, Franssen JD, Grégoire F, Loison C, Wittamer V, Detheux M, Robberecht P, Costagliola S, Vassart G et al.. (2005) Identification and characterization of an endogenous chemotactic ligand specific for FPRL2. J. Exp. Med., 201 (1): 83-93. [PMID:15623572]
18. Murphy PM, Ozçelik T, Kenney RT, Tiffany HL, McDermott D, Francke U. (1992) A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. J. Biol. Chem., 267 (11): 7637-43. [PMID:1373134]
19. Showell HJ, Freer RJ, Zigmond SH, Schiffmann E, Aswanikumar S, Corcoran B, Becker EL. (1976) The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J. Exp. Med., 143 (5): 1154-69. [PMID:1262785]
20. Stenfeldt AL, Karlsson J, Wennerås C, Bylund J, Fu H, Dahlgren C. (2007) Cyclosporin H, Boc-MLF and Boc-FLFLF are antagonists that preferentially inhibit activity triggered through the formyl peptide receptor. Inflammation, 30 (6): 224-9. [PMID:17687636]
21. Sun R, Iribarren P, Zhang N, Zhou Y, Gong W, Cho EH, Lockett S, Chertov O, Bednar F, Rogers TJ, Oppenheim JJ, Wang JM. (2004) Identification of neutrophil granule protein cathepsin G as a novel chemotactic agonist for the G protein-coupled formyl peptide receptor. J. Immunology, 173: 428-436. [PMID:15210802]
22. Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN. (1997) Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J. Exp. Med., 185 (9): 1693-704. [PMID:9151906]
23. Walther A, Riehemann K, Gerke V. (2000) A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol. Cell, 5 (5): 831-40. [PMID:10882119]
24. Wenzel-Seifert K, Seifert R. (1993) Cyclosporin H is a potent and selective formyl peptide receptor antagonist. Comparison with N-t-butoxycarbonyl-L-phenylalanyl-L-leucyl-L-phenylalanyl-L- leucyl-L-phenylalanine and cyclosporins A, B, C, D, and E. J. Immunol., 150 (10): 4591-9. [PMID:8387097]
25. Yan P, Nanamori M, Sun M, Zhou C, Cheng N, Li N, Zheng W, Xiao L, Xie X, Ye RD et al.. (2006) The immunosuppressant cyclosporin A antagonizes human formyl peptide receptor through inhibition of cognate ligand binding. J. Immunol., 177 (10): 7050-8. [PMID:17082621]
26. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. (2009) International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol. Rev., 61 (2): 119-61. [PMID:19498085]
Subcommittee members:
Richard D. Ye (Chairperson)
François Boulay
Claes Dahlgren
Craig Gerard
Philip M. Murphy
Marc Parmentier
Mark Quinn
Charles N. Serhan
Ji Ming Wang |
Other contributors:
Magnus Bäck
Nan Chiang
Sven-Erik Dahlén
Jeffrey Drazen
Jilly F. Evans
G. Enrico Rovati
Takao Shimizu
Takehiko Yokomizo |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA; CGTP Collaborators. (2019) The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. Br J Pharmacol. 176 Issue S1: S21-S141.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Note that the data for FPR2/ALX are also reproduced on the leukotriene receptor page.