Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
Histone deacetylases act as erasers of epigenetic acetylation marks on lysine residues in histones. Removal of the acetyl groups facilitates tighter packing of chromatin (heterochromatin formation) leading to transcriptional repression.
The histone deacetylase family has been classified in to five subfamilies based on phylogenetic comparison with yeast homologues:
Class I contains HDACs 1, 2, 3 and 8
Class IIa contains HDACs 4, 5, 7 and 9
Class IIb contains HDACs 6 and 10
Class III contains the sirtuins (SIRT1-7)
Class IV contains only HDAC11.
Classes I, II and IV use Zn+ as a co-factor, whereas catalysis by Class III enzymes requires NAD+ as a co-factor, and members of this subfamily have ADP-ribosylase activity in addition to protein deacetylase function [23].
HDACs have more general protein deacetylase activity, being able to deacetylate lysine residues in non-histone proteins [3] such as microtubules [10], the hsp90 chaperone [13] and the tumour suppressor p53 [16].
Dysregulated HDAC activity has been identified in cancer cells and tumour tissues [14,21], making HDACs attractive molecular targets in the search for novel mechanisms to treat cancer [27]. Several small molecule HDAC inhibitors are already approved for clinical use: romidepsin, belinostat, vorinostat, panobinostat, belinostat, valproic acid and tucidinostat. HDACs and HDAC inhibitors currently in development as potential anti-cancer therapeutics are reviewed by Simó-Riudalbas and Esteller (2015) [24].
histone deacetylase 1 Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
histone deacetylase 2 Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
histone deacetylase 3 Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
histone deacetylase 4 Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
histone deacetylase 5 Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
histone deacetylase 6 C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
histone deacetylase 7 Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
histone deacetylase 8 Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
histone deacetylase 9 Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
histone deacetylase 10 Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
histone deacetylase 11 Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
sirtuin 1 Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
sirtuin 2 Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||
sirtuin 3 Show summary »« Hide summary
|
||||||||||||||||||||||||
sirtuin 4 Show summary »« Hide summary
|
||||||||||||||||||||||||
sirtuin 5 Show summary »« Hide summary
|
||||||||||||||||||||||||
sirtuin 6 Show summary »« Hide summary
|
||||||||||||||||||||||||
sirtuin 7 Show summary »« Hide summary
|
* Key recommended reading is highlighted with an asterisk
* Bahl S, Seto E. (2021) Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell Mol Life Sci, 78 (2): 427-445. [PMID:32683534]
Butler JS, Koutelou E, Schibler AC, Dent SY. (2012) Histone-modifying enzymes: regulators of developmental decisions and drivers of human disease. Epigenomics, 4 (2): 163-77. [PMID:22449188]
Ellmeier W, Seiser C. (2018) Histone deacetylase function in CD4+ T cells. Nat Rev Immunol, 18 (10): 617-634. [PMID:30022149]
* Fiorentino F, Mai A, Rotili D. (2021) Emerging Therapeutic Potential of SIRT6 Modulators. J Med Chem, 64 (14): 9732-9758. [PMID:34213345]
* Ho TCS, Chan AHY, Ganesan A. (2020) Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight. J Med Chem, 63 (21): 12460-12484. [PMID:32608981]
* Kunadis E, Lakiotaki E, Korkolopoulou P, Piperi C. (2021) Targeting post-translational histone modifying enzymes in glioblastoma. Pharmacol Ther, 220: 107721. [PMID:33144118]
* Liu T, Wan Y, Xiao Y, Xia C, Duan G. (2020) Dual-Target Inhibitors Based on HDACs: Novel Antitumor Agents for Cancer Therapy. J Med Chem, 63 (17): 8977-9002. [PMID:32320239]
Maolanon AR, Kristensen HM, Leman LJ, Ghadiri MR, Olsen CA. (2017) Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes. Chembiochem, 18 (1): 5-49. [PMID:27748555]
Micelli C, Rastelli G. (2015) Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov Today, 20 (6): 718-35. [PMID:25687212]
Millard CJ, Watson PJ, Fairall L, Schwabe JWR. (2017) Targeting Class I Histone Deacetylases in a "Complex" Environment. Trends Pharmacol Sci, 38 (4): 363-377. [PMID:28139258]
Roche J, Bertrand P. (2016) Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem, 121: 451-483. [PMID:27318122]
Tang J, Yan H, Zhuang S. (2013) Histone deacetylases as targets for treatment of multiple diseases. Clin Sci, 124 (11): 651-62. [PMID:23414309]
Walkinshaw DR, Tahmasebi S, Bertos NR, Yang XJ. (2008) Histone deacetylases as transducers and targets of nuclear signaling. J Cell Biochem, 104 (5): 1541-52. [PMID:18425769]
Zagni C, Floresta G, Monciino G, Rescifina A. (2017) The Search for Potent, Small-Molecule HDACIs in Cancer Treatment: A Decade After Vorinostat. Med Res Rev, 37 (6): 1373-1428. [PMID:28181261]
* Zhang XH, Qin-Ma, Wu HP, Khamis MY, Li YH, Ma LY, Liu HM. (2021) A Review of Progress in Histone Deacetylase 6 Inhibitors Research: Structural Specificity and Functional Diversity. J Med Chem, 64 (3): 1362-1391. [PMID:33523672]
1. Ai T, Wilson DJ, More SS, Xie J, Chen L. (2016) 5-((3-Amidobenzyl)oxy)nicotinamides as Sirtuin 2 Inhibitors. J Med Chem, 59 (7): 2928-41. [PMID:26982234]
2. Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R. (2010) Chemical phylogenetics of histone deacetylases. Nat Chem Biol, 6 (3): 238-243. [PMID:20139990]
3. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325 (5942): 834-40. [PMID:19608861]
4. Cui H, Kamal Z, Ai T, Xu Y, More SS, Wilson DJ, Chen L. (2014) Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach. J Med Chem, 57 (20): 8340-57. [PMID:25275824]
5. Disch JS, Evindar G, Chiu CH, Blum CA, Dai H, Jin L, Schuman E, Lind KE, Belyanskaya SL, Deng J et al.. (2013) Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3. J Med Chem, 56 (9): 3666-79. [PMID:23570514]
6. Donmez G, Outeiro TF. (2013) SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med, 5 (3): 344-52. [PMID:23417962]
7. Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL et al.. (2010) Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett, 2 (1): 39-42. [PMID:21874153]
8. Fiorentino F, Mai A, Rotili D. (2021) Emerging Therapeutic Potential of SIRT6 Modulators. J Med Chem, 64 (14): 9732-9758. [PMID:34213345]
9. Huang Z, Zhao J, Deng W, Chen Y, Shang J, Song K, Zhang L, Wang C, Lu S, Yang X et al.. (2018) Identification of a cellularly active SIRT6 allosteric activator. Nat Chem Biol, 14 (12): 1118-1126. [PMID:30374165]
10. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. (2002) HDAC6 is a microtubule-associated deacetylase. Nature, 417 (6887): 455-8. [PMID:12024216]
11. Isaacs JT, Antony L, Dalrymple SL, Brennen WN, Gerber S, Hammers H, Wissing M, Kachhap S, Luo J, Xing L et al.. (2013) Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res, 73 (4): 1386-99. [PMID:23149916]
12. Kokkonen P, Rahnasto-Rilla M, Kiviranta PH, Huhtiniemi T, Laitinen T, Poso A, Jarho E, Lahtela-Kakkonen M. (2012) Peptides and Pseudopeptides as SIRT6 Deacetylation Inhibitors. ACS Med Chem Lett, 3 (12): 969-74. [PMID:24900419]
13. Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao TP. (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell, 18 (5): 601-7. [PMID:15916966]
14. Lin RJ, Sternsdorf T, Tini M, Evans RM. (2001) Transcriptional regulation in acute promyelocytic leukemia. Oncogene, 20 (49): 7204-15. [PMID:11704848]
15. Liu L, Chen B, Qin S, Li S, He X, Qiu S, Zhao W, Zhao H. (2010) A novel histone deacetylase inhibitor Chidamide induces apoptosis of human colon cancer cells. Biochem Biophys Res Commun, 392 (2): 190-5. [PMID:20060381]
16. Luo J, Su F, Chen D, Shiloh A, Gu W. (2000) Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 408 (6810): 377-81. [PMID:11099047]
17. Maurer B, Rumpf T, Scharfe M, Stolfa DA, Schmitt ML, He W, Verdin E, Sippl W, Jung M. (2012) Inhibitors of the NAD(+)-Dependent Protein Desuccinylase and Demalonylase Sirt5. ACS Med Chem Lett, 3 (12): 1050-3. [PMID:24900427]
18. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM, Rochet JC, McLean PJ et al.. (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science, 317 (5837): 516-9. [PMID:17588900]
19. Pavlik CM, Wong CY, Ononye S, Lopez DD, Engene N, McPhail KL, Gerwick WH, Balunas MJ. (2013) Santacruzamate A, a potent and selective histone deacetylase inhibitor from the Panamanian marine cyanobacterium cf. Symploca sp. J Nat Prod, 76 (11): 2026-33. [PMID:24164245]
20. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem, 276 (39): 36734-41. [PMID:11473107]
21. Ropero S, Esteller M. (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol, 1 (1): 19-25. [PMID:19383284]
22. Santo L, Hideshima T, Kung AL, Tseng JC, Tamang D, Yang M, Jarpe M, van Duzer JH, Mazitschek R, Ogier WC et al.. (2012) Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood, 119 (11): 2579-89. [PMID:22262760]
23. Sauve AA. (2010) Sirtuin chemical mechanisms. Biochim Biophys Acta, 1804 (8): 1591-603. [PMID:20132909]
24. Simó-Riudalbas L, Esteller M. (2015) Targeting the histone orthography of cancer: drugs for writers, erasers and readers. Br J Pharmacol, 172 (11): 2716-32. [PMID:25039449]
25. Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS, Huber LJ. (2006) Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol, 26 (1): 28-38. [PMID:16354677]
26. Wang H, Lim ZY, Zhou Y, Ng M, Lu T, Lee K, Sangthongpitag K, Goh KC, Wang X, Wu X et al.. (2010) Acylurea connected straight chain hydroxamates as novel histone deacetylase inhibitors: Synthesis, SAR, and in vivo antitumor activity. Bioorg Med Chem Lett, 20 (11): 3314-21. [PMID:20451378]
27. West AC, Johnstone RW. (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest, 124 (1): 30-9. [PMID:24382387]
Database page citation:
3.5.1.- Histone deacetylases (HDACs). Accessed on 17/09/2024. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=848.
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Fabbro D, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: Enzymes. Br J Pharmacol. 180 Suppl 2:S289-373.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License