Figure 1. Kir channels. A, Current-voltage relationship shows the property of inward rectification. Cells with a membrane potential that is positive to EK will conduct outward potassium current through Kir channels, which will decline substantially at more positive potentials. The apparent gating of the channel shifts with increasing extracellular K+ concentration. B, Schematic compares the membrane topology of voltage-gated K+ (Kv) channels and inwardly-rectifying K+ (Kir) channels. Both channels are tetramers and share an ion selectivity pore region (p-loop) and two transmembrane domains. Kv channels also have a voltage-sensitive domain (S4, red). C, All seven members of the Kir channels consist of a single alpha subunit that forms a tetramer. Kir6 channels uniquely require an additional subunit, the sulfonylurea receptor (SUR), to form a functional octameric channel.
Figure 2. Phylogenetic tree for Kir channels. Amino acid sequence alignments for 15 known members of the human Kir family were created using CLUSTALV.
Figure 3. High resolution crystal structures of Kir channels. Kir3.1 (PDB:1N9P), Kir3.2 (PDB:2E4F), Kir2.1 (PDB:1U4F), Kir2.2 in the presence of PIP2 (PDB:3SPI) and Kir3.2 with Gβγ in the presence of PIP2 (PDB:4KFM). Highlighted regions include cytoplasmic domain (CTD), transmembrane domain (TMD), two 'gates', e.g. G-loop and bundle-crossing, PIP2 and Gβγ subunits. Modified from [18,26,40-42,51,54-55].
1. Abraham MR, Jahangir A, Alekseev AE, Terzic A. (1999) Channelopathies of inwardly rectifying potassium channels. FASEB J, 13 (14): 1901-10. [PMID:10544173]
2. Ambrosini E, Sicca F, Brignone MS, D'Adamo MC, Napolitano C, Servettini I, Moro F, Ruan Y, Guglielmi L, Pieroni S et al.. (2014) Genetically induced dysfunctions of Kir2.1 channels: implications for short QT3 syndrome and autism-epilepsy phenotype. Hum Mol Genet, 23 (18): 4875-86. [PMID:24794859]
3. Aryal P, Dvir H, Choe S, Slesinger PA. (2009) A discrete alcohol pocket involved in GIRK channel activation. Nat Neurosci, 12 (8): 988-95. [PMID:19561601]
4. Balana B, Maslennikov I, Kwiatkowski W, Stern KM, Bahima L, Choe S, Slesinger PA. (2011) Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27. Proc Natl Acad Sci USA, 108 (14): 5831-6. [PMID:21422294]
5. Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B. (1998) PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science, 282 (5391): 1141-4. [PMID:9804555]
6. Brownstein CA, Towne MC, Luquette LJ, Harris DJ, Marinakis NS, Meinecke P, Kutsche K, Campeau PM, Yu TW, Margulies DM et al.. (2013) Mutation of KCNJ8 in a patient with Cantú syndrome with unique vascular abnormalities - support for the role of K(ATP) channels in this condition. Eur J Med Genet, 56 (12): 678-82. [PMID:24176758]
7. Buono RJ, Lohoff FW, Sander T, Sperling MR, O'Connor MJ, Dlugos DJ, Ryan SG, Golden GT, Zhao H, Scattergood TM, Berrettini WH, Ferraro TN. (2004) Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res, 58 (2-3): 175-83. [PMID:15120748]
8. Connors NC, Adams ME, Froehner SC, Kofuji P. (2004) The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia. J Biol Chem, 279 (27): 28387-92. [PMID:15102837]
9. Cooper PE, Reutter H, Woelfle J, Engels H, Grange DK, van Haaften G, van Bon BW, Hoischen A, Nichols CG. (2014) Cantú syndrome resulting from activating mutation in the KCNJ8 gene. Hum Mutat, 35 (7): 809-13. [PMID:24700710]
10. Dascal N, Lim NF, Schreibmayer W, Wang W, Davidson N, Lester HA. (1993) Expression of an atrial G-protein-activated potassium channel in Xenopus oocytes. Proc Natl Acad Sci U S A, 90 (14): 6596-600. [PMID:8341673]
11. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 280 (5360): 69-77. [PMID:9525859]
12. Fakler B, Bond CT, Adelman JP, Ruppersberg JP. (1996) Heterooligomeric assembly of inward-rectifier K+ channels from subunits of different subfamilies: Kir2.1 (IRK1) and Kir4.1 (BIR10). Pflugers Arch, 433 (1-2): 77-83. [PMID:9019734]
13. Ferraro TN, Golden GT, Smith GG, Martin JF, Lohoff FW, Gieringer TA, Zamboni D, Schwebel CL, Press DM, Kratzer SO, Zhao H, Berrettini WH, Buono RJ. (2004) Fine mapping of a seizure susceptibility locus on mouse Chromosome 1: nomination of Kcnj10 as a causative gene. Mamm Genome, 15 (4): 239-51. [PMID:15112102]
14. Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, Howard N, Srinivasan S, Silva JM, Molnes J et al.. (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med, 350 (18): 1838-49. [PMID:15115830]
15. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S et al.. (2003) Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes, 52 (2): 568-72. [PMID:12540637]
16. Hagiwara S, Takahashi K. (1974) The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J Membr Biol, 18 (1): 61-80. [PMID:4854650]
17. Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, Velho G, Froguel P. (1998) Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia, 41 (12): 1511-5. [PMID:9867219]
18. Hansen SB, Tao X, MacKinnon R. (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature, 477 (7365): 495-8. [PMID:21874019]
19. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev, 90 (1): 291-366. [PMID:20086079]
20. Hilgemann DW, Feng S, Nasuhoglu C. (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE, 2001 (111): re19. [PMID:11734659]
21. Hille B. (2001) Ionic Channels of Excitable Membranes, 3rd Ed. In (Sinauer Associates Inc.) .
22. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC. (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature, 362 (6415): 31-8. [PMID:7680431]
23. Hong M, Kefaloyianni E, Bao L, Malester B, Delaroche D, Neubert TA, Coetzee WA. (2011) Cardiac ATP-sensitive K+ channel associates with the glycolytic enzyme complex. FASEB J, 25 (7): 2456-67. [PMID:21482559]
24. Huang CL, Feng S, Hilgemann DW. (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature, 391 (6669): 803-6. [PMID:9486652]
25. Inanobe A, Fujita A, Ito M, Tomoike H, Inageda K, Kurachi Y. (2002) Inward rectifier K+ channel Kir2.3 is localized at the postsynaptic membrane of excitatory synapses. Am J Physiol, Cell Physiol, 282 (6): C1396-403. [PMID:11997254]
26. Inanobe A, Matsuura T, Nakagawa A, Kurachi Y. (2007) Structural diversity in the cytoplasmic region of G protein-gated inward rectifier K+ channels. Channels (Austin), 1 (1): 39-45. [PMID:19151589]
27. Kang SJ, Rangaswamy M, Manz N, Wang JC, Wetherill L, Hinrichs T, Almasy L, Brooks A, Chorlian DB, Dick D et al.. (2012) Family-based genome-wide association study of frontal θ oscillations identifies potassium channel gene KCNJ6. Genes Brain Behav, 11 (6): 712-9. [PMID:22554406]
28. Kobrinsky E, Mirshahi T, Zhang H, Jin T, Logothetis DE. (2000) Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization. Nat Cell Biol, 2 (8): 507-14. [PMID:10934471]
29. Kubo Y, Baldwin TJ, Jan YN, Jan LY. (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature, 362 (6416): 127-33. [PMID:7680768]
30. Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY. (1993) Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature, 364 (6440): 802-6. [PMID:8355805]
31. Leonoudakis D, Conti LR, Anderson S, Radeke CM, McGuire LM, Adams ME, Froehner SC, Yates 3rd JR, Vandenberg CA. (2004) Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)-associated proteins. J Biol Chem, 279 (21): 22331-46. [PMID:15024025]
32. Leonoudakis D, Conti LR, Radeke CM, McGuire LM, Vandenberg CA. (2004) A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. J Biol Chem, 279 (18): 19051-63. [PMID:14960569]
33. Lopatin AN, Makhina EN, Nichols CG. (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature, 372 (6504): 366-9. [PMID:7969496]
34. Lunn ML, Nassirpour R, Arrabit C, Tan J, McLeod I, Arias CM, Sawchenko PE, Yates 3rd JR, Slesinger PA. (2007) A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat Neurosci, 10 (10): 1249-59. [PMID:17828261]
35. Lüscher C, Slesinger PA. (2010) Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci, 11 (5): 301-15. [PMID:20389305]
36. Miki T, Suzuki M, Shibasaki T, Uemura H, Sato T, Yamaguchi K, Koseki H, Iwanaga T, Nakaya H, Seino S. (2002) Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Nat Med, 8 (5): 466-72. [PMID:11984590]
37. Nehring RB, Wischmeyer E, Döring F, Veh RW, Sheng M, Karschin A. (2000) Neuronal inwardly rectifying K(+) channels differentially couple to PDZ proteins of the PSD-95/SAP90 family. J Neurosci, 20 (1): 156-62. [PMID:10627592]
38. Nichols CG, Lopatin AN. (1997) Inward rectifier potassium channels. Annu Rev Physiol, 59: 171-91. [PMID:9074760]
39. Nichols CG, Shyng SL, Nestorowicz A, Glaser B, Clement 4th JP, Gonzalez G, Aguilar-Bryan L, Permutt MA, Bryan J. (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science, 272 (5269): 1785-7. [PMID:8650576]
40. Nishida M, MacKinnon R. (2002) Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell, 111 (7): 957-65. [PMID:12507423]
41. Pegan S, Arrabit C, Slesinger PA, Choe S. (2006) Andersen's syndrome mutation effects on the structure and assembly of the cytoplasmic domains of Kir2.1. Biochemistry, 45 (28): 8599-606. [PMID:16834334]
42. Pegan S, Arrabit C, Zhou W, Kwiatkowski W, Collins A, Slesinger PA, Choe S. (2005) Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci, 8 (3): 279-87. [PMID:15723059]
43. Pessia M, Tucker SJ, Lee K, Bond CT, Adelman JP. (1996) Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels. EMBO J, 15 (12): 2980-7. [PMID:8670799]
44. Plaster NM, Tawil R, Tristani-Firouzi M, Canún S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R et al.. (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell, 105 (4): 511-9. [PMID:11371347]
45. Reichold M, Zdebik AA, Lieberer E, Rapedius M, Schmidt K, Bandulik S, Sterner C, Tegtmeier I, Penton D, Baukrowitz T et al.. (2010) KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci USA, 107 (32): 14490-5. [PMID:20651251]
46. Sala-Rabanal M, Kucheryavykh LY, Skatchkov SN, Eaton MJ, Nichols CG. (2010) Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10). J Biol Chem, 285 (46): 36040-8. [PMID:20807765]
47. Scholl UI, Choi M, Liu T, Ramaekers VT, Häusler MG, Grimmer J, Tobe SW, Farhi A, Nelson-Williams C, Lifton RP. (2009) Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA, 106 (14): 5842-7. [PMID:19289823]
48. Shyng S, Nichols CG. (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol, 110 (6): 655-64. [PMID:9382894]
49. Shyng SL, Nichols CG. (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science, 282 (5391): 1138-41. [PMID:9804554]
50. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP. (1996) Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet, 14 (2): 152-6. [PMID:8841184]
51. Tao X, Avalos JL, Chen J, MacKinnon R. (2009) Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science, 326 (5960): 1668-74. [PMID:20019282]
52. Villareal DT, Koster JC, Robertson H, Akrouh A, Miyake K, Bell GI, Patterson BW, Nichols CG, Polonsky KS. (2009) Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes, 58 (8): 1869-78. [PMID:19491206]
53. Wangemann P, Itza EM, Albrecht B, Wu T, Jabba SV, Maganti RJ, Lee JH, Everett LA, Wall SM, Royaux IE et al.. (2004) Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med, 2: 30. [PMID:15320950]
54. Whorton MR, MacKinnon R. (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell, 147 (1): 199-208. [PMID:21962516]
55. Whorton MR, MacKinnon R. (2013) X-ray structure of the mammalian GIRK2-βγ G-protein complex. Nature, 498 (7453): 190-7. [PMID:23739333]
56. Yoo D, Flagg TP, Olsen O, Raghuram V, Foskett JK, Welling PA. (2004) Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions. J Biol Chem, 279 (8): 6863-73. [PMID:14604981]
57. Zerangue N, Schwappach B, Jan YN, Jan LY. (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron, 22 (3): 537-48. [PMID:10197533]