Top ▲
Gene and Protein Information | ||||||
Adhesion G protein-coupled receptor | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 874 | 12q24.33 | ADGRD1 | adhesion G protein-coupled receptor D1 | |
Mouse | 7 | 903 | 5 G1.3 | Adgrd1 | adhesion G protein-coupled receptor D1 | |
Rat | 7 | 903 | 12q14 | Adgrd1 | adhesion G protein-coupled receptor D1 |
Previous and Unofficial Names |
GPR133 (G protein-coupled receptor 133) |
Database Links | |
Specialist databases | |
GPCRdb | agrd1_human (Hs), agrd1_mouse (Mm) |
Other databases | |
Alphafold | Q6QNK2 (Hs), Q80T32 (Mm) |
ChEMBL Target | CHEMBL4523877 (Hs) |
Ensembl Gene | ENSG00000111452 (Hs), ENSMUSG00000044017 (Mm), ENSRNOG00000023536 (Rn) |
Entrez Gene | 283383 (Hs), 243277 (Mm) |
Human Protein Atlas | ENSG00000111452 (Hs) |
KEGG Gene | hsa:283383 (Hs), mmu:243277 (Mm) |
OMIM | 613639 (Hs) |
Pharos | Q6QNK2 (Hs) |
RefSeq Nucleotide | NM_198827 (Hs), NM_001081342 (Mm) |
RefSeq Protein | NP_942122 (Hs), NP_001074811 (Mm) |
UniProtKB | Q6QNK2 (Hs), Q80T32 (Mm) |
Wikipedia | ADGRD1 (Hs) |
Endogenous agonists |
Peptides derived from the Stachel sequence: THLTNFAILMQVV; PLXDC2 is an activating ligand for mouse ADGRD1. [2,15] |
Agonist Comments | ||
Peptides derived from the Stachel sequence THLTNFAILMQVV are agonists at ADGRD1 [15]. PLXDC2 is an activating ligand for mouse ADGRD1 [2]. |
Primary Transduction Mechanisms | |
Transducer | Effector/Response |
Gs family | Adenylyl cyclase stimulation |
Comments: The study verified the Gs protein-coupling by Gαs knockdown with siRNA, overexpression of Gαs, coexpression of the chimeric Gqs4 protein that routes ADGRD1 activity to the phospholipase C/inositol phosphate pathway, and missense mutation within the transmembrane domain that abolished receptor activity without changing cell surface expression. | |
References: 4 |
Secondary Transduction Mechanisms | |
Transducer | Effector/Response |
Gs family Gi/Go family |
Adenylyl cyclase stimulation |
References: 4,16 |
Tissue Distribution | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
Expression Datasets | |
|
Functional Assays | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
Biologically Significant Variants | ||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
|
General Comments |
ADGRD1 (formerly GPR133) [21] is an orphan receptor belonging to Family V Adhesion-GPCRs together with ADGRD2 (formerly GPR144) [7]. The gene is localized on human chromosome 12 and mouse chromosome 5. ADGRD1 and ADGRD2 are the Adhesion-GPCRs most closely related to the Secretin class of GPCRs [18]. A search for homologs in the invertebrates like ciona and amphioxus revealed that ADGRD1 and ADGRD2 are well conserved in pre-vertebrate genomes [10,18]. The N terminus of ADGRD1 contains a GPCR proteolysis site (GPS) and a pentraxin (PTX) domain. As of now, the function of ADGRD1 is unknown, however, recent studies revealed a strong association with body height [11-12,20] and bone mineral density [19]. Further, ADGRD1 mRNA is transcriptionally upregulated by hypoxia and high expression correlates with glioblastoma growth in humans [1]. Moreover, ADGRD1 is one of the few Adhesion-GPCRs that are experimentally proven to bind to G protein (GαS subunit) and also to activate adenylate cyclase pathway [4]. The last 12 exons out of 26 were identified as a GPCR in gene predictions [3]. An additional 4 exons were predicted and confirmed as PGR25 [22]. The complete human coding sequence is identified by the cDNA AY532280. Note that the ADGRD1 of [21] refers to a different receptor which is now called OR5212, i.e. a nominal olfactory receptor. The mouse cDNA, AK153762 from neonatal thymus, contains an extra coding exon compared to the human brain cDNA AY532280 . It is located between human exons 3 and 4. The full coding sequence human cDNA is publicly available (see I.M.A.G.E), as IMAGE:8327775 and IMAGE:8327777. A transcript variant, which represents about 50% of brain cDNA, splices out the 180 base exon 5 and is available as IMAGE:8317337. |
1. Bayin NS, Frenster JD, Kane JR, Rubenstein J, Modrek AS, Baitalmal R, Dolgalev I, Rudzenski K, Scarabottolo L, Crespi D et al.. (2016) GPR133 (ADGRD1), an adhesion G-protein-coupled receptor, is necessary for glioblastoma growth. Oncogenesis, 5 (10): e263. [PMID:27775701]
2. Bianchi E, Sun Y, Almansa-Ordonez A, Woods M, Goulding D, Martinez-Martin N, Wright GJ. (2021) Control of oviductal fluid flow by the G-protein coupled receptor Adgrd1 is essential for murine embryo transit. Nat Commun, 12 (1): 1251. [PMID:33623007]
3. Bjarnadóttir TK, Fredriksson R, Höglund PJ, Gloriam DE, Lagerström MC, Schiöth HB. (2004) The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics, 84 (1): 23-33. [PMID:15203201]
4. Bohnekamp J, Schöneberg T. (2011) Cell adhesion receptor GPR133 couples to Gs protein. J Biol Chem, 286 (49): 41912-6. [PMID:22025619]
5. Chan YF, Jones FC, McConnell E, Bryk J, Bünger L, Tautz D. (2012) Parallel selection mapping using artificially selected mice reveals body weight control loci. Curr Biol, 22 (9): 794-800. [PMID:22445301]
6. Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I et al.. (2011) A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol, 9 (1): e1000582. [PMID:21267068]
7. Fredriksson R, Gloriam DE, Höglund PJ, Lagerström MC, Schiöth HB. (2003) There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini. Biochem Biophys Res Commun, 301 (3): 725-34. [PMID:12565841]
8. Gromova P, Ralea S, Lefort A, Libert F, Rubin BP, Erneux C, Vanderwinden JM. (2009) Kit K641E oncogene up-regulates Sprouty homolog 4 and trophoblast glycoprotein in interstitial cells of Cajal in a murine model of gastrointestinal stromal tumours. J Cell Mol Med, 13 (8A): 1536-48. [PMID:19453770]
9. Gupte J, Swaminath G, Danao J, Tian H, Li Y, Wu X. (2012) Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett, 586 (8): 1214-9. [PMID:22575658]
10. Kamesh N, Aradhyam GK, Manoj N. (2008) The repertoire of G protein-coupled receptors in the sea squirt Ciona intestinalis. BMC Evol Biol, 8: 129. [PMID:18452600]
11. Kim JJ, Park YM, Baik KH, Choi HY, Yang GS, Koh I, Hwang JA, Lee J, Lee YS, Rhee H et al.. (2012) Exome sequencing and subsequent association studies identify five amino acid-altering variants influencing human height. Hum Genet, 131 (3): 471-8. [PMID:21959382]
12. Kim YK, Moon S, Hwang MY, Kim DJ, Oh JH, Kim YJ, Han BG, Lee JY, Kim BJ. (2013) Gene-based copy number variation study reveals a microdeletion at 12q24 that influences height in the Korean population. Genomics, 101 (2): 134-8. [PMID:23147675]
13. Kobayashi A, Donaldson DS, Kanaya T, Fukuda S, Baillie JK, Freeman TC, Ohno H, Williams IR, Mabbott NA. (2012) Identification of novel genes selectively expressed in the follicle-associated epithelium from the meta-analysis of transcriptomics data from multiple mouse cell and tissue populations. DNA Res, 19 (5): 407-22. [PMID:22991451]
14. Kraja AT, Borecki IB, Tsai MY, Ordovas JM, Hopkins PN, Lai CQ, Frazier-Wood AC, Straka RJ, Hixson JE, Province MA et al.. (2013) Genetic analysis of 16 NMR-lipoprotein fractions in humans, the GOLDN study. Lipids, 48 (2): 155-65. [PMID:23192668]
15. Liebscher I, Schön J, Petersen SC, Fischer L, Auerbach N, Demberg LM, Mogha A, Cöster M, Simon KU, Rothemund S et al.. (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep, 9 (6): 2018-26. [PMID:25533341]
16. Liebscher I, Schöneberg T, Prömel S. (2013) Progress in demystification of adhesion G protein-coupled receptors. Biol Chem, 394 (8): 937-50. [PMID:23518449]
17. Marroni F, Pfeufer A, Aulchenko YS, Franklin CS, Isaacs A, Pichler I, Wild SH, Oostra BA, Wright AF, Campbell H, Witteman JC, Kääb S, Hicks AA, Gyllensten U, Rudan I, Meitinger T, Pattaro C, van Duijn CM, Wilson JF, Pramstaller PP, EUROSPAN Consortium. (2009) A genome-wide association scan of RR and QT interval duration in 3 European genetically isolated populations: the EUROSPAN project. Circ Cardiovasc Genet, 2 (4): 322-8. [PMID:20031603]
18. Nordström KJ, Fredriksson R, Schiöth HB. (2008) The amphioxus (Branchiostoma floridae) genome contains a highly diversified set of G protein-coupled receptors. BMC Evol Biol, 8: 9. [PMID:18199322]
19. Sabik OL, Calabrese GM, Taleghani E, Ackert-Bicknell CL, Farber CR. (2020) Identification of a Core Module for Bone Mineral Density through the Integration of a Co-expression Network and GWAS Data. Cell Rep, 32 (11): 108145. [PMID:32937138]
20. Tönjes A, Koriath M, Schleinitz D, Dietrich K, Böttcher Y, Rayner NW, Almgren P, Enigk B, Richter O, Rohm S, Fischer-Rosinsky A, Pfeiffer A, Hoffmann K, Krohn K, Aust G, Spranger J, Groop L, Blüher M, Kovacs P, Stumvoll M. (2009) Genetic variation in GPR133 is associated with height: genome wide association study in the self-contained population of Sorbs. Hum Mol Genet, 18 (23): 4662-8. [PMID:19729412]
21. Vanti WB, Nguyen T, Cheng R, Lynch KR, George SR, O'Dowd BF. (2003) Novel human G-protein-coupled receptors. Biochem Biophys Res Commun, 305 (1): 67-71. [PMID:12732197]
22. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC et al.. (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA, 100 (8): 4903-8. [PMID:12679517]