Top ▲

mGlu2 receptor

Click here for help

Target not currently curated in GtoImmuPdb

Target id: 290

Nomenclature: mGlu2 receptor

Family: Metabotropic glutamate receptors

Gene and Protein Information Click here for help
class C G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 872 3p21.2 GRM2 glutamate metabotropic receptor 2 21,37
Mouse 7 872 9 F1 Grm2 glutamate receptor, metabotropic 2
Rat 7 872 8q32 Grm2 glutamate metabotropic receptor 2 53
Previous and Unofficial Names Click here for help
mGluR2 | GPRC1B | metabotropic glutamate receptor 2 | glutamate receptor
Database Links Click here for help
Specialist databases
GPCRdb grm2_human (Hs), grm2_mouse (Mm), grm2_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
L-glutamic acid
Comments: Other endogenous ligands include L-aspartic acid, L-serine-O-phosphate, NAAG and L-cysteine sulphinic acid

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]eglumegad Small molecule or natural product Ligand is labelled Ligand is radioactive Ligand has a PDB structure Rn Full agonist 7.7 pKd 51
pKd 7.7 [51]
MGS0028 Small molecule or natural product Rn Full agonist 9.2 pKi 39
pKi 9.2 [39]
LY379268 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.9 pKi 38
pKi 7.9 [38]
eglumegad Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Full agonist 7.8 – 7.9 pKi 9,51
pKi 7.8 – 7.9 [9,51]
DCG-IV Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Full agonist 7.0 pKi 9,51
pKi 7.0 [9,51]
L-CCG-I Small molecule or natural product Click here for species-specific activity table Rn Full agonist 6.8 – 7.0 pKi 9,51
pKi 6.8 – 7.0 [9,51]
eglumegad Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 6.9 pKi 24
pKi 6.9 [24]
LY395756 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.8 pKi 32
pKi 6.8 (Ki 1.65x10-7 M) [32]
DCG-IV Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 6.5 pKi 24
pKi 6.5 [24]
L-CCG-I Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.3 pKi 24
pKi 6.3 [24]
L-glutamic acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Full agonist 5.4 – 5.9 pKi 5,19
pKi 5.4 – 5.9 [5,19]
(1S,3R)-ACPD Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Full agonist 5.0 – 5.4 pKi 9,51
pKi 5.0 – 5.4 [9,51]
(2R,3R)-APDC Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.0 pKi 24
pKi 5.0 [24]
L-glutamic acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 4.9 pKi 24
pKi 4.9 [24]
(S)-4C3HPG Small molecule or natural product Click here for species-specific activity table Rn Full agonist 4.8 pKi 9
pKi 4.8 [9]
(1S,3R)-ACPD Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 4.2 pKi 24
pKi 4.2 [24]
L-glutamic acid Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Agonist 4.7 – 5.4 pEC50 45
pEC50 4.7 – 5.4 [45]
View species-specific agonist tables
Agonist Comments
Affinities listed are from displacement of antagonist [3H]LY341495 or agonist ([3H]DCG-IV or [3H]LY354740) for the low and high values listed, respectively, in homogenates from mGlu2-expressing recombinant cell lines. Potency in functional assays can be found in the review article [50]. To date, no ligands have shown a difference in their affinity for rat or human mGlu2 receptors. Several of the above agonists are Group II mGlu (mGlu2/3) receptor selective verses the Group I and III receptors, with the exceptions of glutamate, (1S,3R)-ACPD, and (S)-4C3HPG. The agonist binding site for mGLu2 has been studied by homology modeling and mutagenesis [3,36].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]LY341495 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Antagonist 8.8 pKd 24
pKd 8.8 [24]
MGS0039 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 8.6 – 8.7 pKi 10,40
pKi 8.6 – 8.7 [10,40]
LY341495 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.6 pKi 24
pKi 8.6 [24]
LY341495 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 7.7 – 9.0 pKi 9,51
pKi 7.7 – 9.0 [9,51]
α-methylserine-O-phosphate Small molecule or natural product Click here for species-specific activity table Rn Antagonist 5.3 pKi 9
pKi 5.3 [9]
(+)-MCPG Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 4.6 pKi 9
pKi 4.6 [9]
eGlu Small molecule or natural product Click here for species-specific activity table Rn Antagonist 4.4 – 4.6 pKi 9,51
pKi 4.4 – 4.6 [9,51]
(+)-MCPG Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 3.8 pKi 24
pKi 3.8 [24]
PCCG-4 Small molecule or natural product Rn Antagonist 5.1 pIC50 43
pIC50 5.1 (IC50 8x10-6 M) [43]
View species-specific antagonist tables
Antagonist Comments
Affinities listed are from displacement of antagonist [3H]LY341495 and/or agonist ([3H]DCG-IV or [3H]LY354740) in homogenates of mGlu2-expressing recombinant cell lines. Potency in functional assays can be found in the review article [50]. To date, no ligands have shown a difference in their affinity for rat or human mGlu2 receptors.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
JNJ-46281222 Small molecule or natural product Primary target of this compound Hs Positive 8.8 pKd 16
pKd 8.8 (Kd 1.7x10-9 M) [16]
Description: Saturation binding experiment using tritiated compound, and membranes from CHO-K1 cells stably expressing the human mGlu2 receptor.
[3H]2,2,2-TEMPS Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Positive 8.4 pKd 34
pKd 8.4 (Kd 4.2x10-9 M) [34]
[3H]JNJ-40068782 Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Positive 8.0 pKd 31
pKd 8.0 (Kd 1x10-8 M) [31]
[3H]JNJ-40068782 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Positive 7.9 pKd 31
pKd 7.9 (Kd 1.2x10-8 M) [31]
RO4988546 Small molecule or natural product Rn Negative 8.6 pKi 34
pKi 8.6 (Ki 2.3x10-9 M) [34]
RO5488608 Small molecule or natural product Rn Negative 7.9 – 8.7 pKi 34
pKi 7.9 – 8.7 (Ki 1.14x10-8 – 1.9x10-9 M) [34]
JNJ-46281222 Small molecule or natural product Primary target of this compound Hs Positive 8.3 pKi 16
pKi 8.3 (Ki 4.68x10-9 M) [16]
Description: Homologous displacement assay.
Ro4491533 Small molecule or natural product Click here for species-specific activity table Rn Negative 8.3 pKi 8
pKi 8.3 (Ki 5.4x10-9 M) [8]
JNJ-42153605 Small molecule or natural product Hs Positive 7.8 pKi 12
pKi 7.8 (Ki 1.5x10-8 M) [12]
Ro4491533 Small molecule or natural product Click here for species-specific activity table Hs Negative 6.4 – 8.2 pKi 8
pKi 6.4 – 8.2 (Ki 3.64x10-7 – 6.2x10-9 M) [8]
compound 3 [PMID: 21105727] Small molecule or natural product Click here for species-specific activity table Hs Negative 6.2 pKi 49
pKi 6.2 (Ki 6x10-7 M) [49]
compound 4 [PMID: 21105727] Small molecule or natural product Click here for species-specific activity table Hs Negative 6.1 pKi 49
pKi 6.1 (Ki 8x10-7 M) [49]
compound 2 [PMID: 21105727] Small molecule or natural product Click here for species-specific activity table Hs Negative 6.0 pKi 49
pKi 6.0 (Ki 1x10-6 M) [49]
THIIC Small molecule or natural product Rn Positive 7.9 pEC50 20
pEC50 7.9 (EC50 1.28x10-8 M) [20]
2,2,2-TEMPS Small molecule or natural product Hs Positive 7.8 pEC50 2
pEC50 7.8 (EC50 1.4x10-8 M) [2]
JNJ-42153605 Small molecule or natural product Hs Positive 7.8 pEC50 12
pEC50 7.8 (EC50 1.7x10-8 M) [12]
THIIC Small molecule or natural product Hs Positive 7.7 pEC50 20
pEC50 7.7 (EC50 2.25x10-8 M) [20]
compound 14a [PMID: 18812259] Small molecule or natural product Rn Positive 7.6 pEC50 56
pEC50 7.6 (EC50 2.6x10-8 M) [56]
cyPPTS Small molecule or natural product Hs Positive 7.6 pEC50 26
pEC50 7.6 (EC50 2.4x10-8 M) [26]
compound 14c [PMID: 18812259] Small molecule or natural product Rn Positive 7.5 pEC50 56
pEC50 7.5 (EC50 3x10-8 M) [56]
JNJ-40068782 Small molecule or natural product Hs Positive 6.8 – 7.8 pEC50 31
pEC50 6.8 – 7.8 (EC50 1.43x10-7 – 1.5x10-8 M) [31]
JNJ-40068782 Small molecule or natural product Rn Positive 7.3 pEC50 31
pEC50 7.3 (EC50 5.2x10-8 M) [31]
compound 19 [PMID: 18812259] Small molecule or natural product Rn Positive 7.2 pEC50 56
pEC50 7.2 (EC50 6.4x10-8 M) [56]
GSK1331258 Small molecule or natural product Hs Positive 7.1 pEC50 13
pEC50 7.1 (EC50 8x10-8 M) [13]
compound 34 [PMID: 20409708] Small molecule or natural product Hs Positive 7.1 pEC50 7
pEC50 7.1 (EC50 8.4x10-8 M) [7]
CBiPES Small molecule or natural product Hs Positive 7.0 pEC50 26
pEC50 7.0 (EC50 9.28x10-8 M) [26]
biphenylindanone A Small molecule or natural product Hs Positive 7.0 pEC50 4
pEC50 7.0 (EC50 1.11x10-7 M) [4]
GSK1331268 Small molecule or natural product Hs Positive 6.9 pEC50 13
pEC50 6.9 (EC50 1.25x10-7 M) [13]
JNJ-40411813 Small molecule or natural product Primary target of this compound Ligand has a PDB structure Hs Positive 6.8 pEC50 30
pEC50 6.8 (EC50 1.47x10-7 M) [30]
Description: Measured in a [35S]GTPγS binding assay with human metabotropic glutamate type 2 receptor expressed in CHO cells.
compound 14 [PMID: 21155570] Small molecule or natural product Rn Positive 6.8 pEC50 14
pEC50 6.8 (EC50 1.7x10-7 M) [14]
AZD8529 Small molecule or natural product Primary target of this compound Hs Positive 6.7 pEC50 1
pEC50 6.7 (EC50 1.95x10-7 M) [1]
compound 48 [PMID: 22364337] Small molecule or natural product Hs Positive 6.4 pEC50 11
pEC50 6.4 (EC50 3.61x10-7 M) [11]
4-APPES Small molecule or natural product Hs Positive 5.7 pEC50 26
pEC50 5.7 (EC50 2.26x10-6 M) [26]
RO4988546 Small molecule or natural product Rn Negative 8.3 pIC50 34
pIC50 8.3 (IC50 5.5x10-9 M) [34]
MNI-137 Small molecule or natural product Click here for species-specific activity table Rn Negative 7.7 – 8.1 pIC50 23
pIC50 7.7 – 8.1 (IC50 2.03x10-8 – 8.3x10-9 M) [23]
Ro4491533 Small molecule or natural product Click here for species-specific activity table Hs Negative 7.8 pIC50 54
pIC50 7.8 (IC50 1.4x10-8 M) [54]
MNI-136 Small molecule or natural product Hs Negative 7.3 – 8.1 pIC50 23
pIC50 7.3 – 8.1 (IC50 4.66x10-8 – 8.8x10-9 M) [23]
MNI-136 Small molecule or natural product Click here for species-specific activity table Rn Negative 7.7 – 7.7 pIC50 23
pIC50 7.7 – 7.7 (IC50 2.13x10-8 – 1.97x10-8 M) [23]
MNI-135 Small molecule or natural product Click here for species-specific activity table Rn Negative 7.5 – 7.7 pIC50 23
pIC50 7.5 – 7.7 (IC50 3.02x10-8 – 1.96x10-8 M) [23]
Ro4491533 Small molecule or natural product Click here for species-specific activity table Rn Negative 6.5 – 8.7 pIC50 8,54
pIC50 6.5 – 8.7 (IC50 2.96x10-7 – 2x10-9 M) [8,54]
MNI-137 Small molecule or natural product Hs Negative 7.1 – 7.9 pIC50 23
pIC50 7.1 – 7.9 (IC50 7.27x10-8 – 1.26x10-8 M) [23]
MNI-135 Small molecule or natural product Hs Negative 6.9 – 8.0 pIC50 23
pIC50 6.9 – 8.0 (IC50 1.18x10-7 – 1.05x10-8 M) [23]
Ro64-5229 Small molecule or natural product Rn Negative 7.0 pIC50 29
pIC50 7.0 (IC50 1.1x10-7 M) [29]
3-MPPTS Small molecule or natural product Hs Positive 6.6 pIC50 25-26,48
pIC50 6.6 [25-26,48]
PTBE Small molecule or natural product Hs Positive 6.5 pIC50 46
pIC50 6.5 [46]
compound 2 [PMID: 21105727] Small molecule or natural product Click here for species-specific activity table Hs Negative 6.1 pIC50 49
pIC50 6.1 (IC50 8x10-7 M) [49]
compound 4 [PMID: 21105727] Small molecule or natural product Click here for species-specific activity table Hs Negative 6.0 pIC50 49
pIC50 6.0 (IC50 1x10-6 M) [49]
compound 3 [PMID: 21105727] Small molecule or natural product Click here for species-specific activity table Hs Negative 5.8 pIC50 49
pIC50 5.8 (IC50 1.5x10-6 M) [49]
4-MPPTS Small molecule or natural product Hs Positive 5.8 pIC50 2,25-26,48
pIC50 5.8 [2,25-26,48]
View species-specific allosteric modulator tables
Allosteric Modulator Comments
These positive allosteric modulators appear to act as potentiators of ortheosteric agonist response. These compounds bind within the 7 transmembrane domain of the mGlu2 receptor, have no appreciable response alone, but will increase the affinity of glutamate and DCG-IV [25,48]. These potentiators represent the best selective pharmacological agent for mGlu2 vs. the homologous mGlu3 receptor.

MNI compounds are not selective for mGlu2 over mGlu3; selectivity of compounds for mGlu2 versus other mGlus in references [13,56] and [17] not reported.

CyPPTs and 4APPES are reported to be selective for mGlu2 versus mGlu1,3,4,5,6,7 and 8 [26]. THIIC is also selective for mGlu2 and exhibits allosteric agonist activity in GTPγS binding assays [20]. JNJ-42153065 exhibits allosteric agonist activity with a potency of 270 nM and is reported as >100 fold selective for mGlu2 versus the other mGlus and >50 fold selective for mGlu2 versus other targets in a CEREP panel.

Agonism EC50 of 34 is 4.9 µM, selectivity over other mGlus not reported [7]. Compounds 2,3 and 4 from reference [49] are also mGlu3 PAMs. Compound 14 is reported as selective for mGlu2 among the mGlus [14].

JNJ-40068782 exhibits allosteric agonist activity in certain assays with a potency of 618-925 nM. This activity is seen at the human but not the rat receptor. Also reported to selective for mGlu2 up to 10 µM [31].

Pending publication of data, the value for AZD8529 is derived from the compound record in AstaZeneca's Open Innovation Pharmacology Toolbox.
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Potassium channel
References:  18,21
Tissue Distribution Click here for help
Distribution within the human brain is largely similar to that seen in rodents. Specifically, mGlu2 receptor is localized in layer II and III of the frontal, visual and sensorimotor cortex, several limbic areas including the entorhinal cortex, hippocampus, and amygdala. Also localized within the basal ganglia including caudate, putamen and globus pallidus. Multiple regions of the thalamus, and the granular cell layer of the cerebellum.
Species:  Human
Technique:  immunocytochemistry.
References:  44
CNS: accessory olfactory bulb, neocortex, entorhinal cortex, bed nucleus of the accessory olfactory tract, retrosplenial cortex, hippocampal mossy fibres, molecular layer of the dentate gyrus, basolateral amygdala, striatum, nucleus accumbens, anterior thalamic nuclei, reticular thalamic nucleus, anterior and ventral tegmental nucleus, cerebellar cortex > main olfactory bulb, nucleus of the lateral olfactory tract, perirhinal cortex, central amygdaloid nucleus, triangular septal nucleus, medial habenular nucleus, centromedial thalamic nucleus, rhomboid thalamic nucleus, nucleus reunions of the thalamus, lateroposterior and laterodorsal nuclei of the thalamus, medial mammillary nucleus, interpeduncular nucleus, eriaqueductal gray, ontine nuclei, cochlear nuclei, inferior olivary nucleus, lateral reticular nucleus > olfactory tubercle, piriform cortex, lateral septal nucleus, globus pallidus, principal sensory trigeminal nucleus, lateral preoptic area, ventral pallidum, subthalamic nucleus, substantia nigra, ventral thalamic nuclei, lateral hypothalamic area, ventro- and dorso-medial hypothalamaic nuclei, superior colliculus, ventral tegmental area, vestibular nuclei, nucleus of the solitary tract.
Species:  Mouse
Technique:  immunocytochemistry.
References:  52
Within the brain, mGlu2 receptor is localized both pre- and in some case postsynaptically. Relative distribution is high in several limbic areas including the cortex, hippocampus, amygdala. Also localized within the caudate-putamen and nucleus accumbens of the basal ganglia, rostal portion of the thalamic reticular nucleus, granular cell layer of the cerebellum, and the tegmental nucleus of the lower brain stem.
Species:  Mouse
Technique:  immunocytochemistry.
References:  41
Retina.
Species:  Rat
Technique:  in situ hybridisation.
References:  22
Golgi cells in the cerebellar cortex.
Species:  Rat
Technique:  immunocytochemistry.
References:  33
CNS: accessory olfactory bulb, neocortex, entorhinal cortex, cerebellar cortex > bed nucleus of the accessory olfactory tract, retrosplenial cortex, cingulate cortex, dentate gyrus, triangular septal nucleus, basolateral amygdala, midline thalamic nuclei, anterior thalamic nuclei, medial mammillary nucleus > main olfactory bulb, nucleus of the lateral olfactory tract, piriform cortex, medial septal nucleus, striatum, nucleus accumbens, ventral pallidum, globus pallidus, medial habenular nucleus, pontine nuclei, trapezoid body nucleus, inferior olivary nuclei.
Species:  Rat
Technique:  in situ hybridisation.
References:  42
Within the brain, mGlu2 receptor is localized both pre- and in some case postsynaptically. Relative distribution is high in several limbic areas including the cortex, hippocampus, amygdala. Also localized within the caudate-putamen and nucleus accumbens of the basal ganglia, rostal portion of the thalamic reticular nucleus, granular cell layer of the cerebellum, and the tegmental nucleus of the lower brain stem.
Species:  Rat
Technique:  immunocytochemistry.
References:  41
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Native mGlu2 receptor function has been linked to the regulation of glutamate release with the stimulation of the medial perforant path in hippocampal brain slices.
Species:  Rat
Tissue:  Hippocampal brain slices.
Response measured:  Field Excitatory Postsynaptic Potential with stimulation of the medial periforant pathway.
References:  15,35
Measurement of cAMP levels in CHO cells transfected with the rat mGlu2 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP production.
References:  53
Measurement of cAMP levels in rat glutamate transporter (RGT) cells transfected with the human mGlu2.
Species:  Human
Tissue:  RGT cells.
Response measured:  Inhibition of cAMP production.
References:  28
Measurement of IP levels in HEK 293 cells transfected with the rat mGlu2 receptor and Gqi9.
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  IP accumulation.
References:  6
Physiological Functions Click here for help
The mGlu2 receptor is thought to be the major presynaptic autoreceptor, regulating glutamate release.
Species:  Mouse
Tissue:  Hippocampal slices.
References:  27
mGlu2 activation modulates glutamate release in the subthalamic nucleus-globus palidus synapse.
Species:  Rat
Tissue:  Globus pallidus slices.
References:  47
Physiological Consequences of Altering Gene Expression Click here for help
Loss of mGlu2/3 agonist suppression of glutamate release and hippocampal mossy fiber long-term depression in mGlu2 knock-out mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  55
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Grm2tm1Ddsc Grm2tm1Ddsc/Grm2tm1Ddsc
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:1351339  MP:0001362 abnormal anxiety-related response PMID: 15619115 
Grm2tm1Nak Grm2tm1Nak/Grm2tm1Nak
involves: 129S/SvEv
MGI:1351339  MP:0002912 abnormal excitatory postsynaptic potential PMID: 8662555 
Grm2tm1Nak Grm2tm1Nak/Grm2tm1Nak
B6.129S-Grm2
MGI:1351339  MP:0002066 abnormal motor capabilities/coordination/movement PMID: 15753323 
Grm2tm1Nak Grm2tm1Nak/Grm2tm1Nak
B6.129S-Grm2
MGI:1351339  MP:0001988 cocaine preference PMID: 15753323 
Grm2tm1Nak Grm2tm1Nak/Grm2tm1Nak
B6.129S-Grm2
MGI:1351339  MP:0001399 hyperactivity PMID: 15753323 
Grm2tm1Nak Grm2tm1Nak/Grm2tm1Nak
B6.129S-Grm2
MGI:1351339  MP:0001405 impaired coordination PMID: 15753323 
Grm2tm1Nak Grm2tm1Nak/Grm2tm1Nak
B6.129S-Grm2
MGI:1351339  MP:0001906 increased dopamine level PMID: 15753323 
Grm2tm1Nak Grm2tm1Nak/Grm2tm1Nak
involves: 129S/SvEv
MGI:1351339  MP:0001475 reduced long term depression PMID: 8662555 
General Comments
To date, the relative lack of mGlu2 vs. mGlu3 receptor agonists/antagonists and limited results/availability of with selective antibodies has hampered efforts to differentiate the relative roles of these two highly related receptors in the Group II mGlu receptor family.

References

Show »

1. AstraZeneca. AZD8529-Open Innovation. Accessed on 10/09/2014. Modified on 10/09/2014. astrazeneca.com, http://openinnovation.astrazeneca.com/what-we-offer/compound/azd8529/

2. Barda DA, Wang ZQ, Britton TC, Henry SS, Jagdmann GE, Coleman DS, Johnson MP, Andis SL, Schoepp DD. (2004) SAR study of a subtype selective allosteric potentiator of metabotropic glutamate 2 receptor, N-(4-phenoxyphenyl)-N-(3-pyridinylmethyl)ethanesulfonamide. Bioorg Med Chem Lett, 14 (12): 3099-102. [PMID:15149652]

3. Bertrand HO, Bessis AS, Pin JP, Acher FC. (2002) Common and selective molecular determinants involved in metabotopic glutamate receptor agonist activity. J Med Chem, 45 (15): 3171-83. [PMID:12109902]

4. Bonnefous C, Vernier JM, Hutchinson JH, Gardner MF, Cramer M, James JK, Rowe BA, Daggett LP, Schaffhauser H, Kamenecka TM. (2005) Biphenyl-indanones: allosteric potentiators of the metabotropic glutamate subtype 2 receptor. Bioorg Med Chem Lett, 15 (19): 4354-8. [PMID:16046122]

5. Boss V, Nutt KM, Conn PJ. (1994) L-cysteine sulfinic acid as an endogenous agonist of a novel metabotropic receptor coupled to stimulation of phospholipase D activity. Mol Pharmacol, 45: 1177-1182. [PMID:8022410]

6. Brabet I, Parmentier ML, De Colle C, Bockaert J, Acher F, Pin JP. (1998) Comparative effect of L-CCG-I, DCG-IV and gamma-carboxy-L-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology, 37 (8): 1043-51. [PMID:9833633]

7. Brnardic EJ, Fraley ME, Garbaccio RM, Layton ME, Sanders JM, Culberson C, Jacobson MA, Magliaro BC, Hutson PH, O'Brien JA et al.. (2010) 3-Aryl-5-phenoxymethyl-1,3-oxazolidin-2-ones as positive allosteric modulators of mGluR2 for the treatment of schizophrenia: Hit-to-lead efforts. Bioorg Med Chem Lett, 20 (10): 3129-33. [PMID:20409708]

8. Campo B, Kalinichev M, Lambeng N, El Yacoubi M, Royer-Urios I, Schneider M, Legrand C, Parron D, Girard F, Bessif A et al.. (2011) Characterization of an mGluR2/3 negative allosteric modulator in rodent models of depression. J Neurogenet, 25 (4): 152-66. [PMID:22091727]

9. Cartmell J, Adam G, Chaboz S, Henningsen R, Kemp JA, Klingelschmidt A, Metzler V, Monsma F, Schaffhauser H, Wichmann J et al.. (1998) Characterization of [3H]-(2S,2'R,3'R)-2-(2',3'-dicarboxy-cyclopropyl)glycine ([3H]-DCG IV) binding to metabotropic mGlu2 receptor-transfected cell membranes. Br J Pharmacol, 123 (3): 497-504. [PMID:9504391]

10. Chaki S, Yoshikawa R, Hirota S, Shimazaki T, Maeda M, Kawashima N, Yoshimizu T, Yasuhara A, Sakagami K, Okuyama S et al.. (2004) MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity. Neuropharmacology, 46 (4): 457-67. [PMID:14975669]

11. Cid JM, Duvey G, Tresadern G, Nhem V, Furnari R, Cluzeau P, Vega JA, de Lucas AI, Matesanz E, Alonso JM et al.. (2012) Discovery of 1,4-disubstituted 3-cyano-2-pyridones: a new class of positive allosteric modulators of the metabotropic glutamate 2 receptor. J Med Chem, 55 (5): 2388-405. [PMID:22364337]

12. Cid JM, Tresadern G, Vega JA, de Lucas AI, Matesanz E, Iturrino L, Linares ML, Garcia A, Andrés JI, Macdonald GJ et al.. (2012) Discovery of 3-cyclopropylmethyl-7-(4-phenylpiperidin-1-yl)-8-trifluoromethyl[1,2,4]triazolo[4,3-a]pyridine (JNJ-42153605): a positive allosteric modulator of the metabotropic glutamate 2 receptor. J Med Chem, 55 (20): 8770-89. [PMID:23072213]

13. D'Alessandro PL, Corti C, Roth A, Ugolini A, Sava A, Montanari D, Bianchi F, Garland SL, Powney B, Koppe EL et al.. (2010) The identification of structurally novel, selective, orally bioavailable positive modulators of mGluR2. Bioorg Med Chem Lett, 20 (2): 759-62. [PMID:20005096]

14. Dhanya RP, Sidique S, Sheffler DJ, Nickols HH, Herath A, Yang L, Dahl R, Ardecky R, Semenova S, Markou A et al.. (2011) Design and synthesis of an orally active metabotropic glutamate receptor subtype-2 (mGluR2) positive allosteric modulator (PAM) that decreases cocaine self-administration in rats. J Med Chem, 54 (1): 342-53. [PMID:21155570]

15. Dietrich D, Beck H, Kral T, Clusmann H, Elger CE, Schramm J. (1997) Metabotropic glutamate receptors modulate synaptic transmission in the perforant path: pharmacology and localization of two distinct receptors. Brain Res, 767 (2): 220-7. [PMID:9367251]

16. Doornbos ML, Pérez-Benito L, Tresadern G, Mulder-Krieger T, Biesmans I, Trabanco AA, Cid JM, Lavreysen H, IJzerman AP, Heitman LH. (2016) Molecular mechanism of positive allosteric modulation of the metabotropic glutamate receptor 2 by JNJ-46281222. Br J Pharmacol, 173 (3): 588-600. [PMID:26589404]

17. Duplantier AJ, Efremov I, Candler J, Doran AC, Ganong AH, Haas JA, Hanks AN, Kraus KG, Lazzaro Jr JT, Lu J et al.. (2009) 3-Benzyl-1,3-oxazolidin-2-ones as mGluR2 positive allosteric modulators: Hit-to lead and lead optimization. Bioorg Med Chem Lett, 19 (9): 2524-9. [PMID:19328692]

18. Dutar P, Vu HM, Perkel DJ. (1999) Pharmacological characterization of an unusual mGluR-evoked neuronal hyperpolarization mediated by activation of GIRK channels. Neuropharmacology, 38 (4): 467-75. [PMID:10221750]

19. Fagni L, Chavis P, Ango F, Bockaert J. (2000) Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci, 23 (2): 80-8. [PMID:10652549]

20. Fell MJ, Witkin JM, Falcone JF, Katner JS, Perry KW, Hart J, Rorick-Kehn L, Overshiner CD, Rasmussen K, Chaney SF et al.. (2011) N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-4-carboxamide (THIIC), a novel metabotropic glutamate 2 potentiator with potential anxiolytic/antidepressant properties: in vivo profiling suggests a link between behavioral and central nervous system neurochemical changes. J Pharmacol Exp Ther, 336 (1): 165-77. [PMID:20947638]

21. Flor PJ, Lindauer K, Puttner I, Ruegg D, Lukic S, Knopfel T, Kuhn R. (1995) Molecular cloning, functional expression and pharmacological characterization of the human metabotropic glutamate receptor type 2. Eur J Neurosci, 7: 622-629. [PMID:7620613]

22. Hartveit E, Brandstätter JH, Enz R, Wässle H. (1995) Expression of the mRNA of seven metabotropic glutamate receptors (mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue sections and isolated cells. Eur J Neurosci, 7 (7): 1472-83. [PMID:7551173]

23. Hemstapat K, Da Costa H, Nong Y, Brady AE, Luo Q, Niswender CM, Tamagnan GD, Conn PJ. (2007) A novel family of potent negative allosteric modulators of group II metabotropic glutamate receptors. J Pharmacol Exp Ther, 322 (1): 254-64. [PMID:17416742]

24. Johnson BG, Wright RA, Arnold MB, Wheeler WJ, Ornstein PL, Schoepp DD. (1999) [3H]-LY341495 as a novel antagonist radioligand for group II metabotropic glutamate (mGlu) receptors: characterization of binding to membranes of mGlu receptor subtype expressing cells. Neuropharmacology, 38 (10): 1519-29. [PMID:10530814]

25. Johnson MP, Baez M, Jagdmann Jr GE, Britton TC, Large TH, Callagaro DO, Tizzano JP, Monn JA, Schoepp DD. (2003) Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2- trifluoroethylsulfonyl)pyrid-3-ylmethylamine. J Med Chem, 46 (15): 3189-92. [PMID:12852748]

26. Johnson MP, Barda D, Britton TC, Emkey R, Hornback WJ, Jagdmann GE, McKinzie DL, Nisenbaum ES, Tizzano JP, Schoepp DD. (2005) Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s). Psychopharmacology (Berl.), 179 (1): 271-83. [PMID:15717213]

27. Kew JN, Pflimlin MC, Kemp JA, Mutel V. (2002) Differential regulation of synaptic transmission by mGlu2 and mGlu3 at the perforant path inputs to the dentate gyrus and CA1 revealed in mGlu2 -/- mice. Neuropharmacology, 43 (2): 215-21. [PMID:12213275]

28. Kingston AE, Ornstein PL, Wright RA, Johnson BG, Mayne NG, Burnett JP, Belagaje R, Wu S, Schoepp DD. (1998) LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology, 37 (1): 1-12. [PMID:9680254]

29. Kolczewski S, Adam G, Stadler H, Mutel V, Wichmann J, Woltering T. (1999) Synthesis of heterocyclic enol ethers and their use as group 2 metabotropic glutamate receptor antagonists. Bioorg Med Chem Lett, 9 (15): 2173-6. [PMID:10465539]

30. Lavreysen H, Ahnaou A, Drinkenburg W, Langlois X, Mackie C, Pype S, Lütjens R, Le Poul E, Trabanco AA, Nuñez JM. (2015) Pharmacological and pharmacokinetic properties of JNJ-40411813, a positive allosteric modulator of the mGlu2 receptor. Pharmacol Res Perspect, 3 (1): e00096. [PMID:25692015]

31. Lavreysen H, Langlois X, Ahnaou A, Drinkenburg W, te Riele P, Biesmans I, Van der Linden I, Peeters L, Megens A, Wintmolders C et al.. (2013) Pharmacological characterization of JNJ-40068782, a new potent, selective, and systemically active positive allosteric modulator of the mGlu2 receptor and its radioligand [3H]JNJ-40068782. J Pharmacol Exp Ther, 346 (3): 514-27. [PMID:23766542]

32. Li ML, Yang SS, Xing B, Ferguson BR, Gulchina Y, Li YC, Li F, Hu XQ, Gao WJ. (2015) LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp Neurol, 273: 190-201. [PMID:26341392]

33. Luján R, Roberts JD, Shigemoto R, Ohishi H, Somogyi P. (1997) Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. J Chem Neuroanat, 13 (4): 219-41. [PMID:9412905]

34. Lundström L, Bissantz C, Beck J, Wettstein JG, Woltering TJ, Wichmann J, Gatti S. (2011) Structural determinants of allosteric antagonism at metabotropic glutamate receptor 2: mechanistic studies with new potent negative allosteric modulators. Br J Pharmacol, 164 (2b): 521-37. [PMID:21470207]

35. Macek TA, Winder DG, Gereau 4th RW, Ladd CO, Conn PJ. (1996) Differential involvement of group II and group III mGluRs as autoreceptors at lateral and medial perforant path synapses. J Neurophysiol, 76 (6): 3798-806. [PMID:8985877]

36. Malherbe P, Knoflach F, Broger C, Ohresser S, Kratzeisen C, Adam G, Stadler H, Kemp JA, Mutel V. (2001) Identification of essential residues involved in the glutamate binding pocket of the group II metabotropic glutamate receptor. Mol Pharmacol, 60 (5): 944-54. [PMID:11641422]

37. Martí SB, Cichon S, Propping P, Nöthen M. (2002) Human metabotropic glutamate receptor 2 gene (GRM2): chromosomal sublocalization (3p21.1-p21.2) and genomic organization. Am J Med Genet, 114 (1): 12-4. [PMID:11840499]

38. Monn JA, Valli MJ, Massey SM, Hansen MM, Kress TJ, Wepsiec JP, Harkness AR, Grutsch Jr JL, Wright RA, Johnson BG et al.. (1999) Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J Med Chem, 42 (6): 1027-40. [PMID:10090786]

39. Nakazato A, Kumagai T, Sakagami K, Yoshikawa R, Suzuki Y, Chaki S, Ito H, Taguchi T, Nakanishi S, Okuyama S. (2000) Synthesis, SARs, and pharmacological characterization of 2-amino-3 or 6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid derivatives as potent, selective, and orally active group II metabotropic glutamate receptor agonists. J Med Chem, 43 (25): 4893-909. [PMID:11123999]

40. Nakazato A, Sakagami K, Yasuhara A, Ohta H, Yoshikawa R, Itoh M, Nakamura M, Chaki S. (2004) Synthesis, in vitro pharmacology, structure-activity relationships, and pharmacokinetics of 3-alkoxy-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid derivatives as potent and selective group II metabotropic glutamate receptor antagonists. J Med Chem, 47 (18): 4570-87. [PMID:15317467]

41. Ohishi H, Neki A, Mizuno N. (1998) Distribution of a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat and mouse: an immunohistochemical study with a monoclonal antibody. Neurosci Res, 30 (1): 65-82. [PMID:9572581]

42. Ohishi H, Shigemoto R, Nakanishi S, Mizuno N. (1993) Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience, 53 (4): 1009-18. [PMID:8389425]

43. Pellicciari R, Marinozzi M, Natalini B, Costantino G, Luneia R, Giorgi G, Moroni F, Thomsen C. (1996) Synthesis and pharmacological characterization of all sixteen stereoisomers of 2-(2'-carboxy-3'-phenylcyclopropyl)glycine. Focus on (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine, a novel and selective group II metabotropic glutamate receptors antagonist. J Med Chem, 39 (11): 2259-69. [PMID:8667369]

44. Phillips T, Rees S, Augood S, Waldvogel H, Faull R, Svendsen C, Emson P. (2000) Localization of metabotropic glutamate receptor type 2 in the human brain. Neuroscience, 95 (4): 1139-56. [PMID:10682721]

45. Pin JP, De Colle C, Bessis AS, Acher F. (1999) New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur J Pharmacol, 375 (1-3): 277-94. [PMID:10443583]

46. Pinkerton AB, Vernier JM, Schaffhauser H, Rowe BA, Campbell UC, Rodriguez DE, Lorrain DS, Baccei CS, Daggett LP, Bristow LJ. (2004) Phenyl-tetrazolyl acetophenones: discovery of positive allosteric potentiatiors for the metabotropic glutamate 2 receptor. J Med Chem, 47 (18): 4595-9. [PMID:15317469]

47. Poisik O, Raju DV, Verreault M, Rodriguez A, Abeniyi OA, Conn PJ, Smith Y. (2005) Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus. Neuropharmacology, 49 Suppl 1: 57-69. [PMID:15993439]

48. Schaffhauser H, Rowe BA, Morales S, Chavez-Noriega LE, Yin R, Jachec C, Rao SP, Bain G, Pinkerton AB, Vernier JM et al.. (2003) Pharmacological characterization and identification of amino acids involved in the positive modulation of metabotropic glutamate receptor subtype 2. Mol Pharmacol, 64 (4): 798-810. [PMID:14500736]

49. Schann S, Mayer S, Franchet C, Frauli M, Steinberg E, Thomas M, Baron L, Neuville P. (2010) Chemical switch of a metabotropic glutamate receptor 2 silent allosteric modulator into dual metabotropic glutamate receptor 2/3 negative/positive allosteric modulators. J Med Chem, 53 (24): 8775-9. [PMID:21105727]

50. Schoepp DD, Jane DE, Monn JA. (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology, 38 (10): 1431-76. [PMID:10530808]

51. Schweitzer C, Kratzeisen C, Adam G, Lundstrom K, Malherbe P, Ohresser S, Stadler H, Wichmann J, Woltering T, Mutel V. (2000) Characterization of [(3)H]-LY354740 binding to rat mGlu2 and mGlu3 receptors expressed in CHO cells using semliki forest virus vectors. Neuropharmacology, 39 (10): 1700-6. [PMID:10884552]

52. Tamaru Y, Nomura S, Mizuno N, Shigemoto R. (2001) Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience, 106 (3): 481-503. [PMID:11591452]

53. Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S. (1992) A family of metabotropic glutamate receptors. Neuron, 8 (1): 169-79. [PMID:1309649]

54. Woltering TJ, Wichmann J, Goetschi E, Knoflach F, Ballard TM, Huwyler J, Gatti S. (2010) Synthesis and characterization of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives: Part 4. In vivo active potent and selective non-competitive metabotropic glutamate receptor 2/3 antagonists. Bioorg Med Chem Lett, 20 (23): 6969-74. [PMID:20971004]

55. Yokoi M, Kobayashi K, Manabe T, Takahashi T, Sakaguchi I, Katsuura G, Shigemoto R, Ohishi H, Nomura S, Nakamura K, Nakao K, Katsuki M, Nakanishi S. (1996) Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science, 273: 645- 647. [PMID:8662555]

56. Zhang L, Rogers BN, Duplantier AJ, McHardy SF, Efremov I, Berke H, Qian W, Zhang AQ, Maklad N, Candler J et al.. (2008) 3-(Imidazolyl methyl)-3-aza-bicyclo[3.1.0]hexan-6-yl)methyl ethers: a novel series of mGluR2 positive allosteric modulators. Bioorg Med Chem Lett, 18 (20): 5493-6. [PMID:18812259]

Contributors

Show »

How to cite this page